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I PAPER Special Section on Foundations of Computer Science 

Space-Saving Approximation Algorithm for Grammar-Based 
Compression 

Hiroshi SAKAMOTOta), Member, Shirou MARUYAMA·I·tb), Takuya KIDA H"!'c), 
and Shinichi SHIMOZONOtd), Nonmembers 

SUMMARY A space-efficient approximation algorithm for the 
grammar-based compression problem, which requests for a given string 
to find a smallest context-free grammar deriving the string, is presented. 
For the .input length 11 and an optimum CFO size g, the algorithm con
sumes only O(g log g) space and 0(nlog")1) time to achieve O((lOg")1) log n) 
approximation ratio to the optimum compression, where log*n is the max
imum number of logarithms satisfying log log· .. log n > 1. This ratio is 
thus regarded to almost O(log 11), which is the currently best approximation 
ratio. While g depends on the string, it is known that g = Q(logn) and 

.g = 0CO;kn ) for strings from k-Ietter alphabet[l2]. 
key words: grammar-based compression, approximation algorithm, mini
mum CFG problem 

1. Introduction 

The grammar-based compression problem is to find a small
est context-free grammar generating just single string. Such 
a CFG requires that every nonterminal is derived from only 
one production rule, say, deterministic. The problem deeply 
relates to factoring problems for strings, and the complex
ity of similar minimization problems have been rigorously 
studied. For example, Storer [20] introduced a factorization 
for a given string and showed the problem is NP-hard. De 
Agostino and Storer [2] defined several online variants and 
proved that those are also NP-hard. 

As non-approximability results, Lehman and She
lat [13] showed that the problem is APX-hard, i.e. it is hard 
to approximate this problem within a constant factor (see 
[1] for definitions). They also mentioned its interesting con
nection to the semi-numerical problem [9], which is an alge
braic problem of minimizing the number of different multi
plications to compute the given integers and has no known 
polynomial-time approximation algorithm achieving a ratio 
o(log n/ log log n). Since the problem is a special case of the 
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grammar-based compression, an approximation better than 
this ratio seems to be also hard. 

On the other hand, various practical algorithms for 
the grammar-based compression have been devised so far. 
LZW [21] including LZ78 [24], and BISECTION [8] are 
considered as algOlithms that computes straight-line pro
grams, CFGs formed from Chomsky normal form formulas. 
Also algorithms for restricted CFGs have been presented in 
[6], [10], [15], [16], [22]. Lehman and Shelat [13] proved the 
upper bounds of the approximation ratio of these practical 
algorithms, as well as the lower bounds with the worst-case 
instances. For example, BISECTION algorithm achieves an 
approximation ratio no more than O((n/ log n)I/2). All those 
ratios, including the lower-bounds, are larger than O(log n). 

Recently polynomial-time approximation algorithms 
for the grammar-based compression problem have been 
widely studied and the worst-case approximation ratio has 
been improved. The first log n-approximation algorithm was 
developed by Charikar et a1. [4]. Their algorithm guaran
tees the ratio O(log(n/ g», where g is the size of a minimum 
deterministic CFG for an input. Independently, Rytter pre
sented in [17] another O(log(n/ g))-approximation algorithm 
that employs a suffix tree and the LZ-factorization technique 
for strings. Sakamoto also proposed in [19] a simple linear
time algorithm based on Re-pair [10] and achieving ratio 
O(log n); Now this ratio has been improved to O(log(n/ g)). 

The ratio O(log(n/ g») achieved by these new algo
rithms is theoretically sufficiently small. However, all these 
algorithms require O(n) space, and it prevents us to apply the 
algorithms to huge texts, which is crucial to obtain a good 
compression ratio in practice. For example, the algorithm 
Re-pair [10] spends 5n + n1/ 2 space on unit-cost RAM with 
the input size n. 

This state motivates us to develop a sub-linear space 
O(log n)-approximation algOlithm for the grammar-based 
compression. We presented a simple algorithm [18] that re
peats substituting one new nonterminal symbol to all the 
same and non-overlapping two contiguous symbols occur
ring in the string. This is carried out by utilizing idea of the 
lowest common ancestor of balanced binary trees, and no 
real special data structure, such as suffix tree or occurrence 
frequency table, is requested. In consequence, the space 
complexity is nearly equal to the total number of created 
nonterminal symbols, each of which corresponds to a pro
duction rule in Chomsky normal form. This algorithm was 
applied to Compressed Pattern Matching in [14]. In this 
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paper we improve the algorithm and obtain almost O(log n)
approximation ratio preserving the space complexity. 

