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Abstract

The objective of this article is to propose a Bayesian method for estimating a
system of Engel functions using survey data that includes zero expenditures. We
deal explicitly with the problem of zero expenditures in the model and estimate
a system of Engel functions that satisfy the adding-up condition. Furthermore,
using MCMC, we estimate unobservable parameters, including consumption of
commodities, total consumption and equivalence scale, and use their posterior
distributions to calculate inequality measures and total consumption elasticities.

JEL Classification: C11，D12
Keywords: Bayesian method, generalised entropy measure, Gini coefficient,
Markov chain Monte Carlo (MCMC), Working-Leser Engel curves

I. Introduction
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Household budget surveys are a useful source of data for the estimation of con-
sumer behaviour. However, when using micro data on household expenditure,
we often find that expenditure is recorded as zero for certain commodities during
the survey period. There are three possible causes for such zero expenditures.1

Firstly, certain consumers may prefer not to purchase or consume certain com-
modities, for example alcohol and tobacco. In this case, consumers are at a
corner solution. Secondly, although the commodity is actually consumed, pur-
chases may not be recorded because the purchase interval is longer than the
survey period. We refer to this second case as infrequency of purchase (IFP).
Thirdly, for some reason, commodity purchases may not be recorded, although
the purchases do actually occur. Such misreporting can lead to the recording of
zero expenditures. In this article, we only deal with the case of IFP.

Numerous articles have been devoted to solving the problem of zero expen-
ditures generated by IFP: Deaton and Irish(1984), Kay et al. (1984), Keen
(1986), Blundell and Meghir (1987), Pudney (1989, 1990), Griffiths and Valen-
zuela (1998), etc. Deaton and Irish(1984) present a p-tobit model that extends
the tobit specification to model zero expenditures. Recorded data for expendi-
ture on commodities is 1/p times consumption during the survey period, where
p denotes the ratio of the survey period to the purchase period. This is applica-
ble when goods are consumed during the survey period; however, expenditures
are only observed with a probability p because of infrequent purchasing (Deaton
and Irish, 1984, p.63). Kay et al. (1984) extend the model proposed by Deaton
and Irish (1984) by providing a stochastic relationship between expenditure and
consumption in a sophisticated manner. Keen (1986) estimates a system of lin-
ear Engel functions that satisfy the adding-up condition and derives a consistent
estimator based on the instrumental variables method. While the purchasing
probabilities are constant parameters in Deaton and Irish (1984), Kay et al.
(1984) and Keen (1986), Blundell and Meghir (1987) propose a model with
probit-type purchasing probabilities. Griffiths and Valenzuela (1998) estimate a
system of linear Engel functions and equivalence scales using a Bayesian method,
and Pudney (1989, 1990) reviews numerous theoretical aspects associated with
zero expenditures.

It is important to note the difference between expenditure and consump-
tion when addressing the problem of zero expenditures. While expenditure is
observable, consumption is not. Therefore, we can utilize data only for expen-
ditures, which may include zero expenditures, and not for the true consumption
of commodities. However, consumers derive utility from the consumption of
commodities, not from expenditure. Thus, we have to introduce a stochastic
relationship between expenditure and consumption in the model.

In this article, we propose a Bayesian approach for the estimation of a system
of Engel functions using survey data that includes zero expenditures due to IFP.
We explicitly introduce the stochastic relationship between expenditure and
consumption in our Bayesian model. Using the Bayesian method, Hasegawa
and Kozumi (2001) estimate a system of Working-Leser Engel functions that
includes measurement errors. In this article, we employ the system used in
Hasegawa and Kozumi (2001) and estimate the unobserved total consumption
using the Bayesian framework. The posterior distributions of parameters play a
central role in the Bayesian analysis; however, in complicated models, there exist

1See Keen (1986, p.277).
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cases where it is impossible to derive these distributions analytically. However,
recent developments in the Markov chain Monte Carlo (MCMC) method permit
us to sample unobservable parameters from their posterior distributions.

There are two advantages in our Bayesian approach. Firstly, although both
models deal with the zero expenditure problem and satisfy the adding-up condi-
tion, the Bayesian approach enables us to estimate not only linear expenditure
systems but also more flexible expenditure systems.

Secondly, we can estimate unobserved commodity consumption and total
consumption. Thereafter, using unobserved total consumption, we can calculate
inequality measures and total consumption elasticities.2 Since there exists a
variation in the size of the households, the demographic aspects of households
must be considered when measuring inequalities. Therefore, we introduce an
equivalence scale in the estimation of Engel functions and calculate inequality
measures based on the total consumption evaluated by this equivalence scale.

Estimation of demand and expenditure models using data with zero expen-
ditures due to IFP are applied for varied purposes. Meghir and Robin (1992) use
an infrequency of purchase model and estimate a demand system. Kimhi (1999)
shows a model combining the double-hurdle and infrequency of purchase models
to estimate household demand for tobacco. Newman et al. (2001) choose the
double-hurdle and infrequency of purchase model for each meat product appro-
priately and estimate their expenditure equations. Madden (2000) estimates
the expenditure elasticities of various items to calculate the poverty line. These
constitute only a part of many empirical studies related to zero expenditures.
This indicates that our Bayesian methods are applicable for diverse empirical
analyses using data including them. However, it should be noted that zero ex-
penditures on which we focus arise from IFP and not from corner solutions.
Wales and Woodland (1983) propose the Kuhn-Tucker approach to estimate a
demand system, and Fry et al. (2000, 2001) apply a compositional data analysis
(CODA) for it, when the data include zero expenditures generated by corner
solutions.

The article is organized as follows. In Section 2, we introduce a stochastic
relationship between expenditure and consumption that deals with zero expen-
ditures due to IFP and present a Bayesian model for estimating the system of
Engel functions. In Section 3, we define the total consumption elasticity, the
Gini coefficient and generalized entropy measures. In Section 4, we provide an
empirical application of our approach to real data. In Section 5, we present
concluding remarks and a few extensions of our approach.

