

Instructions for use

Title A Space-Saving Approximation Algorithm for Grammar-Based Compression

Author(s) Sakamoto, Hiroshi; Maruyama, Shirou; Kida, Takuya; Shimozono, Shinichi

Citation IEICE Transactions on Information and Systems, E92-D(2), 158-165
https://doi.org/10.1587/transinf.E92.D.158

Issue Date 2009-02

Doc URL http://hdl.handle.net/2115/47139

Rights Copyright@2009 IEICE

Type article

File Information IEICE TIS E92-D(2) 158-165.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.2 FEBRUARY 2009
158

I PAPER Special Section on Foundations of Computer Science

Space-Saving Approximation Algorithm for Grammar-Based
Compression

Hiroshi SAKAMOTOta), Member, Shirou MARUYAMA·I·tb), Takuya KIDA H"!'c),
and Shinichi SHIMOZONOtd), Nonmembers

SUMMARY A space-efficient approximation algorithm for the
grammar-based compression problem, which requests for a given string
to find a smallest context-free grammar deriving the string, is presented.
For the .input length 11 and an optimum CFO size g, the algorithm con
sumes only O(g log g) space and 0(nlog")1) time to achieve O((lOg")1) log n)
approximation ratio to the optimum compression, where log*n is the max
imum number of logarithms satisfying log log· .. log n > 1. This ratio is
thus regarded to almost O(log 11), which is the currently best approximation
ratio. While g depends on the string, it is known that g = Q(logn) and

.g = 0CO;kn) for strings from k-Ietter alphabet[l2].
key words: grammar-based compression, approximation algorithm, mini
mum CFG problem

1. Introduction

The grammar-based compression problem is to find a small
est context-free grammar generating just single string. Such
a CFG requires that every nonterminal is derived from only
one production rule, say, deterministic. The problem deeply
relates to factoring problems for strings, and the complex
ity of similar minimization problems have been rigorously
studied. For example, Storer [20] introduced a factorization
for a given string and showed the problem is NP-hard. De
Agostino and Storer [2] defined several online variants and
proved that those are also NP-hard.

As non-approximability results, Lehman and She
lat [13] showed that the problem is APX-hard, i.e. it is hard
to approximate this problem within a constant factor (see
[1] for definitions). They also mentioned its interesting con
nection to the semi-numerical problem [9], which is an alge
braic problem of minimizing the number of different multi
plications to compute the given integers and has no known
polynomial-time approximation algorithm achieving a ratio
o(log n/ log log n). Since the problem is a special case of the

Manuscript received March 28, 2008.
Manuscript revised June 19,2008.

''The authors are with the Faculty of Computer Science and
Systems Engineering, KYllShu Institute of Technology, Iizuka-shi,
820-8502 Japan.

'f'fThe author is with the Depmtment of Informatics, Kyushu
University, Fukuoka-shi, 819-0395 Japan.

tHThe author is with the Graduate School of Information Sci
ence and Technology, Hokkaido University, Sapporo-shi, 060-
0814 Japan.

a) E-mail: hiroshi@ai.kyutech.ac.jp
b) E-mail: shiro.marllyama@i.kyushu-u.ac.jp
c) E-mail: kida@ist.hokudai.ac.jp
d) E-mail: sin@ai.kyutech.ac.jp

DOl: 10.1587 jtransinf.E92.D.158

grammar-based compression, an approximation better than
this ratio seems to be also hard.

On the other hand, various practical algorithms for
the grammar-based compression have been devised so far.
LZW [21] including LZ78 [24], and BISECTION [8] are
considered as algOlithms that computes straight-line pro
grams, CFGs formed from Chomsky normal form formulas.
Also algorithms for restricted CFGs have been presented in
[6], [10], [15], [16], [22]. Lehman and Shelat [13] proved the
upper bounds of the approximation ratio of these practical
algorithms, as well as the lower bounds with the worst-case
instances. For example, BISECTION algorithm achieves an
approximation ratio no more than O((n/ log n)I/2). All those
ratios, including the lower-bounds, are larger than O(log n).

Recently polynomial-time approximation algorithms
for the grammar-based compression problem have been
widely studied and the worst-case approximation ratio has
been improved. The first log n-approximation algorithm was
developed by Charikar et a1. [4]. Their algorithm guaran
tees the ratio O(log(n/ g», where g is the size of a minimum
deterministic CFG for an input. Independently, Rytter pre
sented in [17] another O(log(n/ g))-approximation algorithm
that employs a suffix tree and the LZ-factorization technique
for strings. Sakamoto also proposed in [19] a simple linear
time algorithm based on Re-pair [10] and achieving ratio
O(log n); Now this ratio has been improved to O(log(n/ g)).

The ratio O(log(n/ g») achieved by these new algo
rithms is theoretically sufficiently small. However, all these
algorithms require O(n) space, and it prevents us to apply the
algorithms to huge texts, which is crucial to obtain a good
compression ratio in practice. For example, the algorithm
Re-pair [10] spends 5n + n1/ 2 space on unit-cost RAM with
the input size n.