The size of the final dictionary of the rules is proved by 
the compactness of LZ-factorization [17] and alphabet re
duction technique [5]. This technique requires log*n times 
iteration. Here log*n denotes the maximum integer j which 
satisfies F(j) ::; n for 

F(O) = 1, and F(j) = 2F(j-I) (j 2: 1). 

For instance, F(3) = 24 = 16, F(4) = 2 16 = 65536, and 
F(5) = 265536. Thus, log*n is almost constant even for suf
ficiently large n. Our algorithm runs in almost O(n) time 
and O(g log g) space preserving the worst-case approxima
tion ratio O((log*n) log n). This ratio is almost the currently 
best approximation. The memory space is devoted to the 
dictionary that maps a contiguous pair of symbols to a non
terminal. Practically, in randomized model, space complex
ity can be reduced to O(g log g) by using a hash table for the 
dictionary. In the framework of dictionary-based compres
sion, the lower-bound of memory space is usually estimated 
by the size of a possible smallest dictionary, and thus our 
algorithm is nearly optimal in space complexity. Compared 
to other practical dictionary-based compression algorithms, 
such as LZ78, which achieves the ratio Q(n2/3 / log n), the 
lower-bound of memory space of our algorithm is consid
ered to be sufficiently small. 

The remaining part of this paper is organized as fol
lows. In Sect. 2, we prepare the definitions related to the 
grammar-based compression. In Sect. 3, we introduce the 
notion of lowest common ancestors in a complete binary 
tree defined by alphabet symbols. Using this notion, our 
algorithm decides a fixed priority of all pairs appearing in 
a current string and replaces them according to the prior
ity. More precisely, a pair is called to be maximal if its 
priority is higher than the neighbors'. The aim of the al
gorithm is to find as many maximal pairs as possible, and 
this is performed by iterative application of the alphabet re
duction. The algorithm is presented in Sect. 4 and we an
alyze the approximation ratio and estimate the time/space 
efficiency compared with related grammar-based compres
sion algorithms. In Sect. 5, we summarize this study. 

2. Notions and Definitions 

In this study we suppose a standard RAM model [11] with 
the unit-cost measure, in which the following assumptions 
are made. Each value is a primitive data item, the memory 
required by a given variable is equal to the number of en
tries in the array that it represents, the memory required by a 
RAM is equal to the total memory required by its variables, 
and the time required by a RAM is equal to the number of 
instructions being executed. 

We next recall the notions in formal language theory. 
Given a sufficiently large integer n for the input length, 
we assume that the size of any symbol is bounded by 
O(log n) bits, and a finite set 2: of symbols is called an al
phabet. The set of all strings over 2: is denoted by 2:*, and 
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2:i denotes the set of all strings of length just i. The length 
of a string w E 2:* is denoted by Iwl, and also for a set S, 
the notion IS I refers to the size (cardinality) of S. The ith 
symbol of w is denoted by w[i]. For an interval [i, j] with 
1 ::; i ::; j ::; Iwl, the occurrence of a substring from w[i] to 
w[j] is denoted by w[i, j]. 

A repetition is a string x" for some x E 2: and some 
positive integer k. A repetition w[i, j] in w of a symbol x E 2: 
is maximal if w[i - 1] *- x and w[j + 1] *- x. It is simply 
referred by x+ if there is no ambiguity in its interval in w. 
Intervals [i, j] and [i', j'] with i < i' are overlapping if i' ::; 
j < j', and are independent if j < i'. A pair u E 2:2 is a 
string of length two, and an interval [i, i + 1] is a segment of 
u in w if w[i, i + 1] = u. 