II. The Bayesian model

Expenditure and consumption

Firstly, we introduce the following binary variables Dhi:

Dhi =

{
1 if household h purchases good i over the interview period
0 otherwise

2Hasegawa and Kozumi (2003) and Hasegawa et al. (2003) apply the MCMC method in
order to estimate inequality measures.
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for h = 1, · · · ,H and i = 1, · · · ,M , where H is the number of households and
M is the number of goods. We assume that Dhi are Bernoulli i.i.d. random
variables with Pr(Dhi = 1) = pi, where pi is the probability that a household
will purchase good i during the interview period. Next, we define yhi and chi

as observed expenditure and unobserved consumption for good i and household
h, respectively. Following Kay et al. (1984) and Keen (1986), we assume that

yhi =





1
pi

(chi + vhi) if Dhi = 1

0 if Dhi = 0
, h = 1, · · · ,H, i = 1, · · · ,M, (1)

where vhi are normally distributed i.i.d. disturbances, vhi ∼ N(0, ω), and Dhi

and vhi are assumed to be independently distributed. Since we do not have
observations for yhi when Dhi = 0, we introduce the following latent variable
y∗hi:

3

y∗hi =
1
pi

(chi + vhi), if Dhi = 0. (2)

Using yhi and y∗hi, we define y∗∗hi as follows:

y∗∗hi =

{
yhi if Dhi = 1
y∗hi if Dhi = 0.

(3)

Equations (1), (2) and (3) are summarized as



p1 O
. . .

pm

O pM







y∗∗h1
...

y∗∗hm

y∗∗hM


 =




ch1

...
chm

chM


 +




vh1

...
vhm

vhM


 ,

where m = M − 1. Or, more compactly,
(

P m 0
0′ pM

)(
y∗∗h
y∗∗hM

)
=

(
ch

chM

)
+

(
vh

vhM

)
, (4)

where

P m = diag(p1, · · · , pm) (diagonal matrix)

y∗∗h =




y∗∗h1
...

y∗∗hm


 , ch =




ch1

...
chm


 , vh =




vh1

...
vhm


 .

From the adding-up condition, xh = ι′mch + chM holds, where xh is the total
consumption and ιm = ( 1, · · · , 1︸ ︷︷ ︸

m

)′. Substituting the adding-up condition into

(4), we have
(

P m 0
0′ pM

)(
y∗∗h
y∗∗hM

)
=

(
Im 0
−ι′m 1

) (
ch

xh

)
+

(
vh

vhM

)
, h = 1, · · · ,H. (5)

3See Griffiths and Valenzuela (1998).
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Since vhi ∼ N(0, ω), we have the following joint distribution of y∗∗h , y∗∗hM in (5):

p(y∗∗h , y∗∗hM |·) ∝
(

M∏

i=1

pi

)
ω−M/2 exp

[
− 1

2ω

(
vh

vhM

)′(
vh

vhM

)]
, h = 1, · · · ,H.

Bayesian model for Engel curves

We consider the following Working-Leser Engel curves:4

wh = α + β log xh + uh, uh ∼ N(0,Σ), h = 1, · · · ,H, (6)

where wh = ch/xh is an m × 1 share vector, α = (α1, · · · , αm)′ and β =
(β1, · · · , βm)′ are parameter vectors, and uh is an m × 1 normally distributed
error vector. Following Lancaster et al. (1999, p.459), we introduce an equiva-
lence scale defined as

mh = na
h + η′zh, (7)

where na
h is the number of adults in household h, η is a K × 1 scale parameter

vector and zh is a K × 1 vector of demographic variables.5 Banks and Johnson
(1994) indicate the importance of the relativity between the weight of children
in a household and inequality. In this specification of the equivalence scale, it
is simple to incorporate various demographic differences into the Engel curves.
The results of their estimation for various age groups are referred to in 4.3.

Deflating the total consumption in (6) by the equivalence scale (7), we have

wh = α + β log
xh

mh
+ uh, uh ∼ N(0,Σ), h = 1, · · · ,H. (8)

Defining Γ = (α,β)′ and x∗h = xh/mh, (8) can be written as

wh = Γ′
(

1
log x∗h

)
+ uh, h = 1, · · · ,H.

For the Bayesian analysis, we consider the following prior information with
regard to the hierarchical structure,6





log xh ∼ N(µ, τ), µ ∼ N(µ∗, κ∗), τ−1 ∼ Gam(a∗, b∗)
γ ∼ N(γ∗,G∗),Σ−1 ∼ W(λ∗,F−1

∗ ), ω−1 ∼ Gam(c∗, d∗)
pi ∼ Beta(g∗, q∗), η ∼ N(η∗,A∗),

(9)

where γ = vecΓ, Gam(a, b) denotes a gamma distribution with a shape pa-
rameter a and scale parameter b, W(a, A) denotes a Wishart distribution with
degrees of freedom a and a scale matrix A and Beta(a, b) denotes a beta dis-
tribution with parameters a and b. The prior distribution of ch can be derived

4See Working (1943) and Leser (1963). We delete a share equation from the system using

the adding-up condition. That is
PM

i=1 αi = 1,
PM

i=1 βi = 0.
5See Ray (1983), Lancaster and Ray (1998) and Lancaster et al. (1999) for details on this

definition of equivalence scale.
6These prior distributions are often used in Bayesian analyses. See Hasegawa and Kozumi

(2001).
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from the system of Engel functions (8). Further, we assume that the prior in-
formation of the latent variables y∗hi is noninformative. Given (3), (5), (8) and
(9), we can obtain the full conditional distributions (FCDs) of γ, Σ−1, µ, τ−1,
ω−1, ch (h = 1, · · · ,H) and y∗hi (h = 1, · · · ,H, i = 1, · · · ,M). Using Gibbs
sampling, we can easily sample these parameters from their FCDs. However,
the closed forms of FCDs for other parameters cannot be derived because the
FCDs of xh (h = 1, · · · , H), pi (i = 1, · · · ,M) and η are complicated functions.
Therefore, we simulate these parameters using the Metropolis-Hastings (M-H)
algorithm. The details of sampling algorithms are provided in the Appendix.

III. Inequality measures and total consumption elasticities

We use the expenditure data of households, including zero expenditures, for
estimating the Engel functions. Expenditure is observable; however, in general,
consumption is unobservable. As we mentioned in the introduction, one of the
advantages of our Bayesian approach is that we can estimate unobserved con-
sumption chi and total consumption xh based on observable expenditure. The
estimated posterior results provide information on the hidden true expenditure
and consumption. Using these estimates enables us to calculate inequality mea-
sures and total consumption elasticities more accurately.