This state motivates us to develop a sub-linear space
O(log n)-approximation algOlithm for the grammar-based
compression. We presented a simple algorithm [18] that re
peats substituting one new nonterminal symbol to all the
same and non-overlapping two contiguous symbols occur
ring in the string. This is carried out by utilizing idea of the
lowest common ancestor of balanced binary trees, and no
real special data structure, such as suffix tree or occurrence
frequency table, is requested. In consequence, the space
complexity is nearly equal to the total number of created
nonterminal symbols, each of which corresponds to a pro
duction rule in Chomsky normal form. This algorithm was
applied to Compressed Pattern Matching in [14]. In this

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

T

SAKAMOTO et al.: A SPACE-SAVING APPROXIMATION ALGORITHM FOR GRAMMAR-BASED COMPRESSION

paper we improve the algorithm and obtain almost O(log n)
approximation ratio preserving the space complexity.

The size of the final dictionary of the rules is proved by
the compactness of LZ-factorization [17] and alphabet re
duction technique [5]. This technique requires log*n times
iteration. Here log*n denotes the maximum integer j which
satisfies F(j) ::; n for

F(O) = 1, and F(j) = 2F(j-I) (j 2: 1).

For instance, F(3) = 24 = 16, F(4) = 2 16 = 65536, and
F(5) = 265536. Thus, log*n is almost constant even for suf
ficiently large n. Our algorithm runs in almost O(n) time
and O(g log g) space preserving the worst-case approxima
tion ratio O((log*n) log n). This ratio is almost the currently
best approximation. The memory space is devoted to the
dictionary that maps a contiguous pair of symbols to a non
terminal. Practically, in randomized model, space complex
ity can be reduced to O(g log g) by using a hash table for the
dictionary. In the framework of dictionary-based compres
sion, the lower-bound of memory space is usually estimated
by the size of a possible smallest dictionary, and thus our
algorithm is nearly optimal in space complexity. Compared
to other practical dictionary-based compression algorithms,
such as LZ78, which achieves the ratio Q(n2/3 / log n), the
lower-bound of memory space of our algorithm is consid
ered to be sufficiently small.

The remaining part of this paper is organized as fol
lows. In Sect. 2, we prepare the definitions related to the
grammar-based compression. In Sect. 3, we introduce the
notion of lowest common ancestors in a complete binary
tree defined by alphabet symbols. Using this notion, our
algorithm decides a fixed priority of all pairs appearing in
a current string and replaces them according to the prior
ity. More precisely, a pair is called to be maximal if its
priority is higher than the neighbors'. The aim of the al
gorithm is to find as many maximal pairs as possible, and
this is performed by iterative application of the alphabet re
duction. The algorithm is presented in Sect. 4 and we an
alyze the approximation ratio and estimate the time/space
efficiency compared with related grammar-based compres
sion algorithms. In Sect. 5, we summarize this study.

2. Notions and Definitions

In this study we suppose a standard RAM model [11] with
the unit-cost measure, in which the following assumptions
are made. Each value is a primitive data item, the memory
required by a given variable is equal to the number of en
tries in the array that it represents, the memory required by a
RAM is equal to the total memory required by its variables,
and the time required by a RAM is equal to the number of
instructions being executed.

We next recall the notions in formal language theory.
Given a sufficiently large integer n for the input length,
we assume that the size of any symbol is bounded by
O(log n) bits, and a finite set 2: of symbols is called an al
phabet. The set of all strings over 2: is denoted by 2:*, and

[59

2:i denotes the set of all strings of length just i. The length
of a string w E 2:* is denoted by Iwl, and also for a set S,
the notion IS I refers to the size (cardinality) of S. The ith
symbol of w is denoted by w[i]. For an interval [i, j] with
1 ::; i ::; j ::; Iwl, the occurrence of a substring from w[i] to
w[j] is denoted by w[i, j].

A repetition is a string x" for some x E 2: and some
positive integer k. A repetition w[i, j] in w of a symbol x E 2:
is maximal if w[i - 1] *- x and w[j + 1] *- x. It is simply
referred by x+ if there is no ambiguity in its interval in w.
Intervals [i, j] and [i', j'] with i < i' are overlapping if i' ::;
j < j', and are independent if j < i'. A pair u E 2:2 is a
string of length two, and an interval [i, i + 1] is a segment of
u in w if w[i, i + 1] = u.

A context-free grammar (CFG) is a quadruple G =
(2:, N, P, s) of disjoint finite alphabets 2: and N, a finite set
p ~ N X (N U 2:)* of production rules, and the start symbol
sEN. Symbols in N are called nontenninals. A produc
tion rule a ~ br bk in P derives f3 E (2: U N)* from
a: E (2: U N)* by replacing an occurrence of a E N in a:
with br bk • In this paper, we assume that any CFG is
deterministic, that is, for each nonterminal a E N, exactly
one production rule from a is in P. Thus, the language L(G)
defined by G is a singleton set. We say a CFG G derives
w E 1;* if L(G) = {w}. The size ofG is the total length of
strings in the right hand sides of all production rules, and
is denoted by IGI. The aim of grammar-based compression
is formalized as a combinatorial optimization problem, as
follows:

Problem 1: GRAMMAR-BASED COMPRESSION
INSTANCE: A string w E 2:*.
SOLUTION: A deterministic CFG G that derives w.
MEASURE: The size of G.

