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Abstract

In logistic regression models, we consider the deviance statistic (the log

likelihood ratio statistic) D as a goodness-of-fit test statistic. In this

paper, we show the derivation of an expression of asymptotic expansion

for the distribution of D under a null hypothesis. Using the continuous

term of the expression, we obtain Bartlett-type transformed statistic D̃

that improves the speed of convergence to the chi-square limiting dis-

tribution of D. By numerical comparison, we find that the transformed

statistic D̃ performs much better than D. We also give a real data ex-

ample of D̃ being more reliable than D for testing a hypothesis.

AMS 2000 subject classifications: 62E20, 62H10.

Keywords: Bartlett adjustment; Deviance; Edgeworth expansion; Lo-

gistic regression.

2



1. Introduction

We consider generalized linear models (Nelder and Wedderburn [9]) in which the re-

sponse variables are measured on a binary scale. Let N independent random variables

Yα, α = 1, . . . , N corresponding to the number of successes in N different subgroups be

distributed according to a binomial distribution B(nα, πα), α = 1, . . . , N. If we use the

logit function

logit u ≡ log

(

u

1− u

)

,

which is a canonical link function, as a link function, we obtain the following general

logistic regression model (general logit model):

logit πα = x′
αβ, (α = 1, . . . , N), (1.1)

where xα = (xα1, . . . , xαp)
′, (α = 1, . . . , N), (p < N) are covariate vectors and β =

(β1, . . . , βp)
′ is a unknown parameter vector. Let the maximum likelihood estimator of β

be β̂ = (β̂1, . . . , β̂p)
′, and put π̂α = πα(β̂), (α = 1, . . . , N). Here, we consider the deviance

statistic (log likelihood ratio statistic)

D = 2
N
∑

α=1

nα















Yα
nα

log

(

Yα
nαπ̂α

)

+

(

1− Yα
nα

)

log









1− Yα
nα

1− π̂α























. (1.2)

Under the null hypothesis

H0 : Model given by (1.1) is correct, (1.3)

it is known that deviance statistic D has a χ2
N−p limiting distribution assuming the con-

dition that

nα/n→ µα (0 < µα < 1) for each α, as n→ ∞, (1.4)

where n =
∑N

α=1 nα and
∑N

α=1 µα = 1. Usually, using large sample results, we use D for

a goodness-of-fit test statistic of the logistic regression model.

However, in the case in which all nα, (α = 1, . . . , N) are not large enough, approxima-

tion by a χ2
N−p limiting distribution to the distribution of D under H0 become poor. In

such a case, there are risks that the hypothesis test based on large sample theory will give
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results opposite to those of an exact test. In this paper, in order to reduce the risks, we

propose a new transformed statistic D̃ of D whose speed of convergence to a chi-square

distribution is quicker than D. To construct D̃, we use the following procedure. First,

we obtain the asymptotic expansion of the original statistic D. Next, we obtain trans-

formed statistic D̃ by performing Bartlett-type transformation to D on the basis of the

asymptotic expansion.

We will introduce some studies on asymptotic expansion for probability of a multino-

mial model. Regarding the goodness-of-fit test for a multinomial distribution, Yarnold

[17] obtained an approximation based on asymptotic expansion for the null distribution

of Pearson’s X2 statistic. The expansion consists of a term of multivariate Edgeworth

expansion for a continuous distribution and a discontinuous term. In a fashion simi-

lar to that for Pearson’s X2 statistic, approximations based on asymptotic expansions

for null distributions of some kinds of multinomial goodness-of-fit statistics have been

investigated (Siotani and Fujikoshi [12], Read [10], Menéndez et al. [8]). Edgeworth ap-

proximations of the distributions of some kinds of multinomial goodness-of-fit statistics

under alternative hypotheses have also been investigated (Taneichi et al. [13, 14], Sekiya

and Taneichi [11]). Taneichi and Sekiya [15] discussed approximations for the distribution

of φ-divergence statistics for the test of independence in r × s contingency tables. Tane-

ichi and Sekiya [16] also discussed approximations of the distributions of test statistics

for homogeneity of a product multinomial model.

In this paper, we investigate asymptotic approximation of the distribution of the

statistic D given by (1.2) for testing the null hypothesis H0 given by (1.3). In Section

2, we consider expression of asymptotic expansion for the distribution of D under H0.

Evaluation for the continuous and discontinuous terms of the expression is considered.

In Section 3, using the term of multivariate Edgeworth expansion assuming a continuous

distribution in the expression in Section 2, we construct a Bartlett-type transformation for

improving small-sample accuracy of the χ2 approximation of the distribution of D under

H0. In Section 4, the performance of the Bartlett-type transformed statistic and that of

the original statistic are investigated numerically. In Section 5, we apply the transformed

statistic to real data and discuss the importance of the transformed statistic.
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2. Asymptotic approximation for the distribution of D under H0

First, we consider a local Edgeworth approximation for the probability of Yα, (α =

1, . . . , N) under null hypothesis H0 given by (1.3). Let

Wα =
Yα − nαπα√

nα
, (α = 1, . . . , N). (2.1)

Then, W = (W1, . . . ,WN)
′ is a lattice random vector that takes values in the set

L =

{

w = (w1, . . . , wN)
′ : wα =

yα − nαπα√
nα

, (α = 1, . . . , N),y = (y1, . . . , yN)
′ ∈M

}

,

where

M =
{

y = (y1, . . . , yN)
′ : y1, . . . , yN are non-negative integers that satisfy

yα ≤ nα, (α = 1, . . . , N)
}

.

If we consider only for a limiting distribution of D, we can discuss under the as-

sumption given by (1.4). In this section, since we consider asymptotic expansion of the

distribution of D, we need an assumption that states the way of converging nα/n to µα

more strictly than the assumption given by (1.4). Therefore, we consider the following

Assumption 1 instead of the assumption given by (1.4).

Assumption 1: nα → ∞, (α = 1, . . . , N), as n → ∞,with nα depending on n

in such a way that nα/n = µα, (α = 1, . . . , N), where 0 < µα < 1 and
∑N

α=1 µα = 1.

