DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

YAMASHITA, Shigeru; MINATO, Shin-ichi; MILLER, D. Michael

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91-A(12), 3793-3802
https://doi.org/10.1093/ietfec/e91-a.12.3793

2008-12

copyright © 2008 IEICE

Type: article

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
SUMMARY Recently much attention has been paid to quantum circuit design to prepare for the future “quantum computation era.” Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.

key words: quantum circuit, verification, decision diagram

1. Introduction

Recently quantum computing has attracted great attention by its potential abilities [1]. To realize a quantum algorithm, it is necessary to design the corresponding quantum circuit as small as possible. Thus, it should be very important to study quantum circuit design methods even before quantum computing is physically realized. Indeed, there has been a great deal of research [2]–[9] for quantum circuit design.

Typical quantum circuit design methods are based on matrix decomposition [8], [9] since a quantum algorithm is expressed by a matrix. They can treat any kind of quantum circuits, but they cannot treat large (hence, practical) size problems since they need to express matrices explicitly and thus they need exponential time and memory. (Note that a matrix for an n-bit quantum circuit is $2^n \times 2^n$, which will be explained later.)

There is a different approach for quantum circuit design [2]–[7]. The approach is to focus on quantum circuits calculating only (classical) Boolean functions by the following observation [2]: Standard quantum algorithms usually consist of two parts, which we call common parts and unique parts below. Common parts do not differ for each problem instance. On the other hand, unique parts differ for each problem instance. For example, Grover search algorithm [10], one of the famous quantum algorithms, consists of so called an oracle part and the other part. An oracle part calculates (classical) Boolean functions depending on the specification of a given problem instance, while the other part consists of some quantum specific operations and does not change for all the problem instances. When we developed a new quantum algorithm, we should have designed the common part. Therefore, we do not need to design the common part for individual problem instances. On the other hand, since the unique part of a quantum algorithm differs for each problem instance, we need to have efficient design and verification methods for that part. Since unique part calculates classical Boolean functions, by focusing on only unique parts, we may have a design method to handle practical size problems based on (classical) logic synthesis techniques, especially reversible logic synthesis techniques. Indeed there has been a great deal of research focusing on quantum circuits to calculate classical Boolean functions in the conventional logic synthesis research community [2]–[7]. We also focus on this type of quantum circuits in this paper. It should be noted that there are many different points between our target quantum circuits and the conventional logic circuits (as will be explained later) although our target quantum circuits calculate only classical Boolean functions. This is because we need to implement circuits with quantum specific operations (as will be explained later). Therefore, we definitely need quantum specific design and verification methods even for our target quantum circuits.

Recently a paper [11] discussed a problem of the equivalence check of general quantum circuits and quantum states considering the so-called phase equivalence property of quantum states. Even for quantum circuits calculating only Boolean functions, it should be very important to verify and analyze the functionalities of designed circuits as in the case of classical logic synthesis. For example, we may consider the following situation: One of the possible realizations of quantum computation is considered to be so called a linear-nearest-neighbor (LNN) architecture in which the quantum bits (qubits) are arranged on a line, and only operations to neighboring qubits are allowed. Thus, we need to modify a designed quantum circuit so that it uses only gates that operate to two adjacent qubits. In such a case, we may use some complicated transformations by hand, and thus it is very convenient if we have a verification tool to confirm that the original and the modified quantum circuits are functionally equivalent.

If we consider only the classical type gates, it is enough to use the conventional verification technique such as Binary Decision Diagrams (BDDs) [12] for the verification. How-
ever, even if we consider quantum circuits calculating only Boolean functions, it is known that non-classical (quantum specific) gates are useful to reduce the circuit size [5]–[7], [13]. Thus we need to verify quantum circuits with non-classical gates. In such cases, a classical technique is obviously not enough.

As for simulating quantum circuits, efficient techniques using decision diagrams such as Quantum Information Decision Diagrams (QuIDDs) [14] and Quantum Multiple-valued Decision Diagrams (QMDDs) [15] have been proposed. By using these efficient diagrams, we can express the functionalities of two quantum circuits, and then verify the equivalence of the two circuits. However, they are originally proposed to simulate general quantum circuits, and thus there may be a more efficient method that is suitable for verifying the functionalities of quantum circuits only for Boolean functions.