We use the Gini coefficient and the generalised entropy measure for measur-
ing inequality. The Gini coefficient has played a central role in inequality liter-
ature and has many practical advantages (Cowell, 2000, pp.111–112). However,
while the Gini coefficient does not satisfy population decomposability (Amiel
and Cowell, 1999, p.138), the generalised entropy measure does. Therefore, we
use the generalized entropy measure as well as the Gini coefficient.

The Gini coefficient and the generalised entropy measure are defined as fol-
lows:

IGini =
1

2H2x̄

H∑

h=1

H∑

k=1

|xh − xk| (10)

and

IGE(θ) =
1

θ2 − θ

[
1
H

H∑

h=1

(xh

x̄

)θ

− 1

]
, (11)

where θ is a real parameter. The generalised entropy measure is closely related
to the Atkinson measure and two types of Theil measures, for θ = 0, 1. We use
the generalised entropy measure for cases of θ = −1, 0, 1, 2.

The total consumption elasticity of good i is defined as follows:

∂ log ci

∂ log x

∣∣∣∣
ci=c̄i,x=x̄

= 1 +
βi

w̄i
, where w̄i = c̄i/x̄. (12)

The total consumption elasticities are calculated by using the sample means of
x and ci — x̄ and c̄i — over the individual xh and chi.

IV. Application to real data
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Data

The data used for our empirical analysis are the micro-level survey data based on
the Japanese Panel Survey of Consumers (JPSC) by the Institute for Research
on Household Economics.

JPSC data provides details on consumption pertaining to young women in
Japan. The survey began in 1993 and young women aged 24 to 34 years were
the surveyed respondents. Later in 1997, the women aged 24 to 27 years were
also included and the survey is continuing ever since.

In this article, we use Panel 8 of JPSC data, which is based on the survey in
2000. From the panel data we select, for the analysis, data pertaining to those
households where there are no other adults except a husband and a wife. The
number of households selected is 692. The women are aged between 27 and 41
years, and the average age is 34.1 years. The men are aged between 23 and 61
years, and the average age is 36.7 years.

JPSC data contains the expenditure data of households for the month of
September. The average total expenditure of households in that month is
272,000 yen and the standard deviation is 121,000 yen.7

We divide the expense items of the data into ten items as follows: ‘Food’,
‘Housing’, ‘Fuel, light and water charges’, ‘Furniture and household utensils’,
‘Clothes and footwear’, ‘Medical care’, ‘Transportation and communication’,
‘Education’, ‘Reading and recreation’, and ‘Miscellaneous’. Eight items are
created from these ten items: Food, Housing, Fuel, Furniture, Clothing,
Medical, Transport and Others.8

In the following empirical analysis, we set the dimension of demographic
variable (zh) K = 1 in (7), and use zh to denote the number of children. We
determine the values of hyperparameters for simulation as follows:

γ ∼ N(0, 100× I2m), Σ−1 ∼ W(m + 1, 20× Im), µ ∼ N(0, 100)

τ−1 ∼ Gam(2, 0.05), ω−1 ∼ Gam(2, 0.05), pi ∼ Beta(1.5, 1.5)
η ∼ N(0, 100).

These hyperparameter values correspond to a less informative specification. The
MCMC simulation was run for 30,000 iterations and the first 10,000 samples
were discarded as a burn-in period. The posterior results obtained thereafter
are generated using the Ox version 4.02 (Doornik, 2006).

Posterior results

The empirical results are summarized in Tables 1 to 4. Several aspects of the
results are described as follows.

Table 1 presents the number of zero expenditures in each item. The number
of zeros in Housing, Furniture, Clothing and Medical are significantly higher

7The other descriptive statistics of the total expenditure of households are as follows.
The median, the highest and the lowest expenditures are 250,000, 1,178,000, and 25,000 yen,
respectively.

8Food=‘Food’, Housing=‘Housing’, Fuel=‘Fuel, light and water charges’,
Furniture=‘Furniture and household utensils’, Clothing=‘Clothes and footwear’,
Medical=‘Medical care’, Transport=‘Transportation and communication’, and
Others=‘Education’+‘Reading and recreation’+‘Miscellaneous’.
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than those in other items. The large number of zeros in Housing is a result of
ownership of houses. Although the households that own their houses account
for a certain ratio of the respondents, the expenditure on Housing in the data
rules out imputed rent. The large number of zeros in Furniture, Clothing
and Medical are due to IFS. There exist seven zeros in Food and eleven zeros
in Others. It is unlikely that there exist households without any expenditure
on food or the goods included in Others over a certain period; however, it has
been observed in certain households. The reason why zeros are recorded in Food
and Others is unclear. However, this may be possible due to the probability
that certain respondents of the survey do not maintain their exact household
accounts, because JPSC data are collected through a questionnaire.

Table 2 presents the posterior results for parameters. Calculating the ratios
of the posterior mean to the posterior standard deviation (mean/sd) of αs and
βs, we find that their absolute values are higher than two, with the exception
of a few parameters. pi’s values, which denote the probability of purchasing
a commodity during the interview period, are lower in Housing, Furniture,
Clothing and Medical than those in other items. Further, the order of sizes in
the probabilities of Furniture, Housing, Medical and Clothing corresponds
to that of the frequencies of zero expenditures in these items, as shown in Table
1. The posterior mean of η is 0.3695. The value of the equivalence scale for a
reference household is 2.0 because the reference household comprises a husband
and a wife with no children. Thus, we expect that η lies in the interval (0, 1);
indeed, we have η̂ = 0.3695 ∈ (0, 1).

Table 3 presents the total consumption elasticities as calculated from the pos-
terior results. This table demonstrates that Furniture, Transport and Others
are luxury goods and that Food, Housing, Fuel, Clothing and Medical are
necessary goods. The estimated elasticity of Clothing in our study is approx-
imately one, and is lower than in many Japanese empirical studies where the
elasticities exceed one.9 However, according to recent studies, the estimate is
concluded to be proper. In fact, Ogawa and Okamura (2001) show that the
elasticity of clothing is less than one and that it exhibits a declining trend after
1989 in Japan.

