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Crack bridging law in discontinuous fiber reinforced composites under cyclic loading
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This paper presents the micromechanical modeling of fiber bridging constitutive law of a
discontinuous fiber reinforced composite (DFRC) under cyclic loading. Fiist, the derivation

of fiber bridging constitutive law under monotonic loading is briefly reviewed to highlight the

approach to obtain the bridging stress carried by randomly distributed discontinuous fibers.

Second, the relation between single fiber pa-out/push-in load amplitude and crack opening
displacement amplitude under cyclic loading is derived. Third, fiber bridging constitutive

law under cyclic loading is derived and obtained in two ways: numerically and analytically.

Finally, the fiber bridging constitutive law is compared with experimental data of a cyclically
loaded fiber reinforced concrete (FRC), and its validity is shown.
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1. Introduction

Short fiber reinforced cement based composites are recently

finding more applications in civil engineering. These

composites exhibit superior performance in strength, ductility,
and fracture toughness, when compared to conventional

cementitious materials, such as mortar and concrete. These
beneficial properties are exhibited due to bridging fibers that

transfer stresses over cracks and resist against cracks' opening.

It is known that fiber bridging constitutive law, which is the

relation between bridging stress and crack opening displacement,

is specific to a composite mix design, and that it governs the

composite post crack behaviors1)2). Therefore, the

understanding of fiber bridging constitutive law is essential for

developing a high performance composite that satisfies structural

perfoimance requirements.
Some of these composites' applications expect improved

long-term durabilities for structures that are subjected to fatigue

under traffic loading or environmental loading. Long-term

durabilities can be improved with the composites' high fatigue

strength, high crack resistance, and crack width control ability.

For each of these properties, the understanding of fiber bridging

constitutive law is again necessaiy. Here, in addition to the law

under monotonic loading, the law under cyclic loading is

required.

However, the fiber bridging constitutive law under cyclic

loading has not been made available. This forces the use of fiber

bridging constitutive law under monotonic loading to understand

indirectly composite properties and structural performances under

cyclic loading. It is necessary to develop fiber bridging

constitutive law to properly treat problems under cyclic loading.

Also, the fiber bridging constitutive law under cyclic loading

should be based on the micromechanics of fiber bridging, being

an explicit function of micromechanical parameters such as fiber

length, fiber diameter, fiber modulus, fiber-matrix interfacial

frictional bond strength, and so on. This is because such a

micromechanics based bridging law yields understandings of

mechanisms and implications of developments in an efficient

way.

This paper presents the derivation of fiber bridging

constitutive law of a discontinuous fiber reinforced composite

(DFRC) under cyclic loading and shows the validity of the law.

In chapter 2, the derivation of fiber bridging constitutive law

under monotonic loading (ƒÂf-ƒÂrelation) is briefly reviewed to

highlight the approach to obtain the bridging stress canied by

randomly distributed discontinuous fibers. In chapter 3, the

relation between single fiber pull-out/push-in load amplitude and

crack opening displacement amplitude under cyclic loading (ƒ¢P-

ƒ¢ƒÂrelation) is derived. In chapter 4, fiber bridging constitutive

law under cyclic loading (ƒ¢ƒÂf-ƒ¢ƒÂrelation) is obtained in two
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ways: numerically and analytically. Finally, in chapter 5, the

theoretical ƒ¢ƒÂf-ƒ¢ƒÂrelation is compared with experimental data

of a cyclically loaded fiber reinforced concrete (FRC), in order to

show its validity.

2. Review on Fiber Bridging Constitutive Law under

Monotonic Loading

The essence of a monotonic fiber bridging constitutive law

derived by Li is explained in this section1). The constitutive law

relates the fiber bridging stress, ƒÂf, as a unique function of the

crack opening displacement, ƒÂ under monotonic loading. The

ƒÂf(ƒÂ) has been derived based on micromechanical modeling of

fiber bridging with weak (friction controlled) fiber-matrix

interface. The derivation starts from constructing the relation

between the fiber pull-out load, P, and the crack opening

displacement ƒÂ of a single fiber embedded in the matrix. Then

the pull-out load carried by individual fibers is integrated to

construct the monotonic fiber bridging constitutive law, ƒÂf(ƒÂ).