Our contribution described in this paper. Considering the above discussion, we introduce a new quantum circuit class: Semi-Classical Quantum Circuits (SCQCs). Although SCQCs have a restriction, the class of SCQCs covers all the quantum circuits (for calculating a Boolean function) designed by the existing methods [7]. Moreover, because of the restriction of SCQCs, we can express the functionalities of SCQCs very efficiently as in the case of conventional verifications by BDDs. For that purpose, we introduce a new decision diagram structure called a Decision Diagram for a Matrix Function (DDMF). Then, we show that the verification method based on DDMFs are much more efficient than the above mentioned methods based on previously known techniques. We provide an analytical comparison between DDMFs and QuIDDs, and reveal the essential difference: (1) We show that their ability to express the functionality of one quantum gate is essentially the same, but (2) we also show that our approach based on DDMFs is much more efficient for the verification of SCQCs than a method based on QuIDDs. (Note that this does not mean that DDMFs are better than QuIDDs: DDMFs are only for SCQCs, whereas QuIDDs can treat all kinds of quantum circuits.) Moreover, we show by preliminary experiments that DDMFs can be used to verify SCQCs of practical size (60 inputs and 400 gates). In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may be interesting and useful on their own for designing quantum circuits with quantum specific gates.

2. Semi-Classical Quantum Circuits and Their Representations by Decision Diagrams

This section introduces new concepts: SCQCs together with quantum functions, matrix functions and DDMFs.

2.1 Quantum States and Quantum Gates

Before introducing our new concepts, let us briefly explain the basics of quantum computation.

In quantum computation, it is assumed that we can use a qubit which is an abstract model of a quantum state. A qubit can be described as \(|0\rangle + |1\rangle \), where \(|0\rangle\) and \(|1\rangle\) are two basic states, and \(\alpha\) and \(\beta\) are complex numbers such that \(|\alpha|^2 + |\beta|^2 = 1\). It is convenient to use the following vectors to denote \(|0\rangle\) and \(|1\rangle\), respectively: \(|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\) and, \(|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\). Thus, \(\alpha|0\rangle + \beta|1\rangle\) can be described as a vector: \(\begin{pmatrix} \alpha \\ \beta \end{pmatrix}\). Then, any quantum operation on a qubit can be described as a \(2 \times 2\) matrix. By the laws of quantum mechanics, the matrix must be unitary. We call such a quantum operation a quantum gate. For example, the operation which transforms \(|0\rangle\) and \(|1\rangle\) to \(|1\rangle\) and \(|0\rangle\), respectively, is called a NOT gate whose matrix representation is as shown in Fig. 1.

In addition to the above NOT gates, we can also use any quantum specific unitary matrix in quantum circuits. For example, rotation gates denoted by \(R(\theta)\) are often used in quantum computation. The matrix for the gate is as shown in Fig. 1. Although the functionality of rotation gates is not classical, they are useful to design quantum circuits even for (classical) Boolean functions [5]. Another quantum specific gate called \(V\) gate is also utilized to design quantum circuits for Boolean functions [6], [7]. The matrix for the gate is as shown in Fig. 1. This gate has the interesting property that \(V^2 = NOT\).

In the following, our primitive gates are (generalized) controlled-\(U\) gates which are defined as follows:

Definition 1: A controlled-\(U\) gate has (possibly many) positive and negative control bits, and one target bit. It applies a \(2 \times 2\) unitary matrix \(U\) to the target qubit when the states of all the positive control bits are the state \(|1\rangle\) and the states of all the negative control bits are the state \(|0\rangle\). A controlled-\(U\) gate may not have a control bit. In such a case, it always applies \(U\) to the target qubit.

See an example of a quantum circuit consisting of two controlled-NOT gates in Fig. 2. This circuit has three qubits,
Consider Fig. 2 again. This circuit transforms the state of the third bit into \(|x_3\oplus f(x_1,x_2)\rangle \), where \(f(x_1,x_2) = x_1 \cdot x_2 + x_1 \cdot \overline{x_2} \). (Throughout the paper, we use \(\overline{\cdot} \) to mean the logical negation of \(\cdot \).) Thus, we can use this circuit (as a part of a quantum algorithm) to calculate the Boolean function \(f(x_1,x_2) = x_1 \cdot x_2 + x_1 \cdot \overline{x_2} \). As mentioned before, although our goal is to construct such a quantum circuit that calculates a Boolean function, quantum specific gates (such as \(R(\theta) \) and \(V \)) are useful \([5]-[7],[13]\) to make the circuit size smaller. For example, the circuit as shown in Fig. 3 (reported in \([7]\)) utilizes controlled-\(V \) and controlled-\(V^{-1} \) gates to become much smaller than the best one with only classical type gates, i.e., controlled-NOT gates. (That was confirmed by an essentially exhaustive search \([7]\).)

In order to characterize such a quantum circuit that calculates a classical Boolean function with non-classical gates, we introduce a Semi-Classical Quantum Circuit \((SCQC)\) whose definition is as follows.

Definition 2: A Semi-Classical Quantum Circuit \((SCQC)\) is a quantum circuit consisting of controlled-U gates with the following restriction.