A context-free grammar (CFG) is a quadruple G = 
(2:, N, P, s) of disjoint finite alphabets 2: and N, a finite set 
p ~ N X (N U 2:)* of production rules, and the start symbol 
sEN. Symbols in N are called nontenninals. A produc
tion rule a ~ br ..... bk in P derives f3 E (2: U N)* from 
a: E (2: U N)* by replacing an occurrence of a E N in a: 
with br ..... bk • In this paper, we assume that any CFG is 
deterministic, that is, for each nonterminal a E N, exactly 
one production rule from a is in P. Thus, the language L(G) 
defined by G is a singleton set. We say a CFG G derives 
w E 1;* if L(G) = {w}. The size ofG is the total length of 
strings in the right hand sides of all production rules, and 
is denoted by IGI. The aim of grammar-based compression 
is formalized as a combinatorial optimization problem, as 
follows: 

Problem 1: GRAMMAR-BASED COMPRESSION 
INSTANCE: A string w E 2:*. 
SOLUTION: A deterministic CFG G that derives w. 
MEASURE: The size of G. 

From now on, we assume that every deterministic CFG 
is in Chomsky normal form, i.e. the size of strings in the 
right-hand side of production rules is two, and we use IN! 
for the size of a CFG. Note that for any CFG G, there is 
an equivalent CFG G' in Chomsky normal form such that 
IG'I::;2·IGI. 

The approximation ratio of a grammar-based compres
sion algorithm A is defined by the quantity 

{ 
IGA(w)1 } max , 

wEL' IGopt(w)1 

where GA(w) is the CFG computed by A and Gopt(w) is an 
optimum CFG for a string w. 

It is known that there is an important relation be
tween a deterministic CFG and a factorization called LZ
factorization. The factorization for w, denoted by LZ(w), is 
the decomposition of w into fl ..... fk, where fl = w[1], 
and for each 1 < e ::; k, fe is the longest prefix of the suf
fix w[lfl ... fe-II + 1, Iwl] that appears in fl ... fe-I, where 
fe-I is empty if e = 1. Each fe is called afactor. The size 
ILZ(w)1 of LZ(w) is the number of its factors. The following 
result is used in the analysis of the approximation ratio of 
our algorithm. 
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Fig. 1 LZ-factorization and CFG derivation. 

Example 1: The relation of the size of LZ-factorization 
and CFO is illustrated in Fig. 1. For a string "ababbababb", 
the first two factors are fl = a and!2 = b. Similarly, we 
obtain the sequence 

fl = a, .Ii = b, h = ab, f4 = bab, f5 = abb. 

Figure 1 shows that the size of LZ-factorization is always 
smaller than or equal to that of any CFO. Note that the size 
of CFO is defined by 21N!. 

Theorem 1 ([17]): For any string wand its deterministic 
CFO G, the inequality ILZ(w)1 ::; IGI holds. 

This theorem shows that the number of LZ factors is 
smaller than the size of a minimum CFO for any string. 

3. Compression by the Alphabetical Order 

In this section we describe the central idea of our grammar
based compression utilizing information only available from 
individual symbols. The aim is to minimize the number of 
different nonterminals generated by our algorithm. 

A replacement [I, i + 1] -7 a for w is an operation that 
replaces a pair w[i, i + 1] with a nonterminal a EN. A set R . 
of replacements is, by assuming some order on R, regarded 
as an operation that performs a series of replacements to 
w. In the following we introduce a definition of a set of 
replacements whose effect on a string is independent of the 
order. 

Definition 1: A set R of replacements for w is appropriate 
if it satisfies the following: 0) At most one of two over
lapping segments [I, i + 1] and [i + 1, i + 2] is replaced by 
replacements in R, (2) At least one of three overlapping seg
ments [i,i + 1], [i + I,i + 2] and [i + 2,i + 3] is replaced 
by replacements in R, and (3) For any pair of replacements 
[I, i + 1] -7 a and [j, i + 1] -7 b in R, a = b if and only if 
w[i, i + 1] = w[j, i + 1]. 

Clearly, for any string w, an appropriate replacement R 
for w generates the string w' uniquely. In such a case, we say 
thatR generates w' from w, and write w' = R(w). Intuitively, 
w' = R( w) is a resulting string by an execution of single loop 
of our compression algorithm, which continues the process 
tilllw'l < Iwl· 

Our first problem is to find small appropriate replace
ments, and here we explain the strategies for making pairs 
in our algorithm. 
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Fig. 2 The alphabet tree for L U N = {al •...• aj I}' 

Alphabet tree: Let d be a positive integer, and let k be 
flog2 dl. An alphabet tree Td for :2: u N = {aj, ... , ad} is 
the rooted, ordered complete binary tree whose leaves are 
labeled with 1, ... , 2k from left to right. The height of an 
internal node refers to the number of edges of a path from 
the node to a descendant leaf. Let h be the height of the 
lowest common ancestor of leaves i and j. Then we define 
lca(a;,aj)d = h. Usually we omit the index d, and for the 
simplicity we assume that lca(i, i) is identical to lca(a;, a j). 
Moreover 'log' denotes the binary logarithm throughout this 
paper. 