Table 4 presents the posterior results for inequality measures. The values
in the columns ‘raw’, ‘p.c.’, ‘e.s.’ and ‘mean’ denote inequality measures based
on total expenditure, per capita total expenditure, total expenditure deflated
by the posterior equivalence scale and posterior mean of total consumption
deflated by the equivalence scale, respectively. According to this table, the
values for ‘p.c.’ are higher than those for ‘raw’ and ‘e.s.’ for each inequality
measure. Furthermore, the values of ‘e.s.’ are higher than those of ‘mean’.
Thus, the inequality measures calculated using the posterior mean are lower
than those using other data. It is known in general that the values of inequality
measures based on data that includes measurement errors are higher than those
for unobservable data that do not include them.10 This is consistent with our
results and supports our Bayesian method for estimating inequality measures.

Comparisons of posterior results
9In Table 9, the estimate of the elasticity exceeds one when the number of goods and age

groups increase. This aspect will be referred to in the next section.
10See Chakravarty and Eichhorn (1994), and Cowell (2000, p.137).

8



In this section, we provide the results of two directions of sensitivity analyses.
One of them deals with the case in which the number of goods (M) changes.
The other treats these cases where the number of demographic variables (K)
changes.

Table 5 presents the categories used in the estimated models with M = 5, 6, 7
and 8. This table also provides the number of zero expenditures of the items
in the models. Table 6 presents the summary for the number of children in our
data (K = 1, 2 and 3).11 The case of K = 1, described in the previous section,
uses the age group of children from 0 to 18 years (η1)—the right column in
Table 6. We divide children into two age groups—children aged 0 to 12 years
(η1) and those aged 13 to 18 years (η2)—for the case of K = 2 and into three
age groups—children aged 0 to 6 years (η1), 7 to 12 years (η2) and 13 to 18
years (η3)—for the case of K = 3.

Table 7 presents the posterior means of the purchasing probabilities pi.
There are no substantial changes in the values of pi in the cases of K = 1, 2
and 3. The estimated probabilities are also similar to the actual relative fre-
quencies denoted by ‘data’ in the table. Therefore, the posterior results for the
purchasing probabilities pi are robust.

However, the equivalence scale is significantly influenced by the number of
demographic variables and the number of categories in the model. Table 8
presents the posterior means of ηi that are used in the equivalence scale defined
in (7). The value of η1 in the case of K = 1 is greater than that in the cases
of K = 2 and K = 3, except for the model with M = 7; in addition, the value
of η1 in the case of K = 2 is greater than that in the case of K = 3. Further,
the value of η1 in the case of K = 2 lies in the interval of (η1, η2) in the case of
K = 3 for all M in Table 8. These findings for the values of ηi are consistent
with the definitions of age groups. However, in the models with M = 5, 6 and 7,
the value of η2 in the case of K = 2 is greater than η3 in the case of K = 3. Both
η2 in the case of K = 2 and η3 in the case of K = 3 denote the demographic
parameters for the group of children aged 13 to 18 years in (7).

Table 9 provides the posterior means of the total consumption elastici-
ties. The estimated elasticities of Food, Fuel, Furniture, Transportation
and Others are almost the same, except for certain cases. The elasticity of
Medical is greater than one, except for one case. The elasticities of Housing
and Clothing tend to become large as K and/or M increase. As a result,
Housing and Clothing become luxury goods in certain cases. Housing does
not include imputed rent. Further, the elasticity of Housing would become
small if imputed rents were included in the data. The ages of women in our
data are between 27 and 41 years, as described above. It is highly probable that
they have children belonging to the younger age groups in the case of K = 2
or K = 3, according to Table 6. These households tend to be fashion conscious
and highly concerned about their children’s clothing. It is conceivable that their
consumption of Clothing reacts to the movement of their total consumption.
This would lead to the conclusion that the elasticity of Clothing is greater
than one when K = 3 for M = 7 and K = 2 and 3 for M = 8. Similar reasons
may hold true for these cases where the elasticities of Medical and Housing are

11We obtained the results that the posterior means of η2 and/or η3 in the equivalence scale
are greater than one, when K = 2 and K = 3 in the models with M = 9 and 10. Since η
should lie in the interval (0,1), we omit the posterior results of the models with M = 9 and
10.
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greater than one.
Table 10 presents the values of inequality measures. The values do not

change substantially according to the number of demographic variables (K)
and the number of categories (M). Therefore, the posterior means of inequality
measures are robust with regard to K and M .

V. Conclusions and extensions

Applying the Bayesian method, we estimated a system of Engel curves for
Japanese households using JPSC micro data with zero expenditures and cal-
culated inequality measures.

The Bayesian method enables us to estimate a model that overcomes the zero
expenditure problem, satisfies the adding-up condition for a system of flexible
Engel curves, introduces an equivalence scale and calculates inequality measures.
As far as we know, few studies like ours have ever been attempted since it is
not possible to estimate a model with the given conditions using non-Bayesian
methods — this includes the maximum likelihood method.

We obtain the appropriate posterior results for the coefficients of a system of
Engel functions and inequality measures. The sensitivity analyses — conducted
by extending the categories of goods and demographic variables — indicate the
robustness of our posterior results. The purchasing probabilities and inequal-
ity measures are particularly robust. The scale parameters of the equivalence
scale result in appropriate values, although they are influenced by demographic
variables. The consumption elasticities of goods are also valid depending on the
categories of goods and demographic variables.

Our model can be extended as follows:

1. We can extend the Working-Leser Engel curves to a system of quadratic
Engel curves.

2. By adding price variables to the model, we can estimate demand systems
in order to use the advantages of panel data.

Firstly, instead of Equation (8), let us consider the following quadratic spec-
ification:

wh = α + β log
xh

mh
+ δ

(
log

xh

mh

)2

+ uh, uh ∼ N(0,Σ), h = 1, · · · ,H,

(13)

where δ = (δ1, · · · , δm)′. For this modification, the Bayesian estimation proce-
dure is similar as in Section 2 and Appendix. The main changes aim to redefine
γ as follows:12

γ = vecΓ, such that Γ = (α, β, δ)′.

Next, we can extend the Working-Leser Engel curves (8) to the almost ideal
demand system (Deaton and Muellbauer, 1980). The almost ideal demand

12See Hasegawa and Kozumi (2001).
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system, which satisfies the adding-up, homogeneity and symmetry conditions,
can be written as follows:

wi = αi +
m∑

j=1

ψij log
(

πj

πM

)
+ βi log

(
x∗

a∗(π)

)
, i = 1, · · · ,m, (14)

where wi is the budget share of good i, πi is the price of good i, x is the total
expenditure x∗ = x/πM and

log a∗(π) = α0 +
m∑

i=1

αi log
(

πi

πM

)
+

1
2

m∑

i=1

m∑

j=1

ψij log
(

πi

πM

)
log

(
πj

πM

)
.