Assumption 1 and the assumption given by (1.4) state condition that nα/n does not

converge to 0 for every α, (α = 1, . . . , N). However, for real data analysis, nα, (α =

1, . . . , N) and n are finite. So, for real data analysis, Assumption 1 and the assumption

given by (1.4) imply the condition that excludes the case nα = 0 for some subgroups

α, (α = 1, . . . , N). Therefore, the range of applications does not change even if we

change the assumption given by (1.4) to Assumption 1.

With regard to a local Edgeworth approximation for the probability of Yα, (α =

1, . . . , N) under H0, we obtain the following lemma.
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Lemma 1: For each y = (y1, . . . , yN)
′ ∈ M , let w = (w1, . . . , wN)

′, where wα = (yα −
nαπα)/

√
nα, (α = 1, . . . , N). Then, under Assumption 1,

Pr{W = w|H0} =

(

N
∏

α=1

1√
nα

)

h(w)

{

1 +
1√
n
g1(w) +

1

n
g2(w) +

1

n
√
n
g3(w) +O(n−2)

}

,

(2.2)

where

h(w) = (2π)−N/2|Ω|−1/2 exp

(

−1

2
w′Ω−1w

)

, (2.3)

g1(w) = −1
2

N
∑

α=1

1√
µα

(1− 2πα)

πα(1− πα)
wα +

1

6

N
∑

α=1

1√
µα

(1− 2πα)

π2
α(1− πα)

2w
3
α,

g2(w) = 1
2{g1(w)}2 − 1

12

N
∑

α=1

1

µα

(1− πα + π2
α)

πα(1− πα)
+

1

4

N
∑

α=1

1

µα

(1− 2πα + 2π2
α)

π2
α(1− πα)

2 w2
α

− 1
12

N
∑

α=1

1

µα

(1− 3πα + 3π2
α)

π3
α(1− πα)

3 w4
α,

g3(w) = −1
3{g1(w)}3 + g1(w)g2(w) + 1

12

N
∑

α=1

1

µα
√
µα

(1− 2πα)

π2
α(1− πα)

2wα

−1
6

N
∑

α=1

1

µα
√
µα

(1− 2πα)(1− πα + π2
α)

π3
α(1− πα)

3 w3
α

+ 1
20

N
∑

α=1

1

µα
√
µα

(1− 2πα)(1− 2πα + 2π2
α)

π4
α(1− πα)

4 w5
α,

and

Ω = diag(π1(1− π1), . . . , πN(1− πN )). (2.4)

By considering the proof of Theorem 22.1 of Bhattacharya and Ranga Rao ([3], pp.

232-236), we can prove Lemma 1. Proof of Lemma 1 is shown in Appendix 1.

Next, we derive an approximation based on an asymptotic expansion for the distribu-

tion of D under H0. We consider the following approximation for the distribution of D

under H0 corresponding to approximation (2.3) of Taneichi et al. [13] for the multinomial

goodness-of-fit test.

Pr{D ≤ x|H0} ≈ J∗
1 (x) + J∗

2 (x),
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where the J∗
1 (x) term is multivariate Edgeworth expansion assuming a continuous dis-

tribution and the J∗
2 (x) term, which corresponds to the K2 term of Taneichi et al. [13]

in the case of a multinomial goodness-of-fit test, is a discontinuous term to account for

the discontinuity. With regard to evaluation of the J∗
1 (x) term, we obtain the following

theorem.

Theorem 1: Under Assumption 1, the J∗
1 (x) term is evaluated as

J∗
1 (x) = Pr{χ2

N−p ≤ x}+ 1

n

1
∑

j=0

vj Pr{χ2
N−p+2j ≤ x}+O(n−2), (2.5)

where

v0 =
1

24
(−6A1 + 4A2 + 6A3 − 9A4 + 2B1 + 3B2),

v1 = −v0,

A1 =
N
∑

α=1

1− 3πα + 3π2
α

µαπα(1− πα)
,

A2 =

N
∑

α=1

(1− 2πα)
2

µαπα(1− πα)
,

A3 =

N
∑

α=1

µαπα(1− πα)(1− 3πα + 3π2
α)σ

2
αα,

A4 =
N
∑

α=1

µαπα(1− πα)(1− 2πα)
2σ2

αα,

B1 =

N
∑

α=1

N
∑

γ=1

µαπα(1− πα)(1− 2πα)µγπγ(1− πγ)(1− 2πγ)σ
3
αγ ,

B2 =

N
∑

α=1

N
∑

γ=1

µαπα(1− πα)(1− 2πα)µγπγ(1− πγ)(1− 2πγ)σαασαγσγγ ,

σαγ =

p
∑

l=1

p
∑

m=1

κl,mxαlxγm, (α, γ = 1, . . . , N),

κl,m =
N
∑

λ=1

µλπλ(1− πλ)xλlxλm, (l, m = 1, . . . , p),
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κl,m is (l, m) elements of the inverse matrix of K = (κl,m), and χ
2
f denotes a chi-square

random variable with degrees of freedom f .

Proof of Theorem 1 is shown in Appendix 2.

Next, we consider the J∗
2 (x) term. Let U(x) be a set defined by

U(x) = {w = (w1, . . . , wN)
′ : D(w) ≤ x}. (2.6)

Consider the sets Uγ ⊂ RN−1, (γ = 1, . . . , N) and continuous functions ηγ(·) and θγ(·),
(γ = 1, . . . , N) on RN−1 into R1 such that U(x) defined by (2.6) is represented as

U(x) = {w = (w1, . . . , wN)
′ : ηγ(w̃γ) ≤ wγ ≤ θγ(w̃γ),

w̃γ = (w1, . . . , wγ−1, wγ+1, . . . , wN)
′ ∈ Uγ}.