Example 2: If 1:2: U N! = 11, the corresponding alphabet 
tree and the value of lca(i, i) are illustrated in Fig. 2. 

For every string w E :2:+, any maximal repetition 
w[i, i] = xl' is called type 1 metablock and any other oc
currence of substring is called type 2 metablock of w. For 
example we illustrate the following factorization by type 1 
and 2 metablock: 

w = abcabbcaaabab = abca . bb . c . aaa . bab 

Any type 1 metablock a can be compressed to a sufficiently 
short string. For instance, if a = b2k for a symbol b, a 
is compressed to Ak by A -7 bb, and if a = b2k+l , a is 
compressed to AkB by A -7 bb and B -7 b. The trivial 
production rule B -7 b is produced to replace all symbols 
in the current string. This strategy is important to achieve 
our space-saving compression. In the next section, we in
troduce the general case of such compression called typical 
compression. 

For type 2 metablocks, we introduced our iterative 
compression technique by lca and alphabet reduction. 

Definition 2: Let w be a type 2 metablock. w[i, i + 1] 
is called to be maximal if lca(w[i] , w[i + 1]) > lca(w[i-
1], w[i]), lca(w[i + 1], w[i + 2]), where w[I, 2] is maximal if 
lca(w[l], w[2]) > Ica(w[2], w[3]), and the case w[lwl-1, Iwl] 
is similarly defined. 

Our idea is to replace all occurrences of maximal pairs 
prior to others. Any two occurrences of maximal pairs are 
not overlapping, that is, if w[i, i+ 1] is maximal, then neither 
w[i - 1, i] nor w[i + 1, i + 2] is maximal. Thus, we can replace 
all the occurrences of maximal pairs by appropriate nonter
minals. However there is a long substring w[i, i] containing 
no maximal pair such that Iw[i, i]1 = flog 1:2:11 in worst case. 
For instance, aja2a4" ·a2k is one of such strings. For im
proving such a bound, we compute lca(w[i], w[i + 1]) itera
tively by the following strategy, which is a variant of alpha
bet reduction [5] defined on integers. We expand this notion 

...... 
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4 4 

.-------------------- ----------------3 3 3 3 

~---- ~------ ~----- ~------
2 - 2 2 2 2 2 2 2 

~ A ~ ~ ~ ~ ~ ~ 
I I I 1 I I I I I 1 I I I I 

/\ A 1\ 1\ 1\ /\ /" 1\ 1\ 1\ 1\ A 1\ /\ 1\ 1\ 

landmarks 

w l aJJa2 a3 as 

~
--------.----------- --.---.----~ 

1st labels 3 2 4 6 8 10 11 9 7 5 3 4 6 8 10'" 

2nd labels 4 5 4 6 4 8 4 5 9 5 7 2 6 4 8 ... 

final labels lITI 6 ITI 6 ITI 6 [1J 6 8 [2J 4 ITI 6 [1J 6 ••• 

I L: 1:<: 32 

I L: 1:<: 10 

I L: I ~ 8 

I L: I ~ 6 

Fig. 3 A worst case log1LI-iteration of alphabet reduction and resulting landmarks: each internal node 
in the tree denotes the value of lea for the corresponding leaves. 

to alphabet trees for our compression problem. 
Alphabet reduction: Let w be a type 2 metablock. In 

case k = 2, ... , Iwl and w[k - 1, k] = aiaj, we define 
label(w[k]) = 2· lca(i, j) if i < j and 2 . lca(i, j) + 1 
otherwise. In case k = 1 and w[1,2] = aiaj, we define 
label(w[1]) = 2· lca(i, j) if i > j and 2 . lca(i, j) + 1 other
wise. 