From now on, we assume that every deterministic CFG
is in Chomsky normal form, i.e. the size of strings in the
right-hand side of production rules is two, and we use IN!
for the size of a CFG. Note that for any CFG G, there is
an equivalent CFG G' in Chomsky normal form such that
IG'I::;2·IGI.

The approximation ratio of a grammar-based compres
sion algorithm A is defined by the quantity

{
IGA(w)1 } max ,

wEL' IGopt(w)1

where GA(w) is the CFG computed by A and Gopt(w) is an
optimum CFG for a string w.

It is known that there is an important relation be
tween a deterministic CFG and a factorization called LZ
factorization. The factorization for w, denoted by LZ(w), is
the decomposition of w into fl fk, where fl = w[1],
and for each 1 < e ::; k, fe is the longest prefix of the suf
fix w[lfl ... fe-II + 1, Iwl] that appears in fl ... fe-I, where
fe-I is empty if e = 1. Each fe is called afactor. The size
ILZ(w)1 of LZ(w) is the number of its factors. The following
result is used in the analysis of the approximation ratio of
our algorithm.

160

A"

13 is
Fig. 1 LZ-factorization and CFG derivation.

Example 1: The relation of the size of LZ-factorization
and CFO is illustrated in Fig. 1. For a string "ababbababb",
the first two factors are fl = a and!2 = b. Similarly, we
obtain the sequence

fl = a, .Ii = b, h = ab, f4 = bab, f5 = abb.

Figure 1 shows that the size of LZ-factorization is always
smaller than or equal to that of any CFO. Note that the size
of CFO is defined by 21N!.

Theorem 1 ([17]): For any string wand its deterministic
CFO G, the inequality ILZ(w)1 ::; IGI holds.

This theorem shows that the number of LZ factors is
smaller than the size of a minimum CFO for any string.

3. Compression by the Alphabetical Order

In this section we describe the central idea of our grammar
based compression utilizing information only available from
individual symbols. The aim is to minimize the number of
different nonterminals generated by our algorithm.

A replacement [I, i + 1] -7 a for w is an operation that
replaces a pair w[i, i + 1] with a nonterminal a EN. A set R .
of replacements is, by assuming some order on R, regarded
as an operation that performs a series of replacements to
w. In the following we introduce a definition of a set of
replacements whose effect on a string is independent of the
order.

Definition 1: A set R of replacements for w is appropriate
if it satisfies the following: 0) At most one of two over
lapping segments [I, i + 1] and [i + 1, i + 2] is replaced by
replacements in R, (2) At least one of three overlapping seg
ments [i,i + 1], [i + I,i + 2] and [i + 2,i + 3] is replaced
by replacements in R, and (3) For any pair of replacements
[I, i + 1] -7 a and [j, i + 1] -7 b in R, a = b if and only if
w[i, i + 1] = w[j, i + 1].

Clearly, for any string w, an appropriate replacement R
for w generates the string w' uniquely. In such a case, we say
thatR generates w' from w, and write w' = R(w). Intuitively,
w' = R(w) is a resulting string by an execution of single loop
of our compression algorithm, which continues the process
tilllw'l < Iwl·

Our first problem is to find small appropriate replace
ments, and here we explain the strategies for making pairs
in our algorithm.

IEICE TRANS. INF. & SYST., VOL.E92-D. NO.2 FEBRUARY 2009

-
Fig. 2 The alphabet tree for L U N = {al •...• aj I}'

Alphabet tree: Let d be a positive integer, and let k be
flog2 dl. An alphabet tree Td for :2: u N = {aj, ... , ad} is
the rooted, ordered complete binary tree whose leaves are
labeled with 1, ... , 2k from left to right. The height of an
internal node refers to the number of edges of a path from
the node to a descendant leaf. Let h be the height of the
lowest common ancestor of leaves i and j. Then we define
lca(a;,aj)d = h. Usually we omit the index d, and for the
simplicity we assume that lca(i, i) is identical to lca(a;, a j).
Moreover 'log' denotes the binary logarithm throughout this
paper.

Example 2: If 1:2: U N! = 11, the corresponding alphabet
tree and the value of lca(i, i) are illustrated in Fig. 2.

For every string w E :2:+, any maximal repetition
w[i, i] = xl' is called type 1 metablock and any other oc
currence of substring is called type 2 metablock of w. For
example we illustrate the following factorization by type 1
and 2 metablock:

w = abcabbcaaabab = abca . bb . c . aaa . bab

Any type 1 metablock a can be compressed to a sufficiently
short string. For instance, if a = b2k for a symbol b, a
is compressed to Ak by A -7 bb, and if a = b2k+l , a is
compressed to AkB by A -7 bb and B -7 b. The trivial
production rule B -7 b is produced to replace all symbols
in the current string. This strategy is important to achieve
our space-saving compression. In the next section, we in
troduce the general case of such compression called typical
compression.

For type 2 metablocks, we introduced our iterative
compression technique by lca and alphabet reduction.

Definition 2: Let w be a type 2 metablock. w[i, i + 1]
is called to be maximal if lca(w[i] , w[i + 1]) > lca(w[i-
1], w[i]), lca(w[i + 1], w[i + 2]), where w[I, 2] is maximal if
lca(w[l], w[2]) > Ica(w[2], w[3]), and the case w[lwl-1, Iwl]
is similarly defined.