Then

J∗
2 (x) = − 1√

n

N
∑

γ=1

n−(N−γ)/2
∑

wγ+1∈Lγ+1

· · ·
∑

wN∈LN

∫ ∞

−∞
· · ·
∫ ∞

−∞
χUγ

(w̃γ)

×
[

S1

(√
nwγ + nπγ

)

h(w)
]θγ(w̃γ)

ηγ(w̃γ)
dw1 · · · dwγ−1, (2.7)

where

[F (w)]
θγ(w̃γ)

ηγ(w̃γ)
= F (w1, . . . , wγ−1, θγ(w̃γ), wγ+1, . . . , wN)

−F (w1, . . . , wγ−1, ηγ(w̃γ), wγ+1, . . . , wN),

Lγ =

{

wγ : wγ =
yγ − nγπγ√

nγ
, yγ is a non-negative integer which satisfies yγ ≤ nγ

}

,

(γ = 1, . . . , N), (2.8)

S1(u) = u− [u]− 1

2
, (2.9)

h(·) being defined by (2.3), and χA(·) is the indicate function of the set A. In order

to evaluate the J∗
2 (x) term of the null distribution of the test statistics using the same

method as that of Yarnold [17], it is necessary to show

[

S1

(√
nwγ + nπγ

)

h(w)
]θγ(w̃γ)

ηγ(w̃γ)
= b

[

S1

(√
nwγ + nπγ

)]θγ(w̃γ)

ηγ(w̃γ)
+ o(1),

where b is a constant. However, it is very difficult to show the above relation except when

h(w) is a constant. Therefore, unlike the null distribution of multinomial goodness-of-fit
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test statistics, we cannot obtain a simple form of approximation of J∗
2 (x) such as K̂2 given

by (2.6) of Taneichi et al. [13]. By another method of Yarnold [17], J∗
2 (x) is evaluated as

follows.

Theorem 2: Under Assumption 1, the J∗
2 (x) term can be represented in the following

form:

J∗
2 (x) =

{

(2π)N
N
∏

α=1

πα(1− πα)

}−1/2

(Θ1 +Θ2)−Θ3 +O(n−2), (2.10)

where

Θ1 = n−N/2
∑

w1∈L1

. . .
∑

wN∈LN

w∈U(x)

exp

(

−1

2
w′Ω−1w

)

,

Θ2 = 1√
n

1
πN(1− πN )

∫

· · ·
∫

U(x)

wNS1

(√
nwN + nπN

)

exp

(

−1

2
w′Ω−1w

)

dw

+1
n

1
πN−1(1− πN−1)

∑

wN∈LN

∫

· · ·
∫

GN (wN )

wN−1S1

(√
nwN−1 + nπN−1

)

× exp
(

−1
2
w′Ω−1w

)

dw1 · · · dwN−1

+ 1
n
√
n

1
πN−2(1− πN−2)

∑

wN−1∈LN−1

∑

wN∈LN

∫

· · ·
∫

GN−1,N (wN−1,wN )

×S1 (
√
nwN−2 + nπN−2) exp

(

−1
2
w′Ω−1w

)

dw1 · · · dwN−2,

Θ3 = Pr{χ2
N−p ≤ x} + 1

n

3
∑

j=0

ζj Pr{χ2
N−p+2j ≤ x},

where

GN (wN) = {(w1, . . . , wN−1)
′ : w = (w1, . . . , wN−1, wN)

′ ∈ U(x)},

GN−1,N(wN−1, wN) = {(w1, . . . , wN−2)
′ : w = (w1, . . . , wN−2, wN−1, wN)

′ ∈ U(x)},

ζ0 =
1

24
(−Γ3),

ζ1 =
1

24
(Γ1 + Γ2 + Γ3),

ζ2 =
1

24
(−Γ1 − 2Γ2),

ζ3 =
1

24
Γ2,

Γ1 = −3(2A1 + 2A3 − 6A4 − 4A5 + 4A6 + 2B1 + 3B2 +B3 − 4B4),
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Γ2 = 5A2 + 9A4 − 12A6 − 2B1 − 3B2 − 3B3 + 6B4,

Γ3 = −3(4A3 − 9A4 − 4A5 + 4A6 + 4B1 + 4B2 +B3 − 4B4),

A5 =
N
∑

α=1

(1− 3πα + 3π2
α)σαα,

A6 =
N
∑

α=1

(1− 2πα)
2σαα,

B3 =

N
∑

α=1

N
∑

γ=1

(1− 2πα)(1− 2πγ)σαγ ,

B4 =
N
∑

α=1

N
∑

γ=1

µαπα(1− πα)(1− 2πα)(1− 2πγ)σαασαγ ,

with dw = dw1 · · · dwN , and A1,. . . ,A4, B1, B2, and σαγ being given in Theorem 1.

Proof of Theorem 2 is shown in Appendix 3. By Theorem 2, we find that the J∗
2 (x)

term is very difficult to calculate in practice. Then, on the basis of numerical results

showing that Edgeworth approximation assuming a continuous distribution performs bet-

ter than χ2 approximation for a multinomial goodness-of-fit test (Taneichi et al. [13, 14])

and a test of independence in r × s contingency tables (Taneichi and Sekiya [15]), we

consider the use of J∗
1 (x) as an approximation for the distribution of D under H0.

3. Transformed deviance statistic based on the J∗
1 (x) term

In this section, we construct a Bartlett-type transformation for improving the accu-

racy of χ2 approximation of the distribution of D under H0 when the distribution of D

is approximated as J∗
1 (x). The relation between coefficients of asymptotic expansion of a

random variable and Bartlett adjustment of the random variable is shown as follows (e.g.,

Fijikoshi [5, 6]).

Theorem 3: Suppose that a nonnegative random variable T has an asymptotic expansion

such that

Pr{T ≤ x} = Pr{χ2
f ≤ x}+ 1

n

1
∑

j=0

aj Pr{χ2
f+2j ≤ x}+O(n−2).
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The coefficients a0 and a1 do not depend on the parameter n > 0 and must satisfy the

relation a1 = −a0. Then for a transformed random variable T1 defined by

T1 =

(

1 +
2a0
fn

)

T, (3.1)

it holds that

Pr{T1 ≤ x} = Pr{χ2
f ≤ x} +O(n−2). (3.2)

T1 is known as Bartlett adjustment of T . Lawley [7], Barndorff-Nielsen and Cox [1],

and Barndorff-Nielsen and Hall [2] discussed Bartlett adjustment for the log likelihood

ratio statistic. Applying evaluation (2.5) given by Theorem 1 to Bartlett adjustment

(3.1), we obtain the following Bartlett-type adjustment D∗.