Restriction. If all the initial input quantum states of the circuit are \(|1\rangle\) or \(|0\rangle\) (i.e., just classical values), the quantum states of the control qubits of all the gates in the circuit should be \(|1\rangle\) or \(|0\rangle\) at the time when the gate is being operated.

The circuit in Fig. 3 is an SCQC. This is because the quantum states of the control qubits of all the gates are either \(|1\rangle\) or \(|0\rangle\) when the gate is being operated if the initial input states \(|x_1\rangle,|x_2\rangle\) and \(|x_3\rangle\) are either \(|1\rangle\) or \(|0\rangle\). It is not trivial to see the condition for the quantum state of the control qubit of the last gate (i.e., \(|x_3\rangle\)) in Fig. 3. However, by using our new concepts (explained in the next section), it is easy to verify that the state is indeed the classical value if the input states of the circuit are classical values.

On the contrary, the circuit as shown in Fig. 4 is not an SCQC. Again, by using our new concept it is easily verified that the condition is not satisfied for the quantum state of the control qubit of the last gate (i.e., \(|x_3\rangle\)) in Fig. 4.

Our motivation to introduce SCQCs is based on the following observations.

- Although SCQCs are in a subset of all the possible quantum circuits, quantum circuits (for calculating a Boolean function) designed by the existing methods are all SCQCs to the best of our knowledge \([7]\).
- Even in the future, it is very unlikely that we come up with a tricky design method that produces a non-SCQC to calculate (classical) Boolean functions. The reason is as follows. If the circuit is not an SCQC, there is a gate such that the quantum state of its control bit is not a simple classical value \((|0\rangle\) nor \(|1\rangle\)) in \([7]\). In such a case, the quantum states of the control bit and the target bit after the gate cannot be considered separately: their states are not only non-classical values but also correlated with each other. Such a situation is called quantum superposition and entanglement \([1]\). Since the whole circuit should calculate a classical Boolean function, all of the final output quantum states should be again restored to simple classical values (i.e., \(|0\rangle\) or \(|1\rangle\)) if all the initial input quantum states of the circuit are simple classical values. The reverse operations of creating quantum superposition and entanglement seems to be the only method to restore to a simple classical value. Thus, it seems nonsense to consider non-SCQC circuits when we consider practical design methods of quantum circuits to calculate Boolean functions.

Important Note: The restriction of SCQCs means that we cannot make entanglement if all the initial input quantum states of an SCQC are just classical values. It is well-known that quantum computation without entanglement has no advantage over classical computation. However, this does not mean that SCQCs are meaningless by the following reason: As mentioned, an SCQC is used as a sub-circuit to calculate a Boolean function for some quantum algorithms. Thus, in the real situation where an SCQC is used as a sub-circuit, the inputs to the SCQC are not simple classical values, and so it indeed creates entanglement which should give us the advantage of quantum computation. In other words, the restriction of SCQCs in the definition is considered when we suppose the inputs of SCQCs are just classical values, which
is not a real situation where SCQCs are really used.
Therefore, SCQCs should be enough if we consider designing a quantum circuit to calculate a Boolean function from the practical point of view. Moreover, the restriction of SCQCs provides us an efficient method to analyze and verify quantum circuits as we will see in Sect. 3. That is our motivation to introduce the new concept in this paper.

2.3 Quantum Functions and Matrix Functions

Before introducing our new representation of the functionalities of SCQCs, we need the following definitions.

Definition 3: A quantum function with respect to Boolean variables \(x_1, x_2, \ldots, x_n \) is a mapping from \([0, 1]^n\) to qubit states.

See the third bit after the first gate in the circuit in Fig. 3 again. If the initial state of \([x_1, x_2]\) is \([0, 0]\), the resultant state of the third qubit becomes \(V^{-1} [0, 1] \). Thus, \(|qf_1(0, 1)\rangle = \) \(V^{-1} |0\rangle \) as shown in the table.

Note that a Boolean function can be seen as a special case of quantum functions. For example, the third column and the seventh columns in Table 1 show the truth tables for constant matrix functions, \(CM(I) \) and \(CM(R(\frac{\pi}{2})^n) \), respectively.

Definition 4: A matrix function with respect to Boolean variables \(x_1, x_2, \ldots, x_n \) is a mapping from \([0, 1]^n\) to \(2x2\) unitary matrices.

The fourth and the fifth columns of Table 1 show the matrix function \(mf_1 \) and \(mf_2 \) for the quantum function \(qf_1 \) and \(qf_2 \), respectively, in the same table. In this paper, we treat a matrix function whose output values are only \(I \) or \(NOT \) as a classical Boolean function by considering that \(NOT \) and \(I \) of the matrix function correspond to \(1 \) and \(0 \), respectively, of the Boolean function. In other words, we represent a Boolean function by a matrix function as a special case.