Our idea is to replace all occurrences of maximal pairs
prior to others. Any two occurrences of maximal pairs are
not overlapping, that is, if w[i, i+ 1] is maximal, then neither
w[i - 1, i] nor w[i + 1, i + 2] is maximal. Thus, we can replace
all the occurrences of maximal pairs by appropriate nonter
minals. However there is a long substring w[i, i] containing
no maximal pair such that Iw[i, i]1 = flog 1:2:11 in worst case.
For instance, aja2a4" ·a2k is one of such strings. For im
proving such a bound, we compute lca(w[i], w[i + 1]) itera
tively by the following strategy, which is a variant of alpha
bet reduction [5] defined on integers. We expand this notion

......

-
SAKAMOTO et al.: A SPACE-SAVING APPROXIMATION ALGORITHM FOR GRAMMAR-BASED COMPRESSION

161

4 4

.-------------------- ----------------3 3 3 3

~---- ~------ ~----- ~------
2 - 2 2 2 2 2 2 2

~ A ~ ~ ~ ~ ~ ~
I I I 1 I I I I I 1 I I I I

/\ A 1\ 1\ 1\ /\ /" 1\ 1\ 1\ 1\ A 1\ /\ 1\ 1\

landmarks

w l aJJa2 a3 as

~
--------.----------- --.---.----~

1st labels 3 2 4 6 8 10 11 9 7 5 3 4 6 8 10'"

2nd labels 4 5 4 6 4 8 4 5 9 5 7 2 6 4 8 ...

final labels lITI 6 ITI 6 ITI 6 [1J 6 8 [2J 4 ITI 6 [1J 6 •••

I L: 1:<: 32

I L: 1:<: 10

I L: I ~ 8

I L: I ~ 6

Fig. 3 A worst case log1LI-iteration of alphabet reduction and resulting landmarks: each internal node
in the tree denotes the value of lea for the corresponding leaves.

to alphabet trees for our compression problem.
Alphabet reduction: Let w be a type 2 metablock. In

case k = 2, ... , Iwl and w[k - 1, k] = aiaj, we define
label(w[k]) = 2· lca(i, j) if i < j and 2 . lca(i, j) + 1
otherwise. In case k = 1 and w[1,2] = aiaj, we define
label(w[1]) = 2· lca(i, j) if i > j and 2 . lca(i, j) + 1 other
wise.

Lemma 1: For each k, if w[k] *- w[k + 1], then
label(w[k]) *- label(w[k + 1]).

proof. We show that label(w[l + 1]) *- label(w[l + 2]) for
w[l, l + 2] = aiajak. In case (j > i, k) or (j < i, k), exactly
one of label(w[l + 1]) and label(w[l + 2]) is odd. In case i <
j < k, we obtain lca(i, j) *- lca(j, k). Moreover, label(w[l +
1]) = 2· lca(i, j) and label(w[l + 2]) = 2· lca(j, k) derives
label(w[l + 1]) *- label(w[l + 2]). The case of i > j > k is
similar. Q.E.D.

From a string w of length n, a sequence w' =
label(w[1])label(w[2]) .. ·label(w[n]) is computed. By re
garding each integer l = label(w[k]) as a next alphabet sym
bol ae, we then continue the alphabet reduction for the string
w iteratively. The purpose of the alphabet reduction is to re
duce all symbols to constant integers preserving the struc
tures of substrings. The next lemma shows that the number
of iteration is very small.

Lemma 2: After at most log*n iterations of alphabet reduc
tion, the label size is 6.

proof. Let w[k - I,k] = aiaj and 2 :s; k :S; n = Iwl. The
size of the next label of w[k] is reduced to label(w[k]) :S;

max{2flog jl, 2flog ill + I by single iteration. Thus, the al
phabet reduction terminates within log*n iterations. More
over, at each iteration, the alphabet size goes from ILl to at
most 2fllog Lil If ILl > 6, then 210griLil < ILl, that is, the
next label size is smaller than the current label size. Thus,
the final labels are bounded by 6. Q.E.D.

-

If different symbols in ware less than or equal to 6,
the iteration of alphabet reduction terminates. When the it
eration terminates for the string w, the resulting sequences
label(w[1])label(w[2])· . ·label(w[n]) is called afinallabels,
and a symbol w[k] is called a landmark if label(w[k]) is
maximal, i.e. label(w[k]) > label(w[k - 1]), label(w[k + 1]),
where wei] is maximal if label(w[1]) > label(w[2]), and the
case w[iwl] is similar.

Here we note that any wEi, j] in type 2 string longer than
6 must contain at least one landmark. Using this property,
the aim of our algorithm is to synchronize the landmarks in
all occurrences of a same substring.

Example 3: We show a worst case iteration of alphabet re
duction in Fig. 3. In case that ILl :S; 32, if w is formed by
the string presented in Fig. 3, 10g*ILI = 3 times iteration is
necessary in worst case to obtain the finial label sequence.

4. Algorithm and Analysis

In this section we introduce an approximation algorithm for
the grammar-based compression problem and analyze its ap
proximation ratio to the optimum as well as its space effi
ciency.