D∗ =

{

1 +
2v0

n(N − p)

}

D. (3.3)

In Barndorff-Nielsen and Cox [1], the theory of Bartlett adjustment is discussed for the

case in which the error term in (3.2) is not O(n−2) but O(n−3/2). In Theorem 1, we

evaluated the J∗
1 (x) term up to order n−3/2. Therefore, we can apply the continuous part

of asymptotic expansion for the distribution of D to Theorem 3, which ensures better

accuracy of approximation than the theory of Barndorff-Nielsen and Cox [1].

Practically, we may use estimate v̂ which is obtained by substituting maximum likeli-

hood estimate β̂ for the true value β in v0. Therefore, we propose the following Bartlett-

type (transformed deviance) statistic D̃.

D̃ =

{

1 +
2v̂

n(N − p)

}

D. (3.4)

4. Performance of transformed deviance statistic

We compare the performance of the transformed deviance statistic D̃ given by (3.4)

and that of the original deviance statistic D given by (1.2). We consider the logistic

regression model given by (1.1) with p = 2 and xα1 = 1 and xα2 = x∗α, (α = 1, . . . , N).

This model is used as a dose-response model. Let the true values of parameters β1 and

β2 be β∗
1 and β∗

2 , respectively. Then, the true values of πα, (α = 1, . . . , N) are

π∗
α =

exp(β∗
1 + β∗

2x
∗
α)

1 + exp(β∗
1 + β∗

2x
∗
α)
, (α = 1, . . . , N).

11



We give a design matrix

X =





1 · · · 1

x∗1 · · · x∗N





′

and execute the following procedure.

For each α, we generate nα, (α = 1, . . . , N) binomial random numbers which are

distributed according to B(1, π∗
α), (α = 1, . . . , N). From them, we calculate the number

Yα, (α = 1, . . . , N) of successes and the maximum likelihood estimates β̂1 and β̂2 for the

parameters β1 and β2. Using the estimates, we calculate the values πα(β̂), (α = 1, . . . , N),

where β̂ = (β̂1, β̂2)
′, and observed values of the statistics D and D̃. This process is

repeated J times.

Among J times, let V be the number of times that the observed values of the statistics

exceed the upper ε point of a chi-square distribution with degrees of freedom N − p, that

is, χ2
N−p(ε). The error of the χ2 approximation for the distribution of each statistic can

be evaluated on the basis of the index

I =
V

J
− ε.

We investigate the performance of the following four cases when N = 8.

(I) True parameters are β∗
1 = 3, β∗

2 = −8, and a design matrix is

X =





1 1 1 1 1 1 1 1

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55





′

.

(II) True parameters are β∗
1 = 4, β∗

2 = −1, and a design matrix is

X =





1 1 1 1 1 1 1 1

2.7 3.0 3.3 3.5 4.3 4.9 5.0 5.2





′

.

(III) True parameters are β∗
1 = −4, β∗

2 = 1, and a design matrix is

X =





1 1 1 1 1 1 1 1

2.85 3.05 3.85 4.25 4.65 4.85 5.25 5.45





′

.
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(IV) True parameters are β∗
1 = −3, β∗

2 = 8, and a design matrix is

X =





1 1 1 1 1 1 1 1

0.15 0.25 0.35 0.4 0.45 0.5 0.55 0.6





′

.

For each case, we consider the following three sample designs.

(A) n1 = · · · = n8 = nA.

(B) n1 = · · · = n4 = nB, n5 = · · · = n8 = 2nB.

(C) n1 = n2 = nC , n3 = n4 = nC + 5, n5 = n6 = nC + 10, n7 = n8 = nC + 15.

The cases and samples are selected appropriately in order to make many situations. Let |I|
be the absolute value of I. We calculate the value of |I| 100 times and put them I∗(i), i =

1, . . . , 100, where the number of repetitions is J = 1.0 × 104. Let Ī∗ =
∑100

i=1 I
∗(i)/100

and let IT be the true value of |I|. For an approximate 95 percent confidence interval for

IT , we consider
[

Ī∗ − t99(0.025)s/
√
100, Ī∗ + t99(0.025)s/

√
100
]

,

where s2 =
∑100

i=1(I
∗(i) − Ī∗)2/99 and t99(0.025) denotes the upper 2.5 percentage point

of a t-distribution with degrees of freedom 99. Fig. 1 shows values of Ī∗ and 95 percent

confidence interval for IT for sample design (A) where nA = 5, 10, 15, 20, 30 and signifi-

cance level ε = 0.01, 0.05, 0.1 for cases (I)–(IV). Figs. 2 and 3 show values of Ī∗ and 95

percent confidence interval for IT for sample designs (B) and (C) where nB and nC = 5,

10, 15, 20.

From Figs. 1–3, we find the following results. For all cases and sample designs,

performance of transformed statistic D̃ is better than that of original statistic D. For

almost all cases and sample designs, the value of |I| for D̃ is less than one-third of that

for statistic D. As a result of comparison, we can say that statistic D is improved by the

transformed deviance statistic D̃. This result indicates that the Bartlett-type statistic

works well.

Next, we consider the power of statistics D and D̃. We consider an alternative model:

π∗
α =

exp(β∗
1 + β∗

2x
∗
α)

1 + exp(β∗
1 + β∗

2x
∗
α)

+ δα, (α = 1, . . . , 8), (4.1)
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where (δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) = (−0.1, 0.1, −0.1, 0.1, −0.1, 0.1, −0.1, 0.1).

We calculate the simulated power against the alternative model (4.1) by using simu-

lated exact critical values of statistic D and statistic D̃. We calculate simulated power 100

times and put them P (i), i = 1, . . . , 100, where the number of repetitions is J = 1.0×104.

We consider the average simulated power P̄ =
∑100

i=1 P (i)/100. Let PT be the true value

of power. In the same way as that for IT , we can derive the 95 percent confidence interval

for PT . Figs. 4–6 show the average simulated power P̄ and 95 percent confidence interval

for PT when sample designs correspond to Figs. 1–3.

From Figs. 4–6, we find that the power of D̃ is not so different from the power of D.

This result was expected since D∗ given by (3.3) and deviance statistic D have the same

exact power, theoretically.

As a matter of course, we can construct D̃ for a general logit model (1.1) when p ≥ 3.

We consider the general logit model given by (1.1) with p = 3 and xα1 = 1, (α =

1, . . . , N). Using the same procedure and index as those in the case of p = 2 and xα1 = 1,

(α = 1, . . . , N), we investigate the performance of the following three cases when N = 8.