(15)

Using the linear algebra, (14) and (15) can be written as follows:

w = α + (π′ ⊗ Im)Dψ + β log
(

x∗

a∗(π)

)
(16)

log a∗(π) = α0 + α′π +
1
2
(vecππ′)′Dψ, (17)

where

w =




w1

...
wm


 , α =




α1

...
αm


 , β =




β1

...
βm


 , π =




log(π1/πM )
...

log(πm/πM )


 ,

D is a m2 × 1
2m(m + 1) duplication matrix, and ψ is a 1

2m(m + 1) × 1 vector
that is obtained from vecΨ by eliminating all supradiagonal elements of Ψ =


ψ11 · · · ψ1m

...
. . .

...
ψm1 · · · ψmm


.13

By using the demand system (16) and (17), for household h (h = 1, · · · ,H)
at period t (t = 1, · · · , T ), we define the following econometric model:

wht = α + (π′t ⊗ Im)Dψ + β log
(

x∗ht

a∗(πt)

)
+ uht, (18)

log a∗(πt) = α′πt +
1
2
(vecπtπ

′
t)
′Dψ (19)

where wht is an m×1 share vector and πt =
(
log(πt1/πtM ), · · · , log(πtm/πtM )

)′,
x∗ht = xht/(mhtπtM ), mht is an equivalence scale and uht is a vector of nor-
mally distributed disturbances.14 We can introduce the similar structure for
household’s expenditure on good i at period t, say y∗∗hti (h = 1, · · · , H, t =
1, · · · , T, i = 1, · · · ,M), as described in Section 2. Combining the structure
for y∗∗hti with the demand system (18) and (19) and noting that the demand
system (18) and (19) are linear in coefficient parameters (α, β,ψ) in terms of
their FCDs, we can apply the method in this article to the estimation of the
demand system with zero expenditures.

13For the details of duplication matrix, see Magnus and Neudecker (1999, pp.48–49).
14In (19), we have deleted α0.
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Furthermore, from these two extensions, our Bayesian approach can be ap-
plied to the quadratic almost ideal demand system (Banks et al., 1997) as well
as the almost ideal demand system.
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Appendix A. Sampling algorithms

A.1. Full conditional distributions of parameters

The FCDs of γ, Σ−1, µ, τ−1, ω−1, ch (h = 1, · · · ,H) and y∗hi (h = 1, · · · ,H,
i = 1, · · · , M) are as follows:

• FCD of γ:

γ| · · · ∼ N(γ∗∗, G∗∗) (A.1)

G∗∗ =
[
G−1
∗ + (Σ−1 ⊗X ′

∗X∗)
]−1

γ∗∗ = G∗∗
[
G−1
∗ γ∗ + (Σ−1 ⊗ I2) vec(X ′

∗W )
]
,

where ‘| · · · ’ denotes conditioning on the values of all other parameters
and data,

X =




1 log x∗1
...

...
1 log x∗H


 , W =




w′
1

...
w′

H




and ⊗ denotes a Kronecker product.

• FCD of Σ−1:

Σ−1| · · · ∼ W(λ∗∗,F−1
∗∗ ) (A.2)

λ∗∗ = λ∗ + H, F ∗∗ = F ∗ +
H∑

h=1

uhu′h.

• FCD of µ:

µ| · · · ∼ N(µ∗∗, κ∗∗) (A.3)

κ∗∗ =
(

1
κ∗

+
H

τ

)−1

, µ∗∗ = κ∗∗

(
µ∗
κ∗

+
1
τ

H∑

h=1

log xh

)
.
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• FCD of τ−1:

τ−1| · · · ∼ Gam(a∗∗, b∗∗) (A.4)

a∗∗ = a∗ +
H

2
, b∗∗ = b∗ +

1
2

H∑

h=1

(log xh − µ)2.

• FCD of ω−1:

ω−1| · · · ∼ Gam(c∗∗, d∗∗), i = 1, · · · ,M (A.5)

c∗∗ = c∗ +
MH

2
, d∗∗ = d∗ +

1
2

H∑

h=1

(
vh

vhM

)′(
vh

vhM

)
.

• FCD of ch:

ch| · · · ∼ N(ch∗∗,Σh∗∗), h = 1, · · · ,H (A.6)

Σh∗∗ =
[

1
x2

h

Σ−1 +
1
ω

(Im + ιmι′m)
]−1

ch∗∗ = Σh∗∗

[
1
xh

Σ−1(α + β log x∗h) +
1
ω
{(xh − pMy∗∗hM )ιm + P my∗∗h }

]
.

• FCD of y∗hi: When Dhi = 0,

y∗hi| · · · ∼ N
(

chi

pi
,

ω

p2
i

)
, h = 1, · · · , H, i = 1, · · · ,M. (A.7)

Using Gibbs sampling, we can easily simulate the above-mentioned parameters
from their FCDs.

However, since the FCDs of xh (h = 1, · · · ,H), pi (i = 1, · · · ,M) and η are
complicated functions, the closed forms of FCDs for the parameters cannot be
derived. Therefore, we simulate these parameters using the Metropolis-Hasting
(M-H) algorithm.15

A.2. Sampling of xh

Let f(x) and q(x′, x) denote the target and proposal densities of a transition
from x′ to x, respectively. The Metropolis-Hastings (M-H) algorithm can be
described as follows:

1. At the (t + 1)th iteration, given the current sample x(t), sample x from
the proposal density q(x(t), x).

2. Generate u ∼ U(0, 1), a uniform distribution on (0, 1) and take

x(t+1) =





x if u < min
{

f(x)q(x, x(t))
f(x(t))q(x(t), x)

, 1
}

x(t) otherwise.