4.1 Algorithm LeA *

Before the description of our algorithm, we first explain a
typical compression for a trivial string. The following triv
ial replacement R(w) = A I ... Ak is called a typical compres
sion for w of length n.

Al ~ w[I,2],A2 ~ w[3,4], ... ,

{
Ak ~ wen - 1, n], if n is even
Ak- I ~ wen - 2,n - I],Ak ~ wen], otherwise.

The last replacement Ak ~ wen] is called renaming.

------------------------................ .
162

Algorithm LOA *(w)
2 initialize R = 1 for counter of Rth loop;
3 factorize W = WI W2 ..• Wm by type 1 and 2 metablock;
4 for each type 1 metablock Wi,

5 compute a typical compression;
6 for each type 2 metablock 'Wi

7 compute its landmarks w;[x],w;[y], ... ,w;[z];
8 replace all pairs w;[x - 1, x], wily - 1, y], ... ,w;[z 1, z]
9 by appropriate nonterminals;
10 compute typical compressions for remained substrings in Wi;

11 set Rth dictionary Dc, R = R + 1, W = WI W2 ... W'm

12 by the replaced WiS, and goto line 3;
13 repeat this process until all pairs in ware mutually different;
140utputDU{S-tw}forD=DIU···UDc;

Fig. 4 The LCA* compression algorithm. A replaced pair w[i, i+ 1] must
be consistent with a current dictionary De, i.e. w[i, i + 1] is replaced by A if
a production A -> BC (BC = w[i, i + 1]) is already registered to a De and a
new nonterminal is created to replace w[i, i + 1] otherwise.

In our compression algorithm, we assume any replacement
is consistent to a current dictionary D, that is, any replaced
pair w[i, i + 1] and w[j, j + 1] must be replaced by an iden
tical nonterminal if w[i, i + 1] = w[j, j + 1]. The algorithm
LCA *(w) is presented in Fig. 4. We describe the outline of
LCA*(w) in Fig. 5.

Phase 1 (Line 3):

The algorithm find all type I and type 2 metablocks in the
input string w. Each metablock Wi is compressed in Phase 2
and 3 individually.

Phase 2 (Line 4 - 5):

Type 1 metablock substring Wi, i.e. a maximal repetition is
replaced by a typical compression for Wi. If IWil is odd, the
last symbol is renamed; This trivial replacement is neces
sary for our space-saving compression. Such renaming is
executed in the next phase.

Phase 3 (Line 6 - 10):

Type 2 metablock Wi, i.e. Wi[j] *' Wi[j + 1] for all j is re
placed. First, all landmarks in Wi are found and for any
landmark Wi[j], the pair Wi[j - 1, j] is replaced by a nonter
minal. Second, if wi[k] is the nearest landmark from Wi[j],
the remained substring Wi[j+ 1, k-2] is replaced by a typical
compression.

Phase 4 (Line 11 14):

In £th loop, let Del and De2 be the set of production rules
produced for type 1 and 2 metablocks, respectively. In this
phase, the depth of loop £, the current string w, and the cur
rent dictionary D are updated to £ = £ + 1, W = WI W2 ... Wm
by the compressed metablocks Wi (l S; i S; m), and D =
DI ... U De. The above phases are repeated until all symbols

IEICE TRANS. INF. & SYST.. VOL.E92-D, NO.2 FEBRUARY 2009

r '{::~ ~;~+'~~=:~~":'A'D',
Phase 3 [... 1 A [JJ 1 O! 1 Srn 1 (3 1 ®IJ landmarks in Wi

D {X'->A,(
[... 1 X' 1 O! 1 Y' 1 (3 Z' I ...) y' -; B'y" E De2 D . Z'-;cz

[I X' I ~'I Y' I D, I z' n { typical compression ~. ~. = ~E%
Phase 4 {DC = DC, U DC2 output

W =WIW2"'W", - D=DIUD2:.·UDc
e = e+ 1

Fig. 5 The flow of LCA" for a string w.

are different in a current string. Then, the algorithm outputs
the finial dictionary and terminates.

Theorem 2: The running time of LCA*(w) is bounded by
O(n log*n).

proof. By Lemma 2, the time to compute all landmarks is
O(log*n) and it is clear that other computation is O(n) time
for each loop. Moreover, a current string shrinks in half ap
proximately by single loop of LCA *. Thus, the total length
of strings given to LCA* is bounded by O(n). Hence, the
time complexity is O(n log*n). Q.E.D.

4.2 Performance Analysis

Before the proof of our approximation ratio, we introduce a
notion of occurrences of a SUbstring.

Definition 3: For an occurrence w[i, j] = (1;, we call it a
boundary occurrence if w[i - 1] *' w[i] and w[j] *' w[j +
1]. In case w[I, j], that is, a prefix of w, it is also called a
boundary occurrence ifw[j] *' w[j+ 1], and so is in suffixes.