(V) True parameters are β∗
1 = 3, β∗

2 = −8, β∗
3 = 1, and a design matrix is

X =











1 1 1 1 1 1 1 1

0.15 0.25 0.35 0.4 0.45 0.5 0.55 0.6

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65











′

.

(VI) True parameters are β∗
1 = −4, β∗

2 = 1, β∗
3 = 2, and a design matrix is

X =











1 1 1 1 1 1 1 1

2.7 3.0 3.3 3.5 4.3 4.9 5.0 5.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55











′

.

(VII) True parameters are β∗
1 = 2, β∗

2 = 3, β∗
3 = −5, and a design matrix is

X =











1 1 1 1 1 1 1 1

0.15 0.25 0.35 0.4 0.45 0.5 0.55 0.6

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55











′

.
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We also consider the same sample designs (A), (B) and (C) in the case of p = 2. Fig. 7

shows values of Ī∗ and 95 percent confidence interval for IT for sample design (A) where

nA = 10, 15, 20, 30 and significance level ε = 0.01, 0.05, 0.1 for cases (V)–(VII). Figs. 8

and 9 show values of Ī∗ and 95 percent confidence interval for IT for sample designs (B)

and (C) where nB and nC = 10, 15, 20.

From Figs. 7–9, we find that D is also improved by the transformed statistic D̃ in the

case of model (1.1) with p = 3. This result indicates that the Bartlett-type statistic also

works well when the dimension of the model increases.

5. Real data application

By applying the transformed statistic to real data, we discuss the importance of the

proposed transformed statistics. We use data based on an experiment by Farmer et

al. [4]. In the experiment, female mice were fed dietary concentrations of one of 0.0,

0.3, 0.35, 0.45, 0.6, 0.75, 1.0 or 1.5 parts per 104 of a carcinogen, 2-acetylaminofluorene

(2-AAF). Table 1 shows the incidences of bladder neoplasms in mice observed for 33

months. In Table 1, covariate variable xα, (α = 1, . . . , 8) is 2-AAF measured in parts per

104, nα, (α = 1, . . . , 8) is the number of mice exposed and yα, (α = 1, . . . , 8) is incidence

of neoplasms. The logistic regression model which we apply is given by (1.1) with p = 2

and xα1 = 1 and xα2 = xα, (α = 1, . . . , 8), that is,

logit πα = β1 + β2xα, (α = 1, . . . , 8).

We consider testing the null hypothesis H0 given by (1.3) using the deviance statistic

at the significance level of 0.1. The maximum likelihood estimates of the parameters β1

and β2 are β̂1 = −7.432 and β̂2=7.875, respectively. By using π̂α = πα(β̂), (α = 1, . . . , N),

we calculate the observed value of D and the observed value of D̃. The observed value of

D is 11.450 and that of D̃ is 3.211. The nominal critical value of significance level of 0.1

by using a chi-squared distribution is χ2
6(0.1) = 10.645. Then, if we use deviance statistic

D, H0 is rejected at the significance level of 0.1. However, if we use transformed statistic

D̃, H0 is accepted at the significance level of 0.1.

We consider the distribution of statistic D where D is constructed by random variable

Yα, (α = 1, . . . , N), provided that Yα, (α = 1, . . . , N) is independently distributed accord-

15



ing to the binomial distribution B(nα, π̂α), (α = 1, . . . , N). Let D(0.1) be the upper 0.1

point of the distribution of D. Then, by using D(0.1), we can execute an exact test at a

significance level of 0.1. Therefore, as an accurate approximation of D(0, 1), we consider

a simulated approximation of D(0.1) as follows.

For each α, by generating binomial random numbers nα, (α = 1, . . . , N) which are

distributed according to B(1, π̂α), (α = 1, . . . , N), we obtain y∗α, (α = 1, . . . , N), which

are observed values of Yα, (α = 1, . . . , N). From y∗α, (α = 1, . . . , N), we calculate the

maximum likelihood estimate of β and observed value of D. By repeating this process

J = 106 times, we obtain J observed values D(j), (j = 1, . . . , J). By sorting D(j), (j =

1, . . . , J) in large order, we adopt 0.1 × J = 105 th value as an approximation of D(0.1)

and put it DS(0.1).

In these data, we obtain DS(0.1) = 25.655. Since DS(0.1) > D, the result of the test

by using the simulated critical value is accepted at the significance level of 0.1. That is,

the test using the nominal critical value leads to a conclusion opposite to that obtained

by the test using the simulated critical value. This result occurs on account of poorness

of approximation for the upper probability of the deviance statistic.

On the other hand, by calculating simulated approximation of D̃(0.1) for these data

in the same way as DS(0.1), we obtain D̃S(0.1) = 13.483. Since D̃S(0.1) > D̃, the result

of the test by using the simulated critical value is also accepted at the significance level

of 0.1. That is, the result of the test using the nominal critical value coincides with that

of the test using the simulated critical value. The above results are summarized in Table

2. This is an example of an asymptotic test based on the proposed transformed statistic

D̃ being more reliable than that based on deviance statistic D.

6. Concluding remarks

We have shown the derivation of an expression of asymptotic expansion for the distri-

bution of deviance statistic D in a logistic regression model. Using the continuous term of

the expression of approximation for the distribution of deviance statistic D under a null

hypothesis, we propose a transformation of D that improves the speed of convergence to

a chi-square limiting distribution. Numerical comparison shows that the transformed de-
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viance statistic D̃ is effective for improving the speed of convergence. This improvement

increases the reliability of the results of the asymptotic test.
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Fig. 1: Ī∗ and 95 percent confidence interval for IT for sample design (A), where nA =

5, 10, 15, 20, 30: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively,

and •,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column

is for case (I), 2nd column is for case (II), 3rd column is for case (III), and 4th column is

for case (IV).
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Fig. 2: Ī∗ and 95 percent confidence interval for IT for sample design (B), where nB =

5, 10, 15, 20: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively,

and •,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column

is for case (I), 2nd column is for case (II), 3rd column is for case (III), and 4th column is

for case (IV).