2.1. Single Fiber Behavior under Monotonic Loading 

The P-ƒÂ relation is given for two stages: debonding and

sliding. The fiber pull-out behavior is summarized in the

following. During debonding stage, when a single fiber

embedded in the matrix is loaded for pull-out, the fiber-matrix

interface undergoes debonding which extends the friction

activated interfacial zone towards the embedded end of the fiber.

During sliding stage, after the debonding reaches the embedded

end of the embedment length, l, that is the shorter of the two on

both sides of the matrix crack, the entire fiber starts sliding out of

the matrix (Fig. 1).

Two assumptions are made for the derivation of the P-ƒÂ

relation by Li1). First, an elastic fiber is assumed to be

embedded in a stiff matrix. This is correct when fiber volume

fraction is low and when there is a moderate contrast between

fiber and matrix elastic modulus. Second, the axial strain of the

Fig. 1 Fiber centroidal distance, z, and orientation, ƒÓ.

fiber is linearized by assuming that (l/df)/(Ef/ƒÑ)•ƒ•ƒ1, where df=

fiber diameter, Ef=fiber modulus, ƒÑ=interfacial frictional bond

strength. This is reasonable, when (Ef/ƒÑ) is two to three orders

of magnitude larger than (l/df). These two assumptions are

reasonable for fiber reinforced cementitious materials, and the

error incurred with the assumptions is reported to be less than

1%. In the first stage during debonding, the crack opening

displacement is given by stretching of the debonded portion of

the embedded fiber, and the pull-out load increases with the crack

opening displacement due to the extending debonded interface

area. The P-ƒÂrelation is given by

(1)

where ƒÂ0= (4ƒÑl)/(Efdf) is the crack opening displacement at

which debonding is completed throughout the embedment

length.

In the second stage during sliding of the fully debonded fiber,

the load decreases with the displacement, because the frictional

interface area decreases due to the sliding-out of the fiber. The P

-ƒÂrelation is given by

(2)

The whole picture of the load-displacement relation (P-ƒÂ

relation) for a single fiber with its embedment length, 1, is shown

in Fig. 2.

2.2. Fiber Bridging Constitutive Law under Monotonic

Loading

The constitutive law is then obtained by integrating the load

carried by individual bridging fibers. The integration accounts

Tension

Compression

Crack Opening Displacement, ƒÂ

Fig. 2 Single fiber loading-unloading curves with corresponding

equations (insert for complete curves)3).
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for the random distribution of location and orientation of short

fibers at a designated crack plane. With the assumption of 3-D

uniform randomness for the fiber centroidal distance, z, and

orientation, ƒÓ, at a designated crack plane (Fig. 1), Li derived the

constitutive law for DFRCs1). The bridging stress, ƒÐf, is related

to the crack opening displacement, ƒÐ through the integration of

the load carried by individual bridging fibers at different stages of

debonding and sliding:

(3)

where ƒÐf=ƒÐf/ƒÐ0,ƒÐ0=VfƒÑ(Lf/df)/2, Vf=fiber volume

fraction, Lf=fiber length, f=snubbing coefficient, p(ƒÓ)=sinƒÓ,

p(z)=2/Lf. The factor efƒÓ in (3) refers to a snubbing effect

which describes the mechanical interactions between a loaded

inclined fiber and the matrix materid3).

Substituting (1) and (2) into (3) yields explicit equations for

the constitutive law. For pre-peak bridging stress,

(4)

where g=2/(4+f2)(1+eƒÎf/2),ƒÂ=ƒÂ/(Lf/2), and ƒÂ*=ƒÂ*/

(Lf/2). ƒÂ* corresponds to the maximum value of ƒÂ0 with l=Lf

/2, at which all fibers have completed debonding. For

post- bridging stress,

(5)

The whole picture of the bridging stress-crack opening

displacement relation (ƒÐf- ƒÂrelation) for a composite with ƒÂ*=

0.002 is shown in Fig. 3 and 4.

3. Single Fiber Behavior under Cyclic Loading

The cyclic fiber bridging constitutive law can be developed

based on the micromechanics of fiber bridging under cyclic

loading in a similar fashion as the monotonic constitutive law.