15See, for example, Tierney (1994) and Chib and Greenberg (1995).
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There are several suggestions for choosing the proposal density. In this article,
we employ a tailored proposal density.16

Since the FCD of xh is

p(xh| · · · ) ∝ 1
xh

exp
[
− 1

2τ
(log xh − µ)2

](
1
xh

)m

exp
(
−1

2
u′hΣ

−1uh

)
exp

(
− 1

2ω
v2

hM

)

=
(

1
xh

)m+1

exp
[
−1

2

{
u′hΣ

−1uh +
1
ω

v2
hM +

1
τ

(log xh − µ)2
}]

,

we have

log p(xh| · · · ) = const.− (m + 1) log xh − 1
2

[
u′hΣ

−1uh +
1
ω

v2
hM +

1
τ

(log xh − µ)2
]

.

The first and second derivatives of log p(xh| · · · ) with respect to xh are as fol-
lows:17

∂ log p(xh| · · · )
∂xh

= −m + 1
xh

− xh − (pMy∗∗hM + ι′mch)
ω

− log xh − µ

τxh
− 1

2
∂u′hΣ

−1uh

∂xh

∂2 log p(xh| · · · )
∂x2

h

=
1
x2

h

[
m + 1 +

1
τ

(log xh − µ− 1)
]
− 1

ω
− 1

2
∂2u′hΣ

−1uh

∂x2
h

,

where

∂u′hΣ
−1uh

∂xh
= 2

(
∂uh

∂xh

)′
Σ−1uh

∂2u′hΣ
−1uh

∂x2
h

= 2
(

∂uh

∂xh

)′
Σ−1

(
∂uh

∂xh

)
+ 2u′hΣ

−1

(
∂2uh

∂x2
h

)

∂uh

∂xh
= − 1

xh
(wh + β)

∂2uh

∂x2
h

=
1
x2

h

(2wh + β).

Then, employing the first and the second derivatives of log p(xh| · · · ), we can
obtain the mode of log p(xh| · · · ), say x̂h. Now, define the tailored proposal
density as follows:

q(x′h, xh) = q(xh) = ft(xh|x̂h, s2
h, ν) ∝

[
1 +

1
νs2

h

(xh − x̂h)2
]−(ν+1)/2

,

where ν is an adjustable constant,18 ft(·|a, b, ν) denotes a t density with ν
degrees of freedom, location parameter a and scale parameter b, and

s2
h =

[
−∂2 log p(xh| · · · )

∂x2
h

∣∣∣∣
xh=x̂h

]−1

,

provided s2
h > 0. Thus, we have the following M-H algorithm with a tailored

proposal density:
16See, for example, Chib et al. (1998).
17For the derivatives of vectors and matrices, see Lütkepohl (p.175, 1996).
18In Section 4, we set ν = 7.
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1. At the (t + 1)th iteration, given the current sample x
(t)
h , sample xh from

the proposal density q(xh) until xh ≥
∑m

i=1 chi.

2. Generate u ∼ U(0, 1), the uniform distribution on (0, 1) and take

x
(t+1)
h =





xh if u < min

{
elog p(xh|··· ) q(x(t)

h )

elog p(x
(t)
h |··· ) q(xh)

, 1

}

x
(t)
h otherwise.

A.3. Sampling of p

Since

p(p| · · · ) ∝
M∏

i=1

pg∗−1
i (1− pi)q∗−1p

H+
PH

h=1 Dhi

i (1− pi)H−PH
h=1 Dhi

× exp

[
− 1

2ω

H∑

h=1

(piy
∗∗
hi − chi)2

]

=
M∏

i=1

p
g∗+H+

PH
h=1 Dhi−1

i (1− pi)q∗+H−PH
h=1 Dhi−1 exp

[
− 1

2ω

H∑

h=1

(piy
∗∗
hi − chi)2

]
,

we have

log p(p| · · · ) = const. +
M∑

i=1

(
g∗ + H +

H∑

h=1

Dhi − 1

)
log pi

+
M∑

i=1

(
q∗ + H −

H∑

h=1

Dhi − 1

)
log(1− pi)− 1

2ω

M∑

i=1

H∑

h=1

(piy
∗∗
hi − chi)2.

The first and second derivatives of log p(p| · · · ) with respect to pi are as follows:

∂ log p(p| · · · )
∂pi

=
1
pi

(
g∗ + H +

H∑

h=1

Dhi − 1

)

− 1
1− pi

(
q∗ + H −

H∑

h=1

Dhi − 1

)
− 1

ω

H∑

h=1

(piy
∗∗
hi − chi)y∗∗hi

∂2 log p(p| · · · )
∂p2

i

= − 1
p2

i

(
g∗ + H +

H∑

h=1

Dhi − 1

)

− 1
(1− pi)2

(
q∗ + H −

H∑

h=1

Dhi − 1

)
− 1

ω

H∑

h=1

y∗∗2hi .

Then, using the first and the second derivatives of log p(p| · · · ), we can obtain
the mode of log p(p| · · · ), say p̂. Now, define the tailored proposal density as
follows:

q(p′, p) = q(p) = fMt(p|p̂, S, ν) ∝
[
1 +

1
ν

(p− p̂)′S−1(p− p̂)
]−(ν+M)/2

,
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where ν is an adjustable constant,19 and fMt(·|a, A, ν) denotes a multivariate
t density with ν degrees of freedom, location parameter vector a and scale
parameter matrix A, and

S =

[
−∂2 log p(p| · · · )

∂p∂p′

∣∣∣∣
p=p̂

]−1

,

provided S is positive definite. Thus, we have the following M-H algorithm with
a tailored proposal density:

1. At the (t + 1)th iteration, given the current sample p(t), sample p from
the proposal density q(p).

2. Generate u ∼ U(0, 1), the uniform distribution on (0, 1) and take

p(t+1) =





p if u < min
{

elog p(p|··· ) q(p(t))
elog p(p(t)|··· ) q(p)

, 1
}

p(t) otherwise.