We define a special type of matrix function called constant matrix function as follows.

Definition 5: A matrix function \(mf(x_1, x_2, \ldots, x_n) \) is called a constant matrix function if \(mf(x_1, x_2, \ldots, x_n) \) are the same for all the assignments to \(x_1, x_2, \ldots, x_n \). \(CM(M) \) denotes a constant matrix function that always equals to the matrix \(M \).

The sixth and the seventh columns of Table 1 show the truth tables for constant matrix functions, \(CM(I) \) and \(CM(R(\frac{\pi}{2})^n) \), respectively.

By using the matrix function \(mf_1 \) in the fourth column of Table 1, we can easily see how the first gate in Fig. 3 transforms the third qubit to \(|\psi\rangle \); \(|\psi\rangle \) is transformed to \(mf_1(x_1, x_2) |\psi\rangle \). For example, when \(x_1 = 0, x_2 = 1 \), \(|\psi\rangle \) is transformed to \(V^{-1} |\psi\rangle \).

We would like to stress again the following point: The above means that the representation (and so the analysis) by matrix functions works even when the inputs are not classical. (If so, we may not be able to use an SCQC for a part of a quantum algorithm.)

For matrix functions, we introduce two operators \("\oplus\)" and \("\ast\), which are used to construct DDMFs for a quantum circuit in the following sections.

Definition 6: Let \(mf_1 \) and \(mf_2 \) be matrix functions with respect to \(x_1 \) to \(x_n \). Then \(mf_1 \oplus mf_2 \) is defined as a matrix function such that \(mf_1(x_1, \ldots, x_n) = mf_2(x_1, \ldots, x_n) \cdot mf_2(x_1, \ldots, x_n) \) where \(\cdot \) means normal matrix multiplication. Let also \(f \) be a Boolean function with respect to \(x_1 \) to \(x_n \). Then \(f \ast mf_2 \) is a matrix function which equals to \(mf_2(x_1, x_2, \ldots, x_n) \) when \(f(x_1, x_2, \ldots, x_n) = 1 \), and equals to \(I \) when \(f(x_1, x_2, \ldots, x_n) = 0 \).

Note that the operator \(\ast \) is defined as asymmetric, i.e., the first argument should be a Boolean function whereas the second argument can be any matrix function. This is due to the restriction of SCQCs such that the state of a control bit should be \(|1\rangle \) or \(|0\rangle \) (i.e., just classical value) whereas the state of a target bit can be any quantum state.

See examples in Table 2. Note that if both of \(mf_1 \) and \(mf_2 \) are considered to be Boolean functions like \(mf_2 \) in Table 1, the operator \(\oplus \) corresponds to the EXOR of the two Boolean functions. Note also that if \(mf_2 \) is essentially a
Boolean function like \(m_{f_2} \) in Table 1, the operator \(* \) corresponds to the AND of the two Boolean functions.

2.4 Decision Diagrams for Matrix Functions

A matrix function for a quantum function can be expressed efficiently by using an edge-valued binary decision diagram structure, which we call a DDMF whose definition is as follows:

Definition 7: A Decision Diagram for a Matrix Function (DDMF) is a directed acyclic graph with three types of nodes: (1) A single terminal node corresponding to the identity matrix \(I \), (2) a root node with an incoming edge having a weighted matrix \(M \), and (3) a set of non-terminal (internal) nodes.

Each internal and the root node are associated with a Boolean variable \(x_i \), and have two outgoing edges which are called 1-edge (solid line) leading to another node (the 1-child node) and 0-edge (dashed line) leading to another node (the 0-child node). Every edge has an associated matrix.

The matrix function represented by a node is defined recursively by the following three rules.

1. The matrix function represented by the terminal node is the constant matrix function \(C(M) \).
2. The matrix function represented by an internal node (or the root node) whose associated variable is \(x_i \) is defined as follows: \(x_i * (CM(M_1) \oplus m_{f_1}) \oplus \neg x_i * (CM(M_0) \oplus m_{f_0}) \), where \(m_{f_1} \) and \(m_{f_0} \) are the matrix functions represented by the 1-child node and the 0-child node, respectively, and \(M_1 \) and \(M_0 \) are the matrices of the 1-edge and the 0-edge, respectively. (See an illustration of this structure in Fig. 5.)
3. The root node has one incoming edge that has a matrix \(M \). Then the matrix function represented by the whole DDMF is \(CM(M) \oplus m_f \), where \(m_f \) is a matrix function represented by the root node.

[Diagram of an internal DDMF node]

Like conventional BDDs, we achieve the canonical form for a DDMF if we impose the following restriction on the matrices on all the edges.