The constitutive law relates the fiber bridging stress amplitude,

ƒ¢ƒÐf, as a unique function of the crack opening displacement

amplitude, ƒ¢ƒÂ, under cyclic loading. The development of the

cyclic fiber bridging constitutive law will start again from

constructing the relation between the pull-out/push-in load

amplitude, ƒ¢P, and the crack opening displacement amplitude,

ƒ¢ƒÂ, of a single fiber embedded in the matrix. Then the

pull-out/push-in load amplitude carried by individual fibers is

integrated to construct the cyclic fiber bridging constitutive law,

ƒ¢ƒÐf(ƒ¢ƒÂ).

Fig. 3 Loading-unloading curves for pre-peak bridging stress3).

Fig. 4 Loading-unloading curves for post-peak bridging stress3).

3.1. Derivation of ƒ¢P-ƒ¢ƒÂ Relation

The ƒ¢P-ƒ¢ƒÂ relation of a single fiber can be derived as

follows. In the case of a single fiber, the opening displacement

change, ƒ¢ƒÂ, between the crack planes is attributed to stretching,

unstretching, and contracting of the fiber on both sides of the

crack line, i.e. the axial strain change of the fiber before and after

unloading5). When a single fiber is loaded up to a certain load

level, Pmax, for pull-out and is unloaded to a lower load level, Pmin

(ƒ¢P=Pmax-Pmin), the crack opening displacement change, ƒ¢ƒÂ, is

given by

(6)

where ƒÃmax(x)=axial strain in the fiber at Pmax,ƒÃmin(x)=axial

strain in the fiber at Pmin, and x is measured from the shorter

embedded end of the fiber. The axial strain of the fiber, ƒÃ(x),

can be obtained by

(7)
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where F(x)=axial force in the fiber. Equilibrium in the

direction of fiber axis requires the applied pull-out load, P, be

balanced with the sum of interfacial frictional bond strength.

Two assumptions are made for the interfacial frictional bond

strength: the interfacial fictional bond strength is constant over

all the debonded fiber-matrix interface and unloading creates a

zone where the interfacial frictional bond strength acts in the

reversed direction to resist moving-in of the fiber. With these

assumptions, the equilibrium gives a piecewise linear profile for

F(x) and also for ƒÃ(x) (movement of the crack surfaces relative to

the fiber is assumed to have little effect on the crack opening

displacement change).

Fibers are divided into the two groups as in monotonic

loading: debonding and sliding. Namely, fibers are in

debonding process for those with long embedment length and in

sliding process for those with short embedment length in the

preceding loading for pull-out. The fiber axial shin arises in the

debonded portion inside the matrix and the exposed portion

between the crack surfaces, and it equals to zero in the

undebonded region. Thus the integration in (6) can be canied out

only for the debonded and exposed portion of the fiber. The

details of derivation are shown elsewhere3). See also Appendix

1.

For fibers that have been in debonding stage under the

preceding pull-out loading, we have

(8)

and for fibers that have been in sliding stage under the preceding

pull-out loading,

(9)

where P0=ƒÎƒÑdfl.

These two equations (8) and (9) also hold for push-in loading

(Pmin•…0). However, for fibers in sliding stage, the crack

opening displacement due to the sliding-out induced by the

preceding pull-out loading is by orders larger than the crack

opening displacement change due to the axial strain change (6).

Full crack closure is attained by sliding-in of the entire fiber

which follows unstretching and contacting of the fiber (9). The

sliding-in takes place at Pmin=-Pmax at which the interfacial zone

with the reversed frictional bond strength reaches the embedded

end of the fiber. For further push-in loading from -Pmax to -P0, at

which the retrieval of the fiber into the matrix is completed, we

have

(10)

During the sliding-in, the crack opening displacement change,

ƒ¢ƒÂ, is attributed to the sliding-in displacement which is

represented by the first term of (10).

The single fiber unloading branches represented by (8)-(10)

are illustrated in Fig. 2. Note that P=Pmax-ƒ¢P and ƒÂ=ƒÂmax-

ƒ¢ƒÂ, given the starting point for unloading (ƒÂmax, Pmax).