Lemma 1: For each k, if w[k] *- w[k + 1], then 
label(w[k]) *- label(w[k + 1]). 

proof. We show that label(w[l + 1]) *- label(w[l + 2]) for 
w[l, l + 2] = aiajak. In case (j > i, k) or (j < i, k), exactly 
one of label(w[l + 1]) and label(w[l + 2]) is odd. In case i < 
j < k, we obtain lca(i, j) *- lca(j, k). Moreover, label(w[l + 
1]) = 2· lca(i, j) and label(w[l + 2]) = 2· lca(j, k) derives 
label(w[l + 1]) *- label(w[l + 2]). The case of i > j > k is 
similar. Q.E.D. 

From a string w of length n, a sequence w' = 
label(w[1])label(w[2]) .. ·label(w[n]) is computed. By re
garding each integer l = label(w[k]) as a next alphabet sym
bol ae, we then continue the alphabet reduction for the string 
w iteratively. The purpose of the alphabet reduction is to re
duce all symbols to constant integers preserving the struc
tures of substrings. The next lemma shows that the number 
of iteration is very small. 

Lemma 2: After at most log*n iterations of alphabet reduc
tion, the label size is 6. 

proof. Let w[k - I,k] = aiaj and 2 :s; k :S; n = Iwl. The 
size of the next label of w[k] is reduced to label(w[k]) :S; 

max{2flog jl, 2flog ill + I by single iteration. Thus, the al
phabet reduction terminates within log*n iterations. More
over, at each iteration, the alphabet size goes from ILl to at 
most 2fllog Lil If ILl > 6, then 210griLil < ILl, that is, the 
next label size is smaller than the current label size. Thus, 
the final labels are bounded by 6. Q.E.D. 

-

If different symbols in ware less than or equal to 6, 
the iteration of alphabet reduction terminates. When the it
eration terminates for the string w, the resulting sequences 
label(w[1])label(w[2])· . ·label(w[n]) is called afinallabels, 
and a symbol w[k] is called a landmark if label(w[k]) is 
maximal, i.e. label(w[k]) > label(w[k - 1]), label(w[k + 1]), 
where wei] is maximal if label(w[1]) > label(w[2]), and the 
case w[iwl] is similar. 

Here we note that any wEi, j] in type 2 string longer than 
6 must contain at least one landmark. Using this property, 
the aim of our algorithm is to synchronize the landmarks in 
all occurrences of a same substring. 

Example 3: We show a worst case iteration of alphabet re
duction in Fig. 3. In case that ILl :S; 32, if w is formed by 
the string presented in Fig. 3, 10g*ILI = 3 times iteration is 
necessary in worst case to obtain the finial label sequence. 

4. Algorithm and Analysis 

In this section we introduce an approximation algorithm for 
the grammar-based compression problem and analyze its ap
proximation ratio to the optimum as well as its space effi
ciency. 

4.1 Algorithm LeA * 

Before the description of our algorithm, we first explain a 
typical compression for a trivial string. The following triv
ial replacement R( w) = A I ... Ak is called a typical compres
sion for w of length n. 

Al ~ w[I,2],A2 ~ w[3,4], ... , 

{ 
Ak ~ wen - 1, n], if n is even 
Ak- I ~ wen - 2,n - I],Ak ~ wen], otherwise. 

The last replacement Ak ~ wen] is called renaming. 
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Algorithm LOA *( w) 
2 initialize R = 1 for counter of Rth loop; 
3 factorize W = WI W2 ..• Wm by type 1 and 2 metablock; 
4 for each type 1 metablock Wi, 

5 compute a typical compression; 
6 for each type 2 metablock 'Wi 

7 compute its landmarks w;[x],w;[y], ... ,w;[z]; 
8 replace all pairs w;[x - 1, x], wily - 1, y], ... ,w;[z 1, z] 
9 by appropriate nonterminals; 
10 compute typical compressions for remained substrings in Wi; 

11 set Rth dictionary Dc, R = R + 1, W = WI W2 ... W'm 

12 by the replaced WiS, and goto line 3; 
13 repeat this process until all pairs in ware mutually different; 
140utputDU{S-tw}forD=DIU···UDc; 

Fig. 4 The LCA* compression algorithm. A replaced pair w[i, i+ 1] must 
be consistent with a current dictionary De, i.e. w[i, i + 1] is replaced by A if 
a production A -> BC (BC = w[i, i + 1]) is already registered to a De and a 
new nonterminal is created to replace w[i, i + 1] otherwise. 