Definition 8: A (DDMF) is canonical when

1. all the matrices on 0-edges are \(I \),
2. there are no redundant nodes: No node has 0-edge and 1-edge pointing to the same node with \(I \) as the 1-edge matrix, and
3. common sub-graphs are shared: There are no two identical sub-graphs.

Any DDMF can be converted to its canonical form by using the following transformation from the terminal node to the root node: Suppose the matrices on incoming edge, 0-edge and 1-edge of a node be \(M, M_0 \) and \(M_1 \), respectively. Then, if \(M_0 \) is not \(I \), we modify these three matrices as follows:

1. The matrix on the incoming edge is changed to be \(MM_0 \).
2. The matrix on the 1-edge is changed to be \(M_1 M_0^{-1} \).
3. The matrix on the 0-edge is changed to be \(I \). It is easily verified that this transformation does not change the matrix function represented by the DDMF.

[Diagram of conversion to the canonical form]

Note: The concepts of quantum functions and matrix functions may be used implicitly in the design method of [5], and the decision diagram structure is similar between DDMFs and the quantum decision diagrams used in [5]. However, the quantum decision diagrams in [5] are used to represent conventional Boolean functions whereas DDMFs are used for representing matrix functions: the terminal node of a DDMF is a matrix \(I \). Also a weight on an edge in DDMFs is generalized to any matrix. Thus, DDMFs can be considered as a generalization of quantum decision diagrams to treat matrix functions rather than Boolean functions.

We will use the same operators, \(\oplus \) and \(* \), for DDMFs as for matrix functions:

Definition 9: Let \(DDMF_{m_{f_1}}, DDMF_{m_{f_2}}, \) and \(DDMF_{m_{f_3}} \) be DDMFs that represent matrix functions \(m_{f_1}, m_{f_2} \) and \(m_{f_3} \), respectively. Then \(DDMF_{m_{f_1}} \oplus DDMF_{m_{f_2}} \) is defined as a DDMF that represents a matrix function \(m_{f_1} \oplus m_{f_2} \). Let also \(DDMF_{f} \) be a DDMF that represents a Boolean function \(f \). Then \(DDMF_{f} * DDMF_{m_{f_3}} \) is defined as a DDMF that represents a matrix function \(f * m_{f_3} \).

3. Verification of SCQCs by Using DDMFs

See two SCQCs in Fig. 7 and Fig. 8. It is easy to see that their functionalities are the same. However, the problem is how to verify the equality for much larger circuits. Thanks
to the introduction of DDMFs, we propose a method to verify the equality of given two n-qubit SCQCs in the following.

Step 1. We construct a DDMF to represent the matrix function that expresses the functionality for each qubit state at the end of each circuit.

Step 2. We compare two DDMFs for the corresponding qubits of the two circuits. The comparison of two DDMFs can be done in $O(1)$ time as in the case of BDDs.

Initial. For each input x_i, we construct a D_{x_i} as a DDMF for x_i. This is the DDMF for the matrix function (in fact, essentially a Boolean function) which is NOT when $x_i = 1$.

Construction of the DDMFs right after the j-th gate. From the first gate to the last gate, we construct D^{j}_{i} from D^{j-1}_{i} as follows. If the i-th bit is not the target bit of the j-th gate, $D^{j}_{i} = D^{j-1}_{i}$. If the i-th bit is the target bit of the j-th gate, $D^{j}_{i} = D^{j-1}_{i} \oplus D_{\text{gate}}$, where D_{gate} is constructed by the following two steps.

1. For the j-th gate, let us suppose that the positive control bits be the p_1, p_2, \cdots, p_k-th bits, and the negative control bits be the n_1, n_2, \cdots, n_l-th bits. Then, by the restriction of SCQCs, all the matrix functions $F(D^{j-1}_{p})$ for $m = p_1, p_2, \cdots, p_k, n_1, n_2, \cdots, n_l$ are essentially classical Boolean functions. (Therefore, in the following expression, we treat $F(D^{j-1}_{m})$ as Boolean functions, and perform logical operations on them.) Thus we can calculate a logical AND of them: $g = F(D^{j-1}_{p_1}) \cdot F(D^{j-1}_{p_2}) \cdots F(D^{j-1}_{p_k}) \cdot F(D^{j-1}_{n_1}) \cdots F(D^{j-1}_{n_l})$. Note that this Boolean function can be obtained by DDMF operations since a DDMF represents a Boolean function in a special case.

2. We construct $D_{\text{gate}} = (\text{DDMF for } g) \cdot (\text{DDMF for } CM(U))$, where U is a unitary matrix associated with the j-th gate.

Note that all the DDMF operations in the above should be performed efficiently by using Apply operations and operation and node hash tables as the conventional BDD operations [12].

