
 

Instructions for use

Title Type 2 Fuzzy Clustering Algorithm for Fuzzy Data

Author(s) Imai, Hideyuki; Ohnishi, Shin-ichi; Sato, Yoshiharu

Citation Proceedings of The International Conference on Measurement and Multivariate Analysis, Volume 1, 15-17

Issue Date 2000

Doc URL http://hdl.handle.net/2115/47121

Type proceedings (author version)

Note
International Conference on Measurement and Multivariate Analysis (ICMMA) and Dual Scaling Workshop. May 11,
12, 13 & 14, 2000
at The Banff Centre for Conferences Banff, Alberta, Canada

File Information ICMMA.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


TYPE 2 FUZZY CLUSTERING ALGORITHM FOR
FUZZY DATA

HIDEYUKI IMAI, SHIN-ICHI OHNISHI, AND YOSHIHARU SATO

1. Introduction

In many situations, precise measurements are vary costly, unneces-
sary, and even impossible to obtain in some cases. Thus, it often occurs
that fuzzy data such as real intervals or real fuzzy numbers are avail-
able. In recent literatures, some method to handle fuzzy data have been
developed [2, 4]. These are based on a parameterization representing
centers and radiuses of fuzzy data. It is pointed out that different pa-
rameterizations of fuzzy sets can lead to different computational result
even in very simple cases. In this paper, we propose other method to
classify fuzzy data. This is based on a interval computations of α-cut
sets of fuzzy data and a extension principle of fuzzy sets. This method
enables us to obtain both type 2 fuzzy prototypes and type 2 fuzzy
partitions. It requires high computing cost to determine exact inter-
vals for a lot of α-cut sets. Therefore, we also propose a method to
obtain approximate intervals which is based on a sensitivity analysis.

2. FCM Algorithm

Let x�, . . . ,x� ∈ R� be data points in k-dimensional real Euclidean
space R�. Thus, the FCM algorithm is to solve the following problem:

minimize J�(U,V) =

�∑

���

�∑

���

(u��)
�‖x� − v�‖�(1)

where ‖ · ‖ denotes the Euclidean distance in R�, c is the fixed and
known number of clusters, m is the arbitrary chosen scalar greater
than 1, v�, . . . ,v� ∈ R� are the unknown prototypes (cluster centers),
V ≡ [v�, . . . ,v�] is a k × c matrix, and U ≡ (u��) is a c × N matrix
whose elements satisfy the following condition (a), (b), and (c) :

(a) u�� ∈ [0, 1], ∀β ∈ J,∀i ∈ I, (b)
�∑

���

u�� = 1,∀i ∈ I,

(c) 0 <

�∑

���

u�� < N,∀β ∈ J,

where I = {1, . . . ,N} and J = {1, . . . , c}. The scalar m, called the
weighting exponent of FCM, determines the fuzziness of the clustering.



When m is small, the result is the same as hard clustering, that is,
u��’s tend to {0, 1}, ∀i ∈ I, ∀β ∈ J, and when m is large, the result is
quite fuzzy, that is, u��’s tend to �

�
,∀i ∈ I, ∀β ∈ J. For more details

about FCM, refer [1].

3. Fuzzy Data

In ordinary cluster analysis including FCM, each (crisp) data is rep-
resented by a k-tuple of real numbers, such that x� = (x��, . . . , x��), i ∈
I. In this paper, we assume that fuzzy data points are available, and
that they are real numbers, real intervals or real fuzzy numbers[2].
Thus, each data point is represented by k-tuple of them. Since they
are a kind of fuzzy sets, their components are represented by member-
ship functions. The α-cut sets (α ∈ [0, 1]) of membership functions
are denoted by µ���, which are real intervals, that is, µ��� = {s ∈ R |
µ(s) ≥ α}. In what follows, fuzzy data points in R� is denoted by
µ� = (µ��, . . . , µ��), i ∈ I, and the k-tuple of their α-cut sets is denoted

by µ
���

� = (µ
���

�� , . . . , µ
���

�� ), i ∈ I. Moreover, the center of each interval

µ
���

�	 is denoted by x
���

�	 .

4. Fuzzy clustering method for fuzzy data

Since α-cut sets of fuzzy data points are intervals, the result of clus-
tering becomes also intervals. Thus, to classify fuzzy data points, we
use interval analysis. To obtain approximate membership functions of
partitions and prototypes, we combine the results of α�-cut sets with
0 = α
 < α� · · · < α� = 1. The proposed method is based on sensitiv-
ity analysis for FCM [3].

Let a {c ×N + c × k} vector θ and a {(c − 1) ×N + c × k} vector θ̄

be

θ = (u��, . . . , u��, . . . , u��, . . . , u��, v��, . . . , v��, . . . , v��)
′,

θ̄ = (u��, . . . , u�����, . . . , u��, . . . , u�����, v��, . . . , v��, . . . , v��)
′,

respectively, where these components are the result of ordinary FCM
for crisp data. Note that the value u��, i ∈ I can be calculated from
the condition (b), and that the objective function J� is regarded as a
function of θ̄, which is denoted by J̄�. By the Theorem 1 of [3], we
obtain the following

Theorem 1. Suppose the data points y
���

� , . . . ,y
���

� is denoted by

y
���

� = x
���

� + d
���

� ε, i ∈ I,

where x
���

� = (x
���

�� , . . . , x
���

�� ), and d
���

� = (d
���

�� , . . . , d
���

�� ), d
���

�	 is a half

of the length of the interval µ
���

�	 . Moreover, θ
 denotes the solution of

Eq.(1) for crisp data x
���

� , i ∈ I. When either the condition m > 2 or



u�� �= 0, 1,∀i ∈ I, ∀j ∈ J, is satisfied, and the Hessian matrix of J̄�(θ̄),
which is denoted by H(θ̄), is nonsingular at θ̄ = θ̄
, then

∂J̄�

∂θ̄
(θ̄, ε) = 0

can be analytically solved as θ̄ = θ̄(ε) in the neighborhood of (θ̄, 0)
and θ̄(0) = θ̄
. Moreover,

θ̄(ε) − θ̄
 = H��(θ̄
)L(θ̄
)vec(D)ε + O(ε�),

where vec is the vec-operator.

For calculation of H(θ̄) and L(θ̄), refer [3]. From Theorem 1 and
the condition (b), we get

θ(ε) − θ
 = A(θ
)vec(D)ε + O(ε�),(2)

where A is some p × (c × N + k) matrix . For calculation of A, also
refer [3]. Using Eq.(2), we obtain approximate intervals of α-cut sets
of fuzzy data points.
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