A.4. Sampling of η

Since

p(η| · · · ) ∝ exp
[
−1

2
(η − η∗)

′A−1
∗ (η − η∗)

]
exp

(
−1

2

H∑

h=1

u′hΣ
−1uh

)

= exp

[
−1

2

{
(η − η∗)

′A−1
∗ (η − η∗) +

H∑

h=1

u′hΣ
−1uh

}]

we have

log p(η| · · · ) = const.− 1
2

[
(η − η∗)

′A−1
∗ (η − η∗) +

H∑

h=1

u′hΣ
−1uh

]

The first and second derivatives of log p(η| · · · ) by η are as follows:20

∂ log p(η| · · · )
∂η

= −A−1
∗ (η − η∗)−

1
2

H∑

h=1

∂u′hΣ
−1uh

∂η

∂2 log p(η| · · · )
∂η∂η′

= −A−1
∗ − 1

2

H∑

h=1

∂2u′hΣ
−1uh

∂η∂η′
,

19In Section 4, we set ν = 7.
20See Lütkepohl (p.175, 1996).
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where

∂u′hΣ
−1uh

∂η
= 2

(
∂uh

∂η′

)′
Σ−1uh

∂2u′hΣ
−1uh

∂η∂η′
= 2

(
∂uh

∂η′

)′
Σ−1 ∂uh

∂η′
+ 2(u′hΣ

−1 ⊗ IK)
∂

∂η′

[
vec

(
∂u′h
∂η

)]

∂uh

∂η′
=

βz′h
mh

∂

∂η′

[
vec

(
∂u′h
∂η

)]
=

∂

∂η′

[
vec(zhβ′)

1
mh

]
= − 1

m2
h

vec(zhβ′)z′h.

Then, using the first and the second derivatives of log p(η| · · · ), we can obtain
the mode of log p(η| · · · ), say η̂. Now, define the tailored proposal density as
follows:

q(η′, η) = q(η) = fMt(η|η̂,S, ν) ∝
[
1 +

1
ν

(η − η̂)′S−1(η − η̂)
]−(ν+K)/2

.

where ν is adjustable constant21 and

S =

[
−∂2 log p(η| · · · )

∂η∂η′

∣∣∣∣
η=η̂

]−1

provided S is positive definite. Thus, we have the following M-H algorithm with
the tailored proposal density:

1. At the (t + 1)th iteration, given the current sample η(t), sample η from
the proposal density q(η).

2. Generate u ∼ U(0, 1), the uniform distribution on (0, 1) and take

η(t+1) =





η if u < min
{

elog p(η|··· ) q(η(t))
elog p(η(t)|··· ) q(η)

, 1
}

η(t) otherwise.

21In Section 4, we set ν = 7.
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TABLE 1
Number of zero expenditures

Number of households 692
(1) Food 7
(2) Housing 278
(3) Fuel 8
(4) Furniture 359
(5) Clothing 200
(6) Medical 253
(7) Transport 7
(8) Others 11
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TABLE 2
Posterior results for parameters

mean sd mean sd
α1 0.56762 0.04249 σ11 0.0077473 0.0004278
α2 0.21000 0.05159 σ21 −0.0022755 0.0003394
α3 0.31146 0.01720 σ31 0.0002357 0.0001129
α4 0.00771 0.01416 σ41 −0.0001544 0.0001045
α5 0.04690 0.01910 σ51 −0.0002563 0.0001277
α6 0.03701 0.01564 σ61 −0.0002448 0.0001096
α7 0.09855 0.03524 σ71 −0.0009417 0.0002488
α8 −0.27925 0.07585 σ22 0.0089570 0.0005241
β1 −0.07066 0.00925 σ32 −0.0003286 0.0001245
β2 −0.01635 0.01113 σ42 0.0003557 0.0001041
β3 −0.04969 0.00358 σ52 −0.0000398 0.0001294
β4 0.00487 0.00309 σ62 0.0001045 0.0001127
β5 −0.00040 0.00413 σ72 −0.0006200 0.0002661
β6 −0.00148 0.00339 σ33 0.0010774 0.0000597
β7 0.00153 0.00765 σ43 0.0000586 0.0000389
β8 0.13218 0.01580 σ53 0.0000868 0.0000477
µ 5.53810 0.01371 σ63 0.0000045 0.0000389
τ 0.12885 0.00697 σ73 −0.0000986 0.0000916
ω 0.02396 0.01441 σ44 0.0006862 0.0000495
p1 0.97847 0.00542 σ54 0.0000552 0.0000405
p2 0.67823 0.01340 σ64 0.0000292 0.0000341
p3 0.98663 0.00472 σ74 −0.0000807 0.0000789
p4 0.53905 0.01992 σ55 0.0012141 0.0000816
p5 0.73317 0.01064 σ65 0.0000980 0.0000440
p6 0.67793 0.02160 σ75 −0.0001046 0.0001033
p7 0.98663 0.00274 σ66 0.0008488 0.0000669
p8 0.93285 0.00349 σ76 0.0001404 0.0000836
η1 0.36949 0.08494 σ77 0.0053424 0.0002893

Notes: ‘mean’ and ‘sd’ denote the posterior mean and posterior standard deviation.
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TABLE 3
Posterior results for elasticities

mean sd
Food 0.6982 0.0396
Housing 0.8742 0.0857
Fuel 0.3554 0.0463
Furniture 1.1588 0.1006
Clothing 0.9912 0.0929
Medical 0.9504 0.1131
Transport 1.0142 0.0712
Others 1.3820 0.0457

Notes: ‘mean’ and ‘sd’ denote the posterior mean and posterior standard deviation.
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TABLE 4
Posterior results for inequality measures

data posterior
raw p.c. e.s. mean sd

IGini 0.2214 0.2640 0.2271 0.2097 0.00377
IGE(−1) 0.0916 0.1273 0.0956 0.0714 0.00259
IGE(0) 0.0825 0.1135 0.0858 0.0705 0.00237
IGE(1) 0.0850 0.1168 0.0882 0.0751 0.00239
IGE(2) 0.0993 0.1364 0.1022 0.0878 0.00266

Notes: ‘raw,’ ‘p.c.’ and ‘e.s.’ denote the inequality measures based on the total

expenditure, the per capita total expenditure, and the total expenditure deflated by

posterior equivalence scale, respectively. ‘mean’ and ‘sd’ denote the posterior mean

and posterior standard deviation.
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TABLE 5
Classification of goods and number of zero expenditures∗

M = 5 M = 6 M = 7 M = 8
Food Food Food Food
7 7 7 7
Housing Housing Housing Housing
148 278 278 278

Furniture Furniture Furniture
359 359 359

Fuel Fuel Fuel Fuel
8 8 8 8
Clothing Clothing Clothing Clothing
200 200 200 200
Others Others Medical Medical
1 1 253 253

Others Transport
1 7

Others
11

Notes: ∗The figures in lower row denote the number of zero expenditures in the item.
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TABLE 6
Number of children and age grouping