We show an example of DDMFs for the quantum circuit as shown in Fig. 7. At the initialization step, we construct DDMFs for functions, x_1, x_2 and x_3, which are $D^{0}_{x_1}, D^{0}_{x_2}$ and $D^{0}_{x_3}$, respectively, as shown in Fig. 9. Then we construct the DDMFs for the quantum states right after the first gate. Since the target bit is the second bit for the first gate, $D^{1}_{x_1} = D^{0}_{x_1}$, and $D^{1}_{x_3} = D^{0}_{x_3}$. To construct $D^{2}_{x_2}$, we first calculate a Boolean function $g = F(D^{1}_{x_1}) \cdot F(D^{1}_{x_3}) = \bar{x}_1 \cdot \bar{x}_3$. This is because...
the first bit and the third bit are negative and positive controls, respectively. Then we construct $D_{\text{gate}} = (\text{DDMF for } y) \oplus (\text{DDMF for } CM(V))$, whose matrix function is shown in Table 3. Finally, we construct $D^I = D^I \oplus D_{\text{gate}}$ whose matrix function is as shown in Table 4. The constructed DDMFs after the first gate are shown in Fig. 10.

4. Comparison with the Previous Methods

In this section we compare our method with the previous methods to show the advantage of our method.

4.1 Verification Method Based on Previous Techniques

A gate (or a circuit) of n qubits can be described by a $2^n \times 2^n$ unitary matrix. For example, the unitary matrix that expresses the functionality of the last gate in Fig. 4 can be shown as in Fig. 11. (We will explain this briefly in Appendix.)

Since the same structure (sub-matrices) are often repeated in such a $2^n \times 2^n$ unitary matrices (like Fig. 11), data compression schemes based on decision diagram structures have been proposed: QuIDDs [14] based on multi-terminal binary decision diagrams, and QMDDs [15] based on multiple-valued decision diagrams (MTBDDs) [16]. Here we explain how the data compression works for QuIDDs.

QMDDs have a slightly different approach: They use multi-valued logic instead of binary logic, and the strategy of selecting decision variables is a bit different. However, it should be noted that the two approaches are essentially the same when (1) the target circuit is binary logic (0 or 1) valued (which is our case), and (2) the variable ordering is appropriately chosen for QuIDDs (as explained below).

A QuIDD for the matrix in Fig. 11 can be constructed as shown in Fig. 12. In a QuIDD representing a matrix, we have decision variables to specify rows (R_0, R_1, R_2) and columns (C_0, C_1, C_2) of the matrix as shown in Fig. 11. For example, the variable assignment to $R_0 = 0, R_1 = 1, R_2 = 1, C_0 = 0, C_1 = 0, C_2 = 1$) leads to the fourth row and the second column element, $\frac{1+i}{2}$. We can construct a binary decision diagram where each variable assignment corresponds to one element of the matrix as shown in Fig. 12. If there are some repeated structures in a matrix, this diagram can reduce the necessary memory space to store the matrix information.

It is known that interleaving the row and the column variables (i.e., the order of $R_0, C_0, R_1, C_1, \cdots$) would be a good variable order [17]. In such a case, the variable order becomes the same as in the case of QMDDs. In this paper, we also consider such a variable order.

As the conventional decision diagrams, we can implement any operations (such as addition and multiplication) between two QuIDDs based on Apply operations and operation and node hash tables. Usually, QuIDDs can reduce the necessary memory, and the necessary computational time for matrix operations for quantum circuit simulations [14].

4.2 Advantages of the Proposed Approach

First we compare the number of nodes to represent the functionality of a single gate between DDMFs and QuIDDs. Let us use the last gate in Fig. 4 for our explanation. As explained before, the QuIDD shown in Fig. 12 represents the matrix corresponding to the gate. A DDMF for the same purpose can be shown as in Fig. 13. In the DDMF, V is attached on the path corresponding to the variable assignment $x_1 = 0, x_3 = 1$. This is because the gate applies V only when $x_1 = 0, x_3 = 1$.

From the two figures, DDMFs seem to be better than QuIDDs. However, this is a bit unfair because the DDMF...
Although there still seems to be a big difference between the two diagrams in Figs. 13 and 14, the essential difference is only a constant factor since we can decrease the number of nodes of the QuIDD in Fig. 14 if we consider the following two issues.

(1) If we choose the appropriate variable ordering of \((R_i, C_i)\) as described above, the corresponding matrix can be considered as one such that there are only \(2 \times 2\) matrices on the diagonal. (Again we omit the explanation.) Thus, for each group of nodes, \((R_i, C_i)\), which is not on the bottom (e.g., \(G_1, G_2, G_3\) in Fig. 14), the two paths corresponding to \((R_i = 1, C_i = 0)\) and \((R_i = 0, C_i = 1)\) always go to 0 terminal node. (This is because the matrix is a diagonal matrix, and thus the elements in the right upper and the left lower parts of the matrix are all 0.) Thus, we can essentially omit such paths, and then only two paths are essentially necessary for the group of nodes, which means that we can replace each group of nodes by one node. (Of course, to do so, we need more operations than the standard QuIDD operations.)