Lemma 3: Let (1; be a substring in w satisfying (1; ::::

w[£, r] = w[£', r']. For any replacement by single loop of
LCA *(w), a pair in w[£, r] is replaced iff the corresponding
pair in w[£', r'] is replaced by a same nonterminal except at
most Iog*n pairs in w[£, r] and w[£" r'].

proof. By Lemma 1 and Lemma 2, for any type 2
metablock, we have following facts:

1. The final labels consist of at most 6 symbols and any
label never repeats.

2. The final label of w[i] depends on at most log*n sym
bols to its left.

If w[£, r] and w[£', r'] are both boundary occurrences.
there is a unique metablock factorization for them, like
(1; = (1;1" ·am . By the above facts, if lal > 2Iog*n, w[C,rl

SAKAMOTO et al.: A SPACE-SAVING APPROXIMATION ALGORITHM FOR GRAMMAR-BASED COMPRESSION

and W[t', r'] contain at least two landmarks in the same posi
tions. Let w[e + i] be such the left most landmark and w[e + j]
be the right most landmark. Thus, by the definition of re
placement in our algorithm, the occurrences w[t + t, t + j]
and w[e' + i, e' + j] are replaced identically.

If w[e, r] is not boundary, the shortest boundary oc
currence containing w[e, r] is formed by x+ aI ... amy+ for
x,y E z: and a metablock ai. In this case, the replacement of
the boundary aI ... am in w[e, r] and w[t', r'] are completely
identical since all labels are decided within at ... am. Thus,
in this case, disagreement of replacement occurs in the last
symbol of x+ and y+ only.

Hence, in each case, the replacements of wee, r] and
w[t', r'] for the same substring are identical except at most
log*n pairs of them. Q.E.D.

Theorem 3: The worst-case approximation ratio of the
size of a grammar produced by the algorithm LCA * to the
size of a minimum grammar is O((log*n) log n).

proof. Let R be the set of appropriate replacements pro
duced by single loop of LCA*(w). Let g be the size of a min
imum CFG for w, and let W1 ... Wk be the LZ-factorization
of w. We denote by #(W)R the number of different nontermi
nals produced by R. From the definition of LZ-factorization,
any factor Wi occurs in W1 ... Wi-J, or Iw;! = l.

With lemma 3, any factor Wi and its left-most occur
rence are compressed into almost the same strings except
log*n pairs in them. Thus, by the bound of the number of
LZ-factors in Theorem [17], we can obtain the following es
timation.

#(W)R = #(W1 .,. Wk-j)R + log*n

= #(WI ... Wk-2)R + 210g*n
= O(k log*n)
= O(glog*n)

This is the number of different nonterminals produced
by single loop execution in LCA *(w). Clearly the loop is
executed at most O(log n) times. Therefore, the total num
ber of different nonterminals produced by LCA(w), that is,
the size of CFG is O(g(log*n) log n). This derives the ap
proximation ratio. Q.E.D.

The memory space required by LCA*(w) can be
bounded by the size of data structure to answer the mem
bership query: input is a pair AiAj; output is an integer k if
Ak -? AiA j is already created and no otherwise. By The
orem 3, the size of a current dictionary De is bounded by
O(g log g) for each t ~ 1. Moreover, each symbol Ai in a
current string is replaced by a rule of the form A j -? Ai or
A j -? YZ, where Ai E {Y, Z}. Thus, O«g log g)2)-space al
gorithm is obtained by a naive implementation using look
up table. Finally we show that the memory space can be
improved to O(g log g).

4.3 Improving the Space Efficiency

An idea for improving space complexity of the algorithm is

163

to recycle nonterminals created in the preceding iteration.
Let D(a) be the string obtained by applying a dictionary D
to a string a. Let DI and D2 be dictionaries such that any
symbol in w is replaced by D t and any symbol in DI (w) is
replaced by D2. Then, the decoding of the string D2(D 1(w»
is uniquely determined, even if D2 reuses nonterminals in
DI like "A -? AB." Thus, we consider that the final dic
tionary D is composed of D 1, ••• , De, where Di is the dic
tionary constructed in the ith iteration. Since all symbols in
ware replaced within a same loop in LCA *, the decoding
from the final string w' is uniquely decided by the seman
tics DIIl (· •• D] (w')···) = w. Such a dictionary is computed
by the following function and data structures. Let Di be the
set of productions, Ni the set of alphabet symbols created in
the ith iteration, and ki the cardinality IN;!. We define the
function

j;(x,y) = (x - 1)ki + y for x,y = 1, ... , ki.

This is a one-to-one mapping from {l, ... ,kd x {l, ... ,kd to
{l, ... , kf}, and is used to decide an index of a new nonter
minal associated to a pair AxAy, where Ax denotes the xth
created nonterminal in N i .

The next dictionary Di+l is constructed from Di, Ni,
and h as follows. In the algorithm LCA*, there are two
cases of replacements: one is for replacements of pairs, and
the other is renaming. We first explain the case of replace
ments of pairs. Let a pair AxAy in a current string be decided
to be replaced. The algorithm LCA * computes the integer
z = I(x, y), and looks up a hash table H for z. If H(z) is
absent and Ni = {A 1, ... ,Ak}, then set Ni = Ni U {Ak+l },
Di = Di U {Ak+l -? AxAy}, H(z) = k + 1, and replace the
pair AxAy with Ak+l' If H(z) = k + 1 is present, then only
replace the pair AxAy by Ak+l' For the case of renaming
of a symbol Ax, we can use the nonterminal Ak+l such that
z = hex, x) and H(z) = k + 1. The dictionary Di constructed
in the ith iteration can be divided to DiJ and Di2 such that
DiJ is the dictionary for repetitions and Dh = Di \ DiJ . Thus,
we can create all productions without collisions, and decode
a current string Wi+l to the previous string Wi by the manner
Di(Wi+d == DiJ (Di2 (Wi+1» = Wi'