In our compression algorithm, we assume any replacement 
is consistent to a current dictionary D, that is, any replaced 
pair w[i, i + 1] and w[j, j + 1] must be replaced by an iden
tical nonterminal if w[i, i + 1] = w[j, j + 1]. The algorithm 
LCA *(w) is presented in Fig. 4. We describe the outline of 
LCA*(w) in Fig. 5. 

Phase 1 (Line 3): 

The algorithm find all type I and type 2 metablocks in the 
input string w. Each metablock Wi is compressed in Phase 2 
and 3 individually. 

Phase 2 (Line 4 - 5): 

Type 1 metablock substring Wi, i.e. a maximal repetition is 
replaced by a typical compression for Wi. If IWil is odd, the 
last symbol is renamed; This trivial replacement is neces
sary for our space-saving compression. Such renaming is 
executed in the next phase. 

Phase 3 (Line 6 - 10): 

Type 2 metablock Wi, i.e. Wi[j] *' Wi[j + 1] for all j is re
placed. First, all landmarks in Wi are found and for any 
landmark Wi[j], the pair Wi[j - 1, j] is replaced by a nonter
minal. Second, if wi[k] is the nearest landmark from Wi[j], 
the remained substring Wi[j+ 1, k-2] is replaced by a typical 
compression. 

Phase 4 (Line 11 14): 

In £th loop, let Del and De2 be the set of production rules 
produced for type 1 and 2 metablocks, respectively. In this 
phase, the depth of loop £, the current string w, and the cur
rent dictionary D are updated to £ = £ + 1, W = WI W2 ... Wm 
by the compressed metablocks Wi (l S; i S; m), and D = 
DI ... U De. The above phases are repeated until all symbols 
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r '{::~ ~;~+'~~=:~~":'A'D', 
Phase 3 [ ... 1 A [JJ 1 O! 1 Srn 1 (3 1 ®IJ landmarks in Wi 

D {X'->A,( 
[ ... 1 X' 1 O! 1 Y' 1 (3 Z' I ... ) y' -; B'y" E De2 D . Z'-;cz 

[ I X' I ~'I Y' I D, I z' n { typical compression .... ~. ~. = ~E% 
Phase 4 {DC = DC, U DC2 output 

W =WIW2"'W", - D=DIUD2:.·UDc 
e = e+ 1 

Fig. 5 The flow of LCA" for a string w. 

are different in a current string. Then, the algorithm outputs 
the finial dictionary and terminates. 

Theorem 2: The running time of LCA*(w) is bounded by 
O(n log*n). 

proof. By Lemma 2, the time to compute all landmarks is 
O(log*n) and it is clear that other computation is O(n) time 
for each loop. Moreover, a current string shrinks in half ap
proximately by single loop of LCA *. Thus, the total length 
of strings given to LCA* is bounded by O(n). Hence, the 
time complexity is O(n log*n). Q.E.D. 

4.2 Performance Analysis 

Before the proof of our approximation ratio, we introduce a 
notion of occurrences of a SUbstring. 

Definition 3: For an occurrence w[i, j] = (1;, we call it a 
boundary occurrence if w[i - 1] *' w[i] and w[j] *' w[j + 
1]. In case w[I, j], that is, a prefix of w, it is also called a 
boundary occurrence ifw[j] *' w[j+ 1], and so is in suffixes. 

Lemma 3: Let (1; be a substring in w satisfying (1; :::: 

w[£, r] = w[£', r']. For any replacement by single loop of 
LCA *(w), a pair in w[£, r] is replaced iff the corresponding 
pair in w[ £', r'] is replaced by a same nonterminal except at 
most Iog*n pairs in w[£, r] and w[£" r']. 

proof. By Lemma 1 and Lemma 2, for any type 2 
metablock, we have following facts: 

1. The final labels consist of at most 6 symbols and any 
label never repeats. 

2. The final label of w[i] depends on at most log*n sym
bols to its left. 

If w[£, r] and w[£', r'] are both boundary occurrences. 
there is a unique metablock factorization for them, like 
(1; = (1;1" ·am . By the above facts, if lal > 2Iog*n, w[C,rl 
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and W[t', r'] contain at least two landmarks in the same posi
tions. Let w[ e + i] be such the left most landmark and w[e + j] 
be the right most landmark. Thus, by the definition of re
placement in our algorithm, the occurrences w[t + t, t + j] 
and w[e' + i, e' + j] are replaced identically. 