(2) If we note that the terminal nodes of a DDMF are \(2 \times 2\) matrices (which has 4 elements), the last group of nodes \((G_4\) and \(G_5\) in Fig. 14) should not be counted for the fair comparison.

To sum up, in this example, \(G_2, G_4\) and \(G_5\) should not be counted since each group leads to only the elements of a single \(2 \times 2\) matrix (\(I\) or \(V\)), and each of \(G_1\) and \(G_3\) should be considered as one node; thus there is no essential difference between the two diagrams. Of course, it is apparent that DDMFs are much more straightforward and easy to implement (hence should be faster) than QuIDD based approaches for our purpose. However, the above discussion makes it clear that there is only a constant factor difference.

Nevertheless, there is a good reason for us to introduce DDMFs: If we consider the verification of the two quantum circuits, the difference may become exponential in some cases, which will be explained below.

As mentioned in Sect. 3, when we construct \(D^i\) from the previous step, we always implicitly choose the appropriate variable order. We implicitly put the target bit (the \(i\)-th bit) on the bottom (more precisely, we ignore the target bit) when we calculate \(D^i\). On the other hand, we cannot choose an appropriate variable ordering for the QuIDD approach since the verification by QuIDDs are performed as follows: We can verify the equality of the two quantum circuits by comparing the two QuIDDs representing the two quantum circuits. To construct the QuIDD for a circuit, we simply multiply matrices corresponding to gates in the circuit from the left to the right. This can be done by representing each matrix into a QuIDD. For the first gate, we can choose the appropriate variable order. However, if the target bits are different between the first and the second gates, we cannot choose the appropriate variable ordering when we construct the QuIDD for the second gate. This is because the same variable order should be applied for the two QuIDDs when we perform the multiplication. Thus, at least one of the QuIDDs may become much larger compared to the DDMF approach.

Another important observation is that the resultant QuIDD after the multiplication may be larger than the corresponding DDMF approach by the following reason. We construct each DDMF for each qubit, and thus we can implicitly choose the best variable order (i.e., putting the target bit to the bottom) for each qubit. This can be done because of the restriction of SCQCs. On the other hand, unitary matrix based approaches (such as QuIDD and QMDD based verifications) do not assume such a restriction, and thus they do not treat each qubit separately. Accordingly, they represent the functionalities for all qubits at the same time as one unitary matrix corresponding to a part of quantum circuit. Therefore, we cannot choose a nice variable order if the appropriate variable order differs for different qubits. (This occurs when we multiply several matrices corresponding to quantum gates with different target bits.) Thus, in the worst case, QuIDDs become much larger than DDMFs during the verification procedures. It is obvious that the necessary memory and the necessary time for Apply operations become smaller if the number of nodes becomes smaller. Thus it is apparent that our approach is much more efficient than previous approaches for the purpose of the verification of SCQCs.

It should be noted that there is also an apparent advantage of DDMFs in terms of operation and node hash tables as follows. The variables for DDMFs during the verification is always the inputs of the circuits (i.e., \(x_1\) to \(x_n\)). In other words, we always represent matrix functions with respect to the inputs of the circuits. Thus we are always working on the input variables of the circuits. On the other hand, the
variables for QuIDDs differs depending on the gates. More precisely, a unitary matrix corresponding to a gate (or a part of the circuit) represents a relation between the inputs of the gate (or the part of the circuit) and the outputs of that. That is, the variables for a QuIDD are always local: The meaning of variables \(R_i \) and \(C_i \) for a QuIDD changes during the matrix multiplication. (Even though we work on the same variables \(R_i \) and \(C_i \), the logical meaning of the variables changes depending on the corresponding quantum gates.) This apparently makes it difficult to share the previously computed results in the hash tables. Thus, it is apparent that hash tables work much better for DDMFs.

The above discussion reveals why our verification method based on DDMFs should work more efficiently than the previous approaches.

We have implemented a DDMF library by C++, and performed a preliminary experiment. Unfortunately, there is no large SCQC benchmark, and thus we randomly generated SCQCs and constructed DDMFs for the generated circuits. Then the average (of 10 trials) of the total number of used nodes and the CPU time (on a Linux system running at 3.0 GHz with 256 MB memory) for various settings (i.e., the numbers of inputs and the gates) are reported in Table 5. From the table, we can expect our verification method should work for quantum circuits of practical size.