19



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5  10  15  20

A
b

s
o

lu
te

 v
a

lu
e

 o
f 

in
d

e
x
 I

nC

~
Value for D(ε=0.01)
Value for D(ε=0.01)
Value for D(ε=0.05)

~
Value for D(ε=0.05)
Value for D(ε=0.10)

~
Value for D(ε=0.10)

Fig. 3: Ī∗ and 95 percent confidence interval for IT for sample design (C), where nC =

5, 10, 15, 20: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively,

and •,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column

is for case (I), 2nd column is for case (II), 3rd column is for case (III), and 4th column is

for case (IV).
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Fig. 4: P̄ against alternative model (4.1) and 95 percent confidence interval for PT for

sample design (A), where nA = 5, 10, 15, 20, 30: ◦, ♦ and △ are the values for D when

ε = 0.01, 0.05 and 0.1, respectively, and •,� and N are the values for D̃ when ε = 0.01,

0.05 and 0.1, respectively: 1st column is for case (I), 2nd column is for case (II), 3rd

column is for case (III), and 4th column is for case (IV).
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Fig. 5: P̄ against alternative model (4.1) and 95 percent confidence interval for PT for

sample design (B), where nB = 5, 10, 15, 20: ◦, ♦ and △ are the values for D when

ε = 0.01, 0.05 and 0.1, respectively, and •,� and N are the values for D̃ when ε = 0.01,

0.05 and 0.1, respectively: 1st column is for case (I), 2nd column is for case (II), 3rd

column is for case (III), and 4th column is for case (IV).

22



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20

P
o

w
e

r

nC

Value for D(ε=0.01)
~

Value for D(ε=0.01)
Value for D(ε=0.05)

~
Value for D(ε=0.05)
Value for D(ε=0.10)

~
Value for D(ε=0.10)

Fig. 6: P̄ against alternative model (4.1) and 95 percent confidence interval for PT for

sample design (C), where nC = 5, 10, 15, 20: ◦, ♦ and △ are the values for D when

ε = 0.01, 0.05 and 0.1, respectively, and •,� and N are the values for D̃ when ε = 0.01,

0.05 and 0.1, respectively: 1st column is for case (I), 2nd column is for case (II), 3rd

column is for case (III), and 4th column is for case (IV).

23



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10  15  20  30

A
b

s
o

lu
te

 v
a

lu
e

 o
f 

in
d

e
x
 I

nA

Value for D(ε=0.01)
~

Value for D(ε=0.01)

~
Value for D(ε=0.05)
Value for D(ε=0.05)
Value for D(ε=0.10)

~
Value for D(ε=0.10)

Fig. 7: Ī∗ and 95 percent confidence interval for IT for sample design (A), where nA =

10, 15, 20, 30: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively,

and •,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column

is for case (V), 2nd column is for case (VI), and 3rd column is for case (VII).
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Fig. 8: Ī∗ and 95 percent confidence interval for IT for sample design (B), where nB =

10, 15, 20: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively, and

•,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column is

for case (V), 2nd column is for case (VI), and 3rd column is for case (VII).
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Fig. 9: Ī∗ and 95 percent confidence interval for IT for sample design (C), where nC =

10, 15, 20: ◦, ♦ and △ are the values for D when ε = 0.01, 0.05 and 0.1, respectively, and

•,� and N are the values for D̃ when ε = 0.01, 0.05 and 0.1, respectively: 1st column is

for case (V), 2nd column is for case (VI), and 3rd column is for case (VII).
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Table 1: Observed numbers of 2-AAF-exposed mice with bladder neoplasms.

Dose Mice Exposed Incidence

α (parts per 104 2-AAF)(xα) (nα) (yα)

1 0.0 101 1

2 0.3 443 5

3 0.35 200 0

4 0.45 103 2

5 0.6 66 2

6 0.75 75 12

7 1.0 31 21

8 1.5 11 11

Table 2: Results of tests at the significance level of 0.1 based on simulated and nominal

critical values for statistics D and D̃.

D D̃

observed value of test statistic 11.450 3.211

nominal critical value 10.645 10.645

result of test reject accept

simulated critical value 25.655 13.483

result of test accept accept
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Appendix 1. (Proof of Lemma 1.)

Let c(t) denote the characteristic function of Y = (Y1, . . . , YN)
′, where t = (t1, . . . , tN)

′.

Then

c(t) =
∑

y∈M

exp(it′y) Pr{Y = y |H0}

=

N
∏

α=1

(παe
itα + 1− πα)

nα.

For each w ∈ L, we have

Pr{W = w |H0} = Pr{Y = y |H0}

= (2π)−N

∫ π

−π

· · ·
∫ π

−π

c(t) exp(−it′y)dt

= (2π)−N

(

N
∏

α=1

1√
nα

)

Q,

where

Q =

∫

√
n1π

−
√
n1π

· · ·
∫

√
nNπ

−
√
nNπ

q(t) exp(−it′w)dt, (A1.1)

q(t) = c(t∗) exp

(

−i
N
∑

α=1

√
nαπαtα

)

,

and

t∗ =

(

t1√
n1

, · · · , tN√
nN

)′

.

We can expand q(t) as

q(t) =

{

exp

(

−1

2
t′Ωt

)}{

1 +
1√
n
b1(t) +

1

n
b2(t) +

1

n
√
n
b3(t) +O(n−2)

}

(A1.2)

for large n and fixed t, where

b1(t) =
i3

6

N
∑

α=1

1√
µα

πα(1− πα)(1− 2πα)t
3
α,

b2(t) =
1

2
{b1(t)}2 +

i4

24

N
∑

α=1

1

µα
πα(1− πα)(1− 6πα + 6π2

α)t
4
α,

and

b3(t) = −1

3
{b1(t)}3+ b1(t)b2(t) +

i5

120

N
∑

α=1

1

µα
√
µα
πα(1− πα)(1− 2πα)(1− 12πα +12π2

α)t
5
α.
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From (A1.1) and (A1.2), we obtain

Q = Q1 +Q2 −Q3,

where

Q1 =

∫ ∞

−∞
· · ·
∫ ∞

−∞
{exp(−it′w)}

{

exp

(

−1

2
t′Ωt

)}

×
{

1 +
1√
n
b1(t) +

1

n
b2(t) +

1

n
√
n
b3(t)

}

dt,

Q2 =

∫ ∞

−∞
· · ·
∫ ∞

−∞
{exp(−it′w)}

{

exp

(

−1

2
t′Ωt

)}

O(n−2)dt,

Q3 =

∫

· · ·
∫

Sc

{exp(−it′w)}
{

exp

(

−1

2
t′Ωt

)}

×
{

1 +
1√
n
b1(t) +

1

n
b2(t) +

1

n
√
n
b3(t) +O(n−2)

}

dt,

and

S = [−√
n1π,

√
n1π]× · · · × [−√

nNπ,
√
nNπ].