Theorem 4: The space required by LCA *(w) is O(g log g)
for the size of a minimum CFG for w.

proof. Let n = Iwl and t be the number of iterations of loops
executed in LCA*(w). By theorem 3, the number INil of
new nonterminals created in the ith iteration is O(g log*n)
for each i ::::;e. To decide the index of a new nonterminal
from a pair AxAy, LCA* computes z = h(x,y), H(z), and
k = IN;! for the current N i . Since Izl ::::; O(log n) and the num
ber of different z is O(g log g), the space for H is O(g log g)
and k = O(g log g). Thus, the construction of Di requires
only O(g log g) space. We can release whole the memory
space for Di in the next loop. Hence, the total space for
constructing D is also O(g log g). Q.E.D.

164

Table 1 Performance of compression algorithms: the common lower
bound Q(n) for the time complexity is omitted, 'cr' and '-' denote log*n and
unknown, respectively, and Rytter[17], Welch [21] contains LZ77, LZ78
algorithms by Ziv and Lempel [23], [24], respectively.

Algorithm
[reference 1

proposed

Charikar[4j

Rytter[l7]

Sakamoto [19 J

Welchj21j

LarssonllO]

Wi(tcn[161

Kicffer[7]

Kieffer 18]

Apo~tolico [3J

Approx. Ratio
upper/lower

alogn /

logn /

logn /

logn /

(")~/ 1;;2
log II log II

(-"-)~/ ~ logn y 1v5 H

- / loglogn

,,)1 ~
(IOgn / log"

2

(-"-)3/ 1.37 logn

Space
upper/lower

g logg /Iogn

n/n
n/n
n/n

n/n

n/n

n/n

n/n

. nlogll/n

4.4 Comparison with Related Works

Time
upper

an

n
n
n

n

n

n

11

n

In Table I, we summarize all the results obtained in this
study together with related works on grammar-based com
pression, where the trivial time complexity Q(n) is omitted.
In this table, all results concerned with approximation ratio
were proved in [12] as well as the upper/lower bounds of the
grammar size by each algorithm, which directly derives the
complexity bounds. In particular, the reason for Q(n) space
of almost algorithms is due to the data structures of index
ing for substrings. Since our algorithm does not require no
index for substring, the required space depends on the hash
table, that is, the grammar size only.

5. Conclusion

We presented a space-efficient near linear-time algorithm
for the smallest CFG problem. This algorithm guarantees
the approximation ratio O«log*n) log n), which is almost
O(log n) and the memory space O(g log g) for the minimum
CFG size g of input string. This space bound is consid
ered to be sufficiently small since Q(g) space is a lower
bound for non-adaptive dictionary-based compression. In
addition, it is known that Q(logn) ::::: g ::::: 0(-1:) [12]

°ek H

for k = I~I. The upper bound of memory space is best
in the previously known poly log-approximation algorithms.
Practically, production rules for renaming occupy compara
tively large space in final dictionary. However it is still open
whether it is possible to reduce such renaming production
rules preserving the time/space complexity.

IErCE TRANS. INF. & SYST., VOL.E92-D, NO.2 FEBRUARY 2009

Acknowledgments

This research was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for
Young Scientists (B), 18700154, 2006-2007, and Scien
tific Research (B), 19300008, 2007-1008. The authors
would like to thank the anonymous referees of SPIRE2004,
ISAAC2006, and IEICE Transactions on Information and
Systems for the valuable comments to revise the preliminary
version of this paper.

References

[I] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti
Spaccamela, and M. Protasi, Complexity and Approximation: Com
binatorial Optimization Problems and Their Approximability Prop
erties, Springer, 1999.

[2] S. De Agostino and l.A. Storer, "On-line versus off-line computation
in dynamic text compression," Inf. Process. Lett., vo1.59, pp.169-
174,1996.

[3] A. Apostolico and S. Lonardi, "Some theory and practice of greedy
off-line textual substitution," Proc. Data Compression Conference
1998, pp.l19-128, 1998.

[4] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A.
Rasala, A. Sahai, and A. Shelat, "The smallest grammar problem,"
IEEE Trans. Inf. Theory, vo1.51, no.7, pp.2554-2576, 2005.

[5] G. Cormode and S. Muthukrishnan, "The string edit distance match
ing problem with moves," ACM Trans. Algorithms, voi.3, no. I, ar
ticle 2, 2007.

[6] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S.
Arikawa, "Collage system: A unifying framework for compressed
pattern matching," Theor. Comput. Sci., vo1.298, no.l, pp.253-272,
2003.

[7] J.e. Kieffer and E.-H. Yang, "Grammar-based codes: A new class
of universal loss less source codes," IEEE Trans. Inf. Theory, vo1.46,
no.3, pp.737-754, 2000.

[8] J.e. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman, "Universal loss
less compression via multilevel pattern matching," IEEE Trans. Inf.
Theory, vo1.46, no.5, pp.1227-1245, 2000.