<table>
<thead>
<tr>
<th># variables</th>
<th># gates</th>
<th># nodes</th>
<th>time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100</td>
<td>418</td>
<td>0.0050</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td>2509</td>
<td>0.035</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
<td>16681</td>
<td>16.23</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>1568</td>
<td>0.017</td>
</tr>
<tr>
<td>60</td>
<td>200</td>
<td>12984</td>
<td>10.7664</td>
</tr>
<tr>
<td>60</td>
<td>400</td>
<td>24681</td>
<td>99.58</td>
</tr>
</tbody>
</table>

5. Conclusions and Future Work

In this paper, we introduced new concepts: SCQCs together with DDMFs. As described, they should be useful for the analysis and the verification of quantum circuits with a practical restriction. It should be noted that DDMFs are provably useful even for quantum circuit design methods since DDMFs can be considered as a generalization of the data structure used in the design method in [5].

We also revealed the essential difference between DDMFs and QuIDDs for representing the functionalities of SCQCs. From our comparison, we can conclude that our approach is much more efficient for the verification of SCQCs than a method based on known techniques. Note that this does not mean that DDMFs are better than QuIDDs: DDMFs are only for SCQCs, whereas QuIDDs can treat all kinds of quantum circuits. In other words, in some sense, our approach stands in the middle of classical Boolean functions (BDDs) and general quantum circuit specifications (QuIDDs or QMDDs). As described, this standpoint can be considered as a good trade-off point if we consider designing and analyzing quantum circuits from the practical view point, i.e., when we focus on sub-circuits to calculate Boolean functions for quantum algorithms. Lastly we would like to add one more issue: Since DDMFs are edge-valued decision diagrams, it may be easier to verify *quantum phase-equivalence checking* of SCQCs by DDMFs than the method based on QuIDDs [11]. Thus, we consider that it is an interesting future work to study how efficiently DDMFs work for *quantum phase-equivalence checking* of SCQCs.

In conclusion, we can expect the introduction of SCQCs and DDMFs would promote research toward practical and efficient quantum circuit design methodologies.

References

Appendix: A Unitary Matrix for a 3-Input Quantum Gate

As mentioned in Sect. 2.1, one qubit state can be described as a 2-dimensional vector. If we consider the quantum state of n qubits, the state can be described as a 2^n-dimensional vector. For example, if we consider three qubits, $|x_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$, $|x_2\rangle = \alpha_2|0\rangle + \beta_2|1\rangle$ and $|x_3\rangle = \alpha_3|0\rangle + \beta_3|1\rangle$, at the same time, the entire state of the three qubits can be described as an 8-dimensional vector $\begin{pmatrix} \alpha_1 \alpha_2 \alpha_3 \\ \alpha_1 \alpha_2 \beta_3 \\ \alpha_1 \beta_2 \alpha_3 \\ \alpha_1 \beta_2 \beta_3 \\ \beta_1 \alpha_2 \alpha_3 \\ \beta_1 \alpha_2 \beta_3 \\ \beta_1 \beta_2 \alpha_3 \\ \beta_1 \beta_2 \beta_3 \end{pmatrix}$.

For example, the first element $\alpha_1 \alpha_2 \alpha_3$ and the second element $\alpha_1 \alpha_2 \beta_3$ correspond to the basis state $|x_1\rangle|x_2\rangle|x_3\rangle = |0\rangle|0\rangle|0\rangle$ and $|0\rangle|0\rangle|1\rangle$, respectively. This vector can be obtained from the tensor product of the three 2-dimensional vectors corresponding to $|x_1\rangle$, $|x_2\rangle$ and $|x_3\rangle$. See more details in a standard text such as [1].

Thus, an operation to n qubits at the same time can be described by a $2^n \times 2^n$ unitary matrix. For example, the matrix in Fig. 11 shows the unitary matrix that describes the operation by the last gate in Fig. 4. The second and the fourth rows (and columns) correspond to $|0\rangle|0\rangle|1\rangle$ and $|0\rangle|1\rangle|1\rangle$, respectively, and thus we can see that this operation outputs the state $(\frac{1}{\sqrt{2}}|0\rangle|0\rangle|1\rangle + \frac{1}{\sqrt{2}}|0\rangle|1\rangle|1\rangle)$ if the input state is $|0\rangle|0\rangle|1\rangle$. This corresponds to the fact that the controlled-V gate applies V to $|x_2\rangle$ (i.e., $|x_2\rangle = |0\rangle$ is changed to $V|0\rangle = (\frac{1+i}{2})(|0\rangle + \frac{1+1}{2}|1\rangle)$) when $|x_1\rangle|x_3\rangle = |0\rangle|1\rangle$. Therefore, we can see that this matrix indeed expresses the functionality of the last gate in Fig. 4.