Since Q2 = O(n−2) and Q3 = o(n−2), we obtain Q = Q1 +O(n−2). Therefore, we have

Pr{W = w|H0} = (2π)−N

(

N
∏

α=1

1√
nα

)[

∫ ∞

−∞
· · ·
∫ ∞

−∞
{exp(−it′w)}

{

exp

(

−1

2
t′Ωt

)}

×
{

1 +
1√
n
b1(t) +

1

n
b2(t) +

1

n
√
n
b3(t)

}

dt+O(n−2)

]

.

By carrying out this integration, we have (2.2). We have completed the proof of Lemma 1.

Appendix 2. (Proof of Theorem 1.)

By transformation (2.1), statistic D can be rewitten as

D(W ) = 2
N
∑

α=1

nα

{

(

πα +Wα(
√
nα)

−1
)

log

(

πα +Wα(
√
nα)

−1

π̂α(W )

)

+
(

1− πα −Wα(
√
nα)

−1
)

log

(

1− πα −Wα(
√
nα)

−1

1− π̂α(W )

)

}

.

If we regard

h(w)

{

1 +
1√
n
g1(w) +

1

n
g2(w) +

1

n
√
n
g3(w)

}

as the continuous density function of W , then we can regard

J∗
1 (x) =

∫

· · ·
∫

U(x)

h(w)

{

1 +
1√
n
g1(w) +

1

n
g2(w) +

1

n
√
n
g3(w)

}

dw
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as the distribution function ofD(W ), where U(x) is defined by (2.6). So, the characteristic

function of D(W ) is calculated as

ψ(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
[exp{iuD(w)}]h(w)

{

1 +
1√
n
g1(w) +

1

n
g2(w) +

1

n
√
n
g3(w)

}

dw.

We can expand D(w) as

D(w) = τ0(w) +
1√
n
τ1(w) +

1

n
τ2(w) +

1

n
√
n
τ3(w) +O(n−2), (A2.1)

where

τ0(w) = w′(Ω−1 − Ξ)w,

τ1(w) = 1
3

N
∑

α=1

µαπα(1− πα)(1− 2πα)

{

p
∑

l=1

xαlC1(l)(w)

}3

− 1

3

N
∑

α=1

1√
µα

(1− 2πα)

π2
α(1− πα)

2w
3
α,

τ2(w) =
N
∑

α=1

µαπα(1− πα)

{

p
∑

l=1

xαlC2(l)(w)

}2

+
1

6

N
∑

α=1

1

µα

(1− 3πα + 3π2
α)

π3
α(1− πα)

3 w4
α

+

N
∑

α=1

µαπα(1− πα)(1− 2πα)

{

p
∑

l=1

xαlC1(l)(w)

}2{ p
∑

l=1

xαlC2(l)(w)

}

+ 1
12

N
∑

α=1

µαπα(1− πα)(1− 6πα + 6π2
α)

{

p
∑

l=1

xαlC1(l)(w)

}4

,

τ3(w) = 2
N
∑

α=1

µαπα(1− πα)

{

p
∑

l=1

xαlC2(l)(w)

}{

p
∑

l=1

xαlC3(l)(w)

}

+

N
∑

α=1

µαπα(1− πα)(1− 2πα)

{

p
∑

l=1

xαlC1(l)(w)

}2{ p
∑

l=1

xαlC3(l)(w)

}

+

N
∑

α=1

µαπα(1− πα)(1− 2πα)

{

p
∑

l=1

xαlC1(l)(w)

}{

p
∑

l=1

xαlC2(l)(w)

}2

+1
3

N
∑

α=1

µαπα(1− πα)(1− 6πα + 6π2
α)

{

p
∑

l=1

xαlC1(l)(w)

}3{ p
∑

l=1

xαlC2(l)(w)

}

+ 1
60

N
∑

α=1

µαπα(1− πα)(1− 2πα)(1− 12πα + 12π2
α)

{

p
∑

l=1

xαlC1(l)(w)

}5

− 1
10

N
∑

α=1

1

µα
√
µα

(1− 2πα)(1− 2πα + 2π2
α)

π4
α(1− πα)

4 w5
α,

Ξ =











√
µ1µ1σ11 · · · √

µ1µNσ1N
...

. . .
...

√
µNµ1σN1 · · · √

µNµNσNN











, (A2.2)
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C1(l)(w) =

p
∑

m=1

κl,mϕm(w), (l = 1, . . . , p),

C2(l)(w) = −1

2

p
∑

m1=1

· · ·
p
∑

m5=1

κl,m3κm1,m4κm2,m5κm3,m4,m5
ϕm1

(w)ϕm2
(w), (l = 1, . . . , p),

C3(l)(w) = 1
2

p
∑

m1=1

· · ·
p
∑

m9=1

κl,m4κm1,m5κm2,m6κm3,m7κm8,m9κm4,m5,m8
κm6,m7,m9

×ϕm1
(w)ϕm2

(w)ϕm3
(w)

−1
6

p
∑

m1=1

· · ·
p
∑

m7=1

κl,m4κm1,m5κm2,m6κm3,m7κm4,m5,m6,m7

×ϕm1
(w)ϕm2

(w)ϕm3
(w), (l = 1, . . . , p),

κm1,m2,m3
=

N
∑

λ=1

µλπλ(1− πλ)(1− 2πλ)xλm1
xλm2

xλm3
, (m1, m2, m3 = 1, . . . , p),

κm1,m2,m3,m4
=

N
∑

λ=1

µλπλ(1− πλ)(1− 6πλ + 6π2
λ)xλm1

xλm2
xλm3

xλm4
,

(m1, m2, m3, m4 = 1, . . . , p),

ϕm(w) =
N
∑

λ=1

√
µλxλmwλ, (m = 1, . . . , p),

Ω is defined by (2.4), and σαβ and κl,m are defined in Theorem 1. Then from (A2.1), we

obtain

[exp{iuD(w)}] h(w)