4. Fiber Bricking Constitutive Law under Cyclic Loading

4.1. Numerical Solution

The fiber bridging constitutive law under cyclic loading, ƒ¢ƒÂf 

(ƒ¢ƒÂ), that relates the fiber bridging stress amplitude, ƒ¢ƒÂf, and the

crack opening displacement amplitude, ƒ¢ƒÂ can be obtained in the

same manner as in monotonic loading, allowing for the random

distribution of fiber location and orientation at a designated crack

plane. The fiber bridging constitutive law is obtained by

(11)

where ƒ¢ƒÂf=ƒ¢ƒÂf/ƒÂ0. (8)-(10) are substituted into ƒ¢P(ƒ¢ƒÂ)in

(11). ƒ¢ƒÂf is divided into two terms of bridging stress

amplitude can-ied by fibers that have been in debonding and

sliding under the preceding monotonic loading:

(12)

The first tam for fibers that have been in debonding stage

can be obtained with the use of (8). Replacing z/(Lf/2) with

z', the integration leads to

(13)

(14)

where z0=1-•@ , ƒ¢ƒÂ=ƒ¢ƒÂ/(Lf/2), and ƒÂmax=

ƒÂmax/(Lf/2).
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 Similarly the second term for fibers that have been in sliding

stage can be obtained with the use of (9) and (10):

(15)

where

(16)

The second term is obtained by numerical integration while

choosing the smaller of ƒ¢P2 and ƒ¢P3 numerically.

The resulting unloading curves of the bridging stress-crack

opening displacement relation are shown in Fig. 3 and 4 together

with the curve of the monotonic constitutive law . Note that

ƒÂf=ƒÂf
max-ƒ¢ƒÂf and ƒÂ=ƒÂmax-ƒ¢ƒÂ, given the starting

point for unloading (ƒ¢max, ƒÂfmax). Fig. 3 for the pre-peak part

shows that some remaining crack opening displacement exists

even after full unloading to zero and that further compressive

loading is required to attain full crack closure. Fig . 4 for the

post-peak part shows that the crack opening displacement change

is given initially by unstretching and contracting of the fibers
,

followed by sliding-in of the fibers.

Examinations of a crack after tests needs the analysis of

cyclic fiber bridging behavior, especially for crack width

measurement. A crack tends to close, when the fiber bridging

stress is decreased upon overall unloading of a cracked fiber

composite, but the crack usually has some remaining opening

displacement due to the incomplete retrieval of the bridging fibers

into the matrix, thus the crack being visible. The theoretical

results qualitatively confirm the typical behavior of DFRCs under

cyclic loading.

4.2. Approximate Analytical Solution

The numerical evaluation of the cyclic fiber bridging

constitutive law is time-consuming, particularly when the

constitutive law is implemented into a numerical code which

solves a fatigue crack growth problem via iterations6)7)8). The

constitutive law is obtained also in an analytical form by

approximating the ƒ¢P-ƒ¢ƒÂrelation.

For fibers that have been in debonding stage under the

preceding pull-out loading, we have the same ƒ¢P-ƒ¢ƒÂrelation:

(17)

and for fibers that have been in sliding stage under the preceding

pull-out loading, we assume that the ƒ¢P-ƒ¢ƒÂrelation is the same

as that for fibers that have been in debonding. Namely, the

fibers undergo unstretching and contracting according to

(18)

Furthermore, when these fibers slide back into the matrix

after unstretching and contracting, we assume that the ƒ¢P-ƒ¢ƒÂ

relation is given by

(19)

where Pmax=ƒÎƒÑdf(l-ƒÂmax). This approximation is based on a

physical assumption that the fiber strain change between the

crack surfaces does not contribute to the crack opening

displacement change, ƒ¢ƒÂ, while the fiber strain change in the

debonded region inside the matrix does.