If w[e, r] is not boundary, the shortest boundary oc
currence containing w[e, r] is formed by x+ aI ... amy+ for 
x,y E z: and a metablock ai. In this case, the replacement of 
the boundary aI ... am in w[e, r] and w[t', r'] are completely 
identical since all labels are decided within at ... am. Thus, 
in this case, disagreement of replacement occurs in the last 
symbol of x+ and y+ only. 

Hence, in each case, the replacements of wee, r] and 
w[t', r'] for the same substring are identical except at most 
log*n pairs of them. Q.E.D. 

Theorem 3: The worst-case approximation ratio of the 
size of a grammar produced by the algorithm LCA * to the 
size of a minimum grammar is O((log*n) log n). 

proof. Let R be the set of appropriate replacements pro
duced by single loop of LCA*(w). Let g be the size of a min
imum CFG for w, and let W1 ... Wk be the LZ-factorization 
of w. We denote by #(W)R the number of different nontermi
nals produced by R. From the definition of LZ-factorization, 
any factor Wi occurs in W1 ... Wi-J, or Iw;! = l. 

With lemma 3, any factor Wi and its left-most occur
rence are compressed into almost the same strings except 
log*n pairs in them. Thus, by the bound of the number of 
LZ-factors in Theorem [17], we can obtain the following es
timation. 

#(W)R = #(W1 .,. Wk-j)R + log*n 

= #(WI ... Wk-2)R + 210g*n 
= O(k log*n) 
= O(glog*n) 

This is the number of different nonterminals produced 
by single loop execution in LCA *( w). Clearly the loop is 
executed at most O(log n) times. Therefore, the total num
ber of different nonterminals produced by LCA(w), that is, 
the size of CFG is O(g(log*n) log n). This derives the ap
proximation ratio. Q.E.D. 

The memory space required by LCA*(w) can be 
bounded by the size of data structure to answer the mem
bership query: input is a pair AiAj; output is an integer k if 
Ak -? AiA j is already created and no otherwise. By The
orem 3, the size of a current dictionary De is bounded by 
O(g log g) for each t ~ 1. Moreover, each symbol Ai in a 
current string is replaced by a rule of the form A j -? Ai or 
A j -? YZ, where Ai E {Y, Z}. Thus, O«g log g)2)-space al
gorithm is obtained by a naive implementation using look 
up table. Finally we show that the memory space can be 
improved to O(g log g). 

4.3 Improving the Space Efficiency 

An idea for improving space complexity of the algorithm is 
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to recycle nonterminals created in the preceding iteration. 
Let D(a) be the string obtained by applying a dictionary D 
to a string a. Let DI and D2 be dictionaries such that any 
symbol in w is replaced by D t and any symbol in DI (w) is 
replaced by D2. Then, the decoding of the string D2(D 1(w» 
is uniquely determined, even if D2 reuses nonterminals in 
DI like "A -? AB." Thus, we consider that the final dic
tionary D is composed of D 1, ••• , De, where Di is the dic
tionary constructed in the ith iteration. Since all symbols in 
ware replaced within a same loop in LCA *, the decoding 
from the final string w' is uniquely decided by the seman
tics DIIl (· •• D] (w')···) = w. Such a dictionary is computed 
by the following function and data structures. Let Di be the 
set of productions, Ni the set of alphabet symbols created in 
the ith iteration, and ki the cardinality IN;!. We define the 
function 

j;(x,y) = (x - 1)ki + y for x,y = 1, ... , ki. 

This is a one-to-one mapping from {l, ... ,kd x {l, ... ,kd to 
{l, ... , kf}, and is used to decide an index of a new nonter
minal associated to a pair AxAy, where Ax denotes the xth 
created nonterminal in N i . 