{

1 + 1√
n
g1(w) + 1

ng2(w) + 1
n
√
n
g3(w)

}

= (2π)−N/2|Ω|−1/2
[

exp
{

−1
2w

′ ((1− 2iu)Ω−1 + 2iuΞ)w
}]

[G(w) +O(n−2)] , (A2.3)

where

G(w) = 1 + 1√
n
{g1(w) + (iu)τ1(w)}

+1
n

[

g2(w) + (iu)τ1(w)g1(w) + (iu)τ2(w) + 1
2(iu)

2 {τ1(w)}2
]

+ 1
n
√
n

[

g3(w) + (iu)τ1(w)g2(w) + (iu)τ2(w)g1(w) + 1
2(iu)

2 {τ1(w)}2 g1(w)

+(iu)τ3(w) + (iu)2τ1(w)τ2(w) + 1
6(iu)

3 {τ1(w)}3
]

.

Let

Λ = (1− 2iu)−1(Ω− 2iuΩΞΩ),
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where Ω and Ξ are defined by (2.4) and (A2.2), respectively. Then

Λ−1 = (1− 2iu)Ω−1 + 2iuΞ (A2.4)

and

|Λ| = (1− 2iu)−(N−p)|Ω|. (A2.5)

Therefore, from (A2.3), (A2.4) and (A2.5), we obtain

ψ(u) = (1− 2iu)−(N−p)/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
(2π)−N/2|Λ|−1/2

{

exp

(

−1

2
w′Λ−1w

)}

G(w)dw

+O(n−2). (A2.6)

Since τj(w), (j = 1, 2, 3) is a homogeneous polynomial of degree j + 2 with respect to

variable w1, . . . , wN , and degrees of all terms of polynomial gj(w), (j = 1, 2, 3) are odd

if j = 1 or 3 and even if j = 2, degrees of all terms of polynomial G(w) for order n−1/2

and n−3/2 are odd. Therefore, by carrying out the integration of (A2.6), the characteristic

function ψ(u) is expanded as

ψ(u) = (1− 2iu)−(N−p)/2

[

1 +
1

n

1
∑

j=0

(1− 2iu)−jvj +O(n−2)

]

. (A2.7)

Since (1−2iu)−(N−p)/2 is the characteristic function of the χ2
N−p distribution, by inverting

(A2.7), we obtain (2.5). We have completed the proof of Theorem 1.

Appendix 3. (Proof of Theorem 2.)

The function S1(
√
nwγ + nπγ) defined by (2.9) is differentiable except when wγ ∈ Lγ

defined by (2.8), and h(w) is a differentiable function on RN . Therefore, by (8.10) in the

proof of Lemma 1 of Yarnold [17],

[S1 (
√
nwγ + nπγ)h(w)]

θγ(w̃γ)

ηγ(w̃γ)
=

∫ θγ(w̃γ)

ηγ(w̃γ)

DγS1

(√
nwγ + nπγ

)

h(w)dwγ

+

θγ(w̃γ)
∑

wγ=ηγ(w̃γ)
wγ∈Lγ

∆γS1

(√
nwγ + nπγ

)

h(w), (A3.1)

where

∆γF (w) = F (w1, . . . , wγ−1, wγ + 0, wγ+1, . . . , wN)

−F (w1, . . . , wγ−1, wγ − 0, wγ+1, . . . , wN)
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and DγF (w) = (∂/∂wγ)F (w). By definitions of the functions S1(·) and h(·), we obtain

∆γS1

(√
nwγ + nπγ

)

h(w) = −h(w), (A3.2)

DγS1

(√
nwγ + nπγ

)

h(w) = h(w)

{√
n− S1

(√
nwγ + nπγ

) wγ

πγ(1− πγ)

}

, (A3.3)

and

h(w) =

{

(2π)N
N
∏

α=1

πα(1− πα)

}−1/2

exp

(

−1

2
w′Ω−1w

)

. (A3.4)

By substituting (A3.2), (A3.3) and (A3.4) for (A3.1), we obtain the following:

[

S1

(√
nwγ + nπγ

)

h(w)
]θγ(w̃γ)

ηγ(w̃γ)
=

{

(2π)N
N
∏

α=1

πα(1− πα)

}−1/2

×
{

√
n

∫ θγ(w̃γ)

ηγ(w̃γ)

exp

(

−1

2
w′Ω−1w

)

dwγ −
θγ(w̃γ)
∑

wγ=ηγ(w̃γ)
wγ∈Lγ

exp

(

−1

2
w′Ω−1w

)

− 1

πγ(1− πγ)

∫ θγ(w̃γ)

ηγ (w̃γ)

wγS1

(√
nwγ + nπγ

)

exp

(

−1

2
w′Ω−1w

)

dwγ

}

. (A3.5)

Then from (2.7) and (A3.5), we obtain the following:

J∗
2 (x) =

{

(2π)N
N
∏

α=1

πα(1− πα)

}−1/2

(Θ1 +Θ∗
2)−Θ∗

3,

where

Θ∗
3 =

∫

· · ·
∫

U(x)

h(w)dw

and

Θ∗
2 = n−N/2

N
∑

γ=1

n(γ−1)/2 1

πγ(1− πγ)

∑

wγ+1∈Lγ+1

· · ·
∑

wN∈LN

∫ ∞

−∞
· · ·
∫ ∞

−∞
χUγ

(w̃γ)

×
∫ θγ(w̃γ)

ηγ (w̃γ)

wγS1

(√
nwγ + nπγ

)

exp

(

−1

2
w′Ω−1w

)

dw1 · · · dwγ.

If we regard h(w) as the density function of W , then we can regard Θ∗
3 as the distribution

function ofD(W ). Then, by expanding the characteristic function ofD(W ) and inverting

it, we can approximate Θ∗
3 = Θ3 + O(n−2). Furthermore, we can approximate Θ∗

2 =

Θ2 +O(n−2). Therefore, we obtain (2.10). We have completed the proof of Theorem 2.
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