The constitutive law derived with the approximate ƒ¢P-ƒ¢ƒÂ

relation can be represented by analytical equations, and details

can be found in Appendix 2. The resulting constitutive law, ƒ¢ƒÂf

(ƒ¢ƒÂ), is given in a normalized form by

(20)

For pre-peak part, we have

(21)

For post-peak part, there are two stages. When only some

fibers are in sliding back into matrix and other fibers are in

unstretching and contracting (ƒÀ•…ƒÀ0), the constitutive law is the

samc as that of the prc-pcak part and is given by

(22)

where ƒÀ=ƒ¢ƒÂ/ƒÂma x and
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(23)

 When all fibers are in sliding back into matrix (ƒÀ0<ƒÀ), the

constitutive law is given by

(24)

This approximate constitutive law is compared with the

numerical one of the previous section. Two fiber types

(polyethylene and polypropylene fiber) are examined for various

values of the crack opening displacement at maximum load level,

ƒÂmax, and the crack opening displacement amplitude, ƒ¢ƒÂ. The

relation between bridging stress and crack opening displacement

is shown in Fig. 5 and Fig. 6 in a normalized form, where ƒ¿=
ƒÂmax/ƒÂ* 

and ƒÀ=ƒ¢ƒÂ/ƒÂmax. The fiber composite system

parameter, ƒÂ*=(2ƒÑLf)/(Efdf), is 0.0028 for polyethylene (ƒÑ=

0.5 MPa, Lf=12.7mm, Ef=120 GPa, and df=38um) and 0.033

for polypropylene (ƒÑ=0.8 MPa, Lf=12mm, Ef=12 GPa, and df

=48um) . The normalized bridging stress, ƒ¢ƒÂf/ƒÂ0, in Fig. 5

and Fig. 6 takes the maximum value at ƒ¿=ƒ¿0 which gives ƒÀ0=1

in (23). ƒ¿0 is 1.98 for polyethylene, and 1.87 for polypropylene.

The main difference between the two fiber types is the elastic

modulus, namely the elastic modulus of polyethylene is one order

stiffer than that of polypropylene.

The difference between the analytical solution and the

numerical one is negligible for polyethylene fiber, while the

difference is noticeable for polypropylene fiber especially for the

cases of large ƒ¿'s. This is because of the lower elastic modulus

of polypropylene fiber. Lower elastic modulus contributes more

to crack opening displacement change via axial fiber strain

change between crack surfaces, but this contribution is ignored

according to the aforementioned assumption. Therefore, the

stiffer polyethylene fiber shows negligible difference, while the

more compliant polypropylene shows a noticeable difference,

especially for large crack opening displacement cases (large ƒ¿'s)

where more portion of fibers are exposed between crack surfaces.

However, even in the case of polypropylene fiber, the

difference is not significant for small ƒ¿'s which are usually

experienced in fatigue crack growth computations, and, of course,

the approximate solution can replace the numerical one in the

case of polyethylene fiber.

5. Validation of the Cyclic Fiber Bridging Constitutive Law

The theoretical cyclic bridging constitutive law derived in the

previous section is compared with experimental data of uniaxial

Fig. 5 Comparison between numerical and analytical solution

(polyethylene fiber ƒÂ*=0.0028).

Fig. 6 Comparison between numerical and analytical solution

(polypropylene fiber ƒÂ*=0.033)
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cyclic response of an FRC which is reported by Zhang et a19).

The comparison shows a good agreement, supporting the validity

of the theoretical cyclic bridging constitutive law.

The cyclic loading test of an FRC is briefly summarized here.

The tested FRC contains coarse aggregates of 8mm maximum

and is reinforced with 1 vol.% of smooth steel fiber (see Table 1

for fiber parameters). The FRC specimen has dimensions of

height 55mm, width 60mm, and thickness 50mm, and its two

sides have a notch of 9mm depth and 3mm width. The

specimen was loaded in uniaxial tensile load and unloaded at

eight preset displacement values: 0.01, 0.03, 0.05, 0.1, 0.2, 0.3,

0.4, and 0.5mm. Deformation over the notch of each side was

measured by extensometers with the gauge length of 12.5mm.

Fig. 7 shows the measured relation between the applied stress and

the gauge displacement under the aforementioned loading

sequence. In the experimental measurement steep hysteresis

loops with some remaining displacement at zero load level are

observed, therefore the crack does not close even after full

unloading. This is a common observation in the cyclic response

 of FRCs10). The width of hysteresis loops changes from one to

another, and it is the widest for the unloading-reloading branch

from 0.2mm.