The next dictionary Di+l is constructed from Di, Ni, 
and h as follows. In the algorithm LCA*, there are two 
cases of replacements: one is for replacements of pairs, and 
the other is renaming. We first explain the case of replace
ments of pairs. Let a pair AxAy in a current string be decided 
to be replaced. The algorithm LCA * computes the integer 
z = I(x, y), and looks up a hash table H for z. If H(z) is 
absent and Ni = {A 1, ... ,Ak}, then set Ni = Ni U {Ak+l }, 
Di = Di U {Ak+l -? AxAy}, H(z) = k + 1, and replace the 
pair AxAy with Ak+l' If H(z) = k + 1 is present, then only 
replace the pair AxAy by Ak+l' For the case of renaming 
of a symbol Ax, we can use the nonterminal Ak+l such that 
z = hex, x) and H(z) = k + 1. The dictionary Di constructed 
in the ith iteration can be divided to DiJ and Di2 such that 
DiJ is the dictionary for repetitions and Dh = Di \ DiJ . Thus, 
we can create all productions without collisions, and decode 
a current string Wi+l to the previous string Wi by the manner 
Di(Wi+d == DiJ (Di2 (Wi+1» = Wi' 

Theorem 4: The space required by LCA *( w) is O(g log g) 
for the size of a minimum CFG for w. 

proof. Let n = Iwl and t be the number of iterations of loops 
executed in LCA*(w). By theorem 3, the number INil of 
new nonterminals created in the ith iteration is O(g log*n) 
for each i ::::;e. To decide the index of a new nonterminal 
from a pair AxAy, LCA* computes z = h(x,y), H(z), and 
k = IN;! for the current N i . Since Izl ::::; O(log n) and the num
ber of different z is O(g log g), the space for H is O(g log g) 
and k = O(g log g). Thus, the construction of Di requires 
only O(g log g) space. We can release whole the memory 
space for Di in the next loop. Hence, the total space for 
constructing D is also O(g log g). Q.E.D. 



164 

Table 1 Performance of compression algorithms: the common lower 
bound Q(n) for the time complexity is omitted, 'cr' and '-' denote log*n and 
unknown, respectively, and Rytter[17], Welch [21] contains LZ77, LZ78 
algorithms by Ziv and Lempel [23], [24], respectively. 

Algorithm 
[reference 1 

proposed 

Charikar[4j 

Rytter[l7] 

Sakamoto [19 J 

Welchj21j 

LarssonllO] 

Wi(tcn[161 

Kicffer[7] 

Kieffer 18] 

Apo~tolico [3J 

Approx. Ratio 
upper/lower 

alogn / 

logn / 

logn / 

logn / 

( " )~/ 1;;2 
log II log II 

( -"-)~/ ~ logn y 1v5 H 

- / loglogn 

,,)1 ~ 
(IOgn / log" 

2 

( -"-)3/ 1.37 logn 

Space 
upper/lower 

g logg /Iogn 

n/n 
n/n 
n/n 

n/n 

n/n 

n/n 

n/n 

. nlogll/n 

4.4 Comparison with Related Works 

Time 
upper 

an 

n 
n 
n 

n 

n 

n 

11 

n 

In Table I, we summarize all the results obtained in this 
study together with related works on grammar-based com
pression, where the trivial time complexity Q(n) is omitted. 
In this table, all results concerned with approximation ratio 
were proved in [12] as well as the upper/lower bounds of the 
grammar size by each algorithm, which directly derives the 
complexity bounds. In particular, the reason for Q(n) space 
of almost algorithms is due to the data structures of index
ing for substrings. Since our algorithm does not require no 
index for substring, the required space depends on the hash 
table, that is, the grammar size only. 

5. Conclusion 

We presented a space-efficient near linear-time algorithm 
for the smallest CFG problem. This algorithm guarantees 
the approximation ratio O«log*n) log n), which is almost 
O(log n) and the memory space O(g log g) for the minimum 
CFG size g of input string. This space bound is consid
ered to be sufficiently small since Q(g) space is a lower 
bound for non-adaptive dictionary-based compression. In 
addition, it is known that Q(logn) ::::: g ::::: 0(-1: ) [12] 

°ek H 

for k = I~I. The upper bound of memory space is best 
in the previously known poly log-approximation algorithms. 
Practically, production rules for renaming occupy compara
tively large space in final dictionary. However it is still open 
whether it is possible to reduce such renaming production 
rules preserving the time/space complexity. 
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