[9] D. Knuth, The Art of Computer Programming, Volume II: Seminll
merical Algorithms, Addison-Wesley, 1981.

[10] N.J. Larsson and A. Moffat, "Offline dictionary-based compression,"
Proc. IEEE, vo1.88, no. 11, pp.1722-1732, 2000.

[II] J. van Leeuwen, (Managing Editor). Handbook of Theoretical Com
puter Science, Volume A: Algorithms and Complexity, Elsevier,
1998.

[12] E. Lehman, Approximation Algorithms for Grammar-Based Com
pression. PhD thesis, MIT, 2002.

[13] E. Lehman and A. Shelat, "Approximation algorithms for grammar
based compression," Proc. 20th Ann. ACM-SIAM Sympo. Discrete
Algorithms, pp.205-212, 2002.

[14] S. Maruyama, H. Miyagawa, and H. Sakamoto, "Improving time
and space complexity for compressed pattern matching," Proc. 17th
Int. Sympo. Algorithms and Computation, LNCS4288, pp.48~93,
2006.

[15] e. Nevill-Manning and I. Witten, "Compression and explanation us
ing hierarchical grammars," Comput. l., vo1.40, no.2/3, pp.I03-116,
1997.

[16] C. Nevill-Manning and I. Witten, "Identifying hierarchical structure
in sequences: A linear-time algorithm," J. Artificial Intelligence Re
search, voL7, pp.67-82, 1997.

[17] W. Rytter, "Application of Lempel-Ziv factorization to the ap
proximation of grammar-based compression," Theor. Comput. Sci.,
vo1.302, no.I-3, pp.211-222, 2003.

T
)

SAKAMOTO et al.: A SPACE-SAVING APPROXIMATION ALGORITHM FOR GRAMMAR-BASED COMPRESSION

[18J H. Sakamoto, T. Kida, and S. Shimozono, "A space-saving linear
time algorithm for grammar-based compression," Proc. II th Interna
tional Symposium on String Processing and Information Retrieval,
LNCS3109, pp.218-229, 2004.

[19J H. Sakamoto, "A fully linear-time approximation algorithm for
grammar-based compression," J. Discrete Algorithms, vol.3, no.2-
4, pp.416-430, 2005.

[20] J.A. Storer and T.G. Szymanski, "The macro model for data com
pression," Proc. 10th Ann. Sympo. Theory of Computing, pp.30-39,
1978.

[21] T.A. Welch, "A technique for high performance data compression,"
Computer, voLl7, pp.8-19, 1984.

[22] E.-H. Yang and J.C. Kieffer, "Efficient universal lossless data
compression algorithms based on a greedy sequential grammar
transform-part one: Without context models," IEEE Trans. Inf. The
ory, vo1.46, no.3, pp.755-777, 2000.

[23] J. Ziv and A. Lempel, "A universal algorithm for sequential data
compression," IEEE Trans. Inf. Theory, vol.IT-23, no.3, pp.337-
349, 1977.

[24] J. Ziv and A. Lempel, "Compression of individual sequences via
variable-rate coding," IEEE Trans. Inf. Theory, voLIT-24, no.5,
pp.530-536,1978.

Hiroshi Sakamoto received the B.S. de-
gree in Physics, the M.S. and Dr. Sci. degree in
Information Systems all from Kyushu Univer
sity in 1994, 1996, and 1998, respectively. He
received JSPS Research Fellowships for Young
Scientists from 1996 to 1998. From Jan. 1999
to Oct. 2003, he was a research associate of De
partment of Informatics, Kyushu University. He
is currently an associate professor of Graduate
School of Computer Science and Systems En
gineering, Kyushu Institute of Technology. His

research interests include algorithms in data compression and web mining.
He is a member of JSAI and DBSJ.

Shirou Maruyama received the B.S. de
gree in Engineering from Fukuoka University in
2006, and the M.S. degree in Computer Science
and Systems Engineering from Kyushu Institute
of Technology in 2008. He is currently a doc
toral student in Department of Informatics, Kyu
shu University. His research interests include
data compression and string pattern matching al
gorithms.

165

Takuya Kida received the B.S. degree
in Physics, the M.S. and Dr.(Information Sci
ence) degree all from Kyushu University in
1997, 1999, and 2001, respectively. He was
a Full-time Lecturer of Kyushu University Li
brary from October 2001 to March 2004. He is
currently an Associate Prof,:ssor of Division of
Computer Science, Graduate School ofInforma
tion Science and Technology, Hokkaido Univer
sity, since April 2004. His research interests in-
clude Text Algorithms and Data Structures, In

formation Retrieval, and Data compression. He is a member of JSPS and
DBSJ.

Shinichi Shimozono received Ph. D. in Sci-
ence from Graduate School of Information Sci
ence in Kyushu University in 1996. From 1992,
he was a research associate at Kyushu Institute
of Technology, and since 1996, he is working as
an associate professor of Theoretical Computer
Science branch at Department of Artificial In
telligence, Kyushu Institute of Technology. His
research interest includes design and analysis of
algorithms for intractable and .brand-new com-
putation problems especially for combinatorial

optimization problems that are NP-hard, and analysis of computational
hardness of combinatorial problems.