From this particular plot, the tensile strength is 4.1 MPa, and

the composite modulus is 7.3 GPa, while they are reported to be

5.42 MPa and 35 GPa based on direct tensile and compressive

tests respectively. The measured composite modulus of 73

GPa is apparently very low, and this is due to the notches made

on the sides of the specimen. Also lower modulus in tension

than compression in fiber reinforced cementitious materials has

been measured11). In this comparison, the composite modulus

Table 1 Fiber parameters9).

Fig. 7 Experimental curve of cyclic response9) and theoretical

curves of cyclic response of a steel FRC.

of 7.3 GPa is used throughout for an input parameter to

theoretical constitutive laws, including unloading and reloading

branches in the cyclic response of the FRC (see Table 2 for

matrix parameters).

Crack bridging stress of the FRC has to be evaluated, since it

is assumed that the FRC is deformed elastically up to the peak,

then it is cracked at the peak, thus activating bridging stress across

the crack. Crack bridging stress of the FRC is exerted by

aggregates and fibers, and it is assumed that the crack bridging

stress is obtained by the superposition of these two bridging

stresses. The aggregate bridging stress under monotonic loading

is given by an empirical equation proposed by Stine. The

aggregate bridging stress, ƒÂm, as a function of the crack opening

displacement, ƒÂ is given by

(25)

where ƒÂum=maximum aggregate bridging stress at ƒÂ=0, ƒÂm0=

crack opening displacement which corresponds to the half of

ƒÂum, and p describes the shape of the bridging curve. The

aggregate bridging stress under cyclic loading is given by

(26)

where (ƒÂmax,ƒÂmmax) is the point at which unloading occurs and

(ƒÂmin, 0) is the point at which the FRC is fully unloaded to zero

load level. These two points are taken from the experimental

plot for each unloading-reloading branch. The fiber bridging

stress under monotonic loading is obtained with (4) and (5), while

that under cyclic loading is obtained with (21), (22), and (24).

Theoretical relation between tensile stress and displacement

for the FRC can be obtained as follows. The theoretical curves

are obtained in the following three regions: up to the peak stress,

after the peak stress, and in the hysteresis loops. First, in the

region up to the peak stress, the displacement is attributed to the

elastic deformation within the gauge length, since no crack is

assumed before the peak stress is reached. The composite

modulus of 7.3 GPa that is obtained from the plot and the gauge

length are used to calculate the response of the FRC. Second, in

the region after the peak stress, a crack is assumed to be formed

and bridged by aggregates and fibers. Therefore, the

Table 2 Matrix Darameters9).
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displacement is attributed to both of elastic deformation and crack

opening displacement within the gauge. The crack bridging

stress decreases, as the crack opens up, and accordingly the

elastic deformation within the gauge length decreases In the

fiber bridging stress, slip softening relation at the fiber-matrix

interface under monotonic loading is assumed. The relation is

given by

(27)

where ƒÑ0=initial bond strength and al, ƒ¿2=coefficient, and it

accounts for fictional wearing at the interface. Also the

Cook-Gordon effect is included13)14). Third, in the hysteresis

loops, the displacement change is attributed still to both of elastic

deformation and crack opening displacement within the gauge

length, but the unloading and reloading of aggregates and fibers

follow the cyclic bridging constitutive laws shown above.

Unloading and reloading of aggregate bridging show the linear

elastic response as described in (26). Unloading path of fiber

bridging is determined by subtracting the changes (ƒ¢ƒÂ, ƒ¢ƒÂf) from

the coordinates at which unloading take place (ƒÂmax,ƒÂf), and

reloading path is determined by adding the changes to the

coordinates at which reloading takes place (ƒÂmin,ƒÂf). Theoretical

curves of cyclic response of the FRC are shown in Fig. 7 together

with experimental curves in the same figure. The cyclic

response of the FRC is successfully reproduced by the theoretical

curves. The stiffness of the hyteresis loops agrees with the

experimental one, and the loops have some remaining crack

opening displacement at zero load level. Furthermore, the width

of hysteresis loops shows the same trend, namely it is the largest

at 0.2mm

From the comparison, the interfacial fictional bond strength,

ƒÑ0, and the coefficients, al and a2, are deduced. The set of these

parameters shown in Table 3 and Table 4 yields a close

agreement with the experimental curves. The deduced values in

Table 3 for monotonic loading fall within reported values15),

whereas, for cyclic loading, it is found that the interfacial

frictional bond strength under cyclic loading is lower than that

Table 3 Maximum and minimum opening displacement and

estimated interfacial bond strength at each of hysteresis loops.