# of children�age 0 ∼ 6 7 ∼ 12 0 ∼ 12 13 ∼ 18 0 ∼ 18
0 312∗ 368 129 571 99
1 236 201 223 82 173
2 133 113 259 35 296
3 11 9 73 3 105
4 0 1 7 1 17
5 0 0 1 0 2

sum 535† 458 993 165 1, 158

Notes: ‘# of children’ denotes the number of children in a household. ‘age’ denotes

the age group of children. For example, ‘0 ∼ 6’means the age group of children aged 0

to 6 years. The figure of ∗ denotes the number of households. The figure of † denotes

the number of children corresponding to the age group in the data.
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TABLE 7
Posterior means of purchasing probabilities

M = 5 M = 6
K = 1 K = 2 K = 3 data K = 1 K = 2 K = 3 data

Food 0.991 0.986 0.989 0.990 0.986 0.986 0.985 0.990
Housing 0.771 0.786 0.788 0.786 0.615 0.637 0.602 0.598
Fuel 0.988 0.987 0.987 0.988 0.987 0.988 0.988 0.988
Furniture 0.536 0.538 0.543 0.481
Clothing 0.741 0.733 0.748 0.711 0.724 0.738 0.735 0.711
Medical
Transport
Others 0.969 0.987 0.964 0.999 0.978 0.970 0.949 0.999

M = 7 M = 8
K = 1 K = 2 K = 3 data K = 1 K = 2 K = 3 data

Food 0.987 0.984 0.981 0.990 0.978 0.983 0.978 0.990
Housing 0.668 0.683 0.663 0.598 0.678 0.668 0.642 0.598
Fuel 0.987 0.988 0.985 0.988 0.987 0.988 0.988 0.988
Furniture 0.550 0.548 0.533 0.481 0.539 0.540 0.530 0.481
Clothing 0.729 0.720 0.739 0.711 0.733 0.729 0.725 0.711
Medical 0.678 0.678 0.701 0.634 0.678 0.679 0.662 0.634
Transport 0.987 0.989 0.981 0.990
Others 0.927 0.953 0.953 0.999 0.933 0.936 0.949 0.984

Notes: ‘data’ denotes 1− 1
H

P
Dhi.
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TABLE 8
Posterior means of η in equivalence scales

M = 5 M = 6
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

η1 0.4094 0.3641 0.2152 0.3320 0.2799 0.1823
η2 0.9459 0.5235 0.7240 0.3815
η3 0.8558 0.6857

M = 7 M = 8
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

η1 0.3415 0.3440 0.2013 0.3695 0.3010 0.2319
η2 0.8799 0.4073 0.8242 0.4902
η3 0.7520 0.8689
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TABLE 9
Posterior means of elasticities

M = 5 M = 6
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Food 0.6705 0.6206 0.5984 0.6843 0.6522 0.6213
Housing 0.9667 1.0725 1.0979 0.8250 0.8208 0.8642
Fuel 0.3442 0.3453 0.3478 0.3293 0.3283 0.3149
Furniture 0.9858 1.0842 1.1140
Clothing 0.8398 0.8503 0.8700 0.8500 0.9107 0.9262
Medical
Transport
Others 1.2903 1.2758 1.2843 1.3163 1.3250 1.3339

M = 7 M = 8
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Food 0.6955 0.6584 0.6254 0.6982 0.6455 0.6081
Housing 0.8547 0.9501 0.9183 0.8742 0.9401 1.0452
Fuel 0.3409 0.3483 0.3274 0.3554 0.3460 0.3503
Furniture 1.1686 1.0164 1.1152 1.1588 1.1142 1.1199
Clothing 0.9446 0.9591 1.0036 0.9912 1.0219 1.0742
Medical 1.0472 1.0829 1.0504 0.9504 1.0620 1.0881
Transport 1.0142 1.0183 1.0179
Others 1.3090 1.2996 1.3190 1.3820 1.3815 1.3544
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TABLE 10
Inequality measures for goods and age groups

IGini IGE(−1) IGE(0) IGE(1) IGE(2)
raw 0.2214 0.0916 0.0825 0.0850 0.0993
p.c. 0.2640 0.1273 0.1135 0.1168 0.1364

K = 1 e.s. 0.2289 0.0971 0.0871 0.0895 0.1037
mean 0.2153 0.0759 0.0745 0.0792 0.0926

M = 5 K = 2 e.s. 0.2294 0.0959 0.0867 0.0893 0.1035
mean 0.2175 0.0767 0.0754 0.0800 0.0931

K = 3 e.s. 0.2291 0.0966 0.0869 0.0892 0.1027
mean 0.2135 0.0746 0.0732 0.0776 0.0900

K = 1 e.s. 0.2254 0.0944 0.0847 0.0871 0.1010
mean 0.2144 0.0758 0.0742 0.0790 0.0926

M = 6 K = 2 e.s. 0.2238 0.0917 0.0830 0.0856 0.0992
mean 0.2098 0.0716 0.0708 0.0759 0.0898

K = 3 e.s. 0.2230 0.0916 0.0827 0.0851 0.0983
mean 0.2072 0.0700 0.0690 0.0735 0.0853

K = 1 e.s. 0.2258 0.0947 0.0850 0.0874 0.1013
mean 0.2115 0.0726 0.0717 0.0765 0.0896

M = 7 K = 2 e.s. 0.2278 0.0947 0.0857 0.0883 0.1023
mean 0.2122 0.0731 0.0720 0.0767 0.0897

K = 3 e.s. 0.2246 0.0927 0.0837 0.0861 0.0994
mean 0.2087 0.0707 0.0702 0.0753 0.0887

K = 1 e.s. 0.2271 0.0956 0.0858 0.0882 0.1022
mean 0.2097 0.0714 0.0705 0.0751 0.0878

M = 8 K = 2 e.s. 0.2256 0.0929 0.0841 0.0867 0.1005
mean 0.2079 0.0691 0.0689 0.0738 0.0864

K = 3 e.s. 0.2284 0.0959 0.0864 0.0887 0.1023
mean 0.2115 0.0725 0.0716 0.0763 0.0889

Notes: ‘raw,’ ‘p.c.’ and ‘e.s.’ denote the inequality measures based on the total

expenditure, the per capita total expenditure, and the total expenditure deflated by

posterior equivalence scale, respectively. ‘mean’ denotes the posterior mean.
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