Table 4 Interface parameters for fatigue hysteresis loops.

under monotonic loading and that ƒÑcyc=0.6 ƒÑmono yields the best

fit to the experimental hysteresis loops. This apparently lower

frictional bond strength under cyclic loading is presumably

because the normal pressure acting on the fiber is reduced near

the crack surface as the surrounding matrix is destressed with the

fiber pullout, when compared to around the embedded fiber end.

This reduced normal pressure leads to the lower Coulomb

frictional shear stress in the reversed frictional area near the crack

surfaces, which suggests that the interfacial frictional bond

strength is not constant along the interface of an embedded fiber

as opposed to a model assumption and lowest near the crack

surfaces.

It is shown that the theoretical fiber bridging constitutive laws

under cyclic loading successfully reproduces the cyclic response

of an FRC in terms of the stiffness and width of the hysteresis

loops and that the interfacial frictional bond strength under cyclic

loading is lower than that under monotonic loading presumably

due to the destressed sun-minding matrix in the reversed frictional

area.

Although the developed ƒ¢ƒÂf ƒ¢ƒÂ relation has been validated

with the experimentally obtained cyclic responses of an FRC, the

developed ƒ¢P-ƒ¢ƒÂ relation can also be utilized to understand

single fiber pull-out behaviors. This differentiates the current

approach from others, since the effects of each of

microparameters on ƒ¢ƒÂf-ƒ¢ƒÂ Agrelation can be evaluated explicitly.

6. Concluding Remarks

This paper presents a theoretical formulation of the cyclic

constitutive law for discontinuous fiber reinforced composites

(DFRCs). The formulation is based on the micromechanics of

fiber bridging under cyclic loading, enabling the effects of

microstructural parameters to be evaluated.

The single fiber pull-out/push-in load amplitude-crack

opening displacement amplitude relation (ƒ¢P-ƒ¢ƒÂ relation) is

derived assuming that the fiber-matrix interface is

friction-controlled.

The fiber bridging constitutive law under cyclic loading (ƒ¢ƒÂf

-ƒ¢ƒÂ) is derived numerically and analytically by integrating the

load carried by individual fibers according to the ƒ¢P- ƒ¢ƒÂ relation.

The theoretical constitutive law is compared with experimental

data of an FRC under cyclic loading and agrees well. It is

shown that the theoretical fiber bridging constitutive laws under

cyclic loading successfully reproduces the cyclic response of the

FRC in terms of the stiffness and width of the hysteresis loops

and that the interfacial frictional bond strength under cyclic

loading is 40% lower than that under monotonic loading

presumably due to destressed sunounding matrix in the reversed

frictional area.

With the use of the developed bridging constitutive law under

cyclic loading, it is possible to analyze fatigue crack growth in
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discontinuous fiber reinforced composites. Fatigue crack

growth can be described with Paris law, where fatigue crack

growth rate is expressed in terms of stress intensity factor

amplitude, ƒ¢Ktip. In the case of discontinuous fiber reinforced

composites, ƒ¢Ktip, is related not only to applied stress, ƒ¢ƒÂa, but

also to fiber bridging stress, ƒ¢ƒÂf. And, it is necessary to have an

explicit ƒ¢ƒÂf-ƒ¢ƒÂ relation for varying maximum crack opening

displacement, ƒÂmax, during fatigue crack propagation. The

current ƒ¢ƒÂ-ƒ¢ƒÂ relation meets this requirement. The fatigue life

of discontinuous fiber reinforced composites can then be

described in terms of microstructural parameters, which is

beneficial for understanding fatigue mechanism and improving

fatigue durability.

Appendix 1 Derivation of the relation between fiber pull-out

load amplitude and crack opening displacement amplitude

The integration in (6) leads to the following results. For

fibers that have been in debonding stage under the preceding

pull-out loading, we have

(Al)

and, for fibers that have been in sliding stage under the preceding

pull-out loading,

(A2)

where P0=pullout load at which debonding is completed.

These two equations (Al) and (A2) also hold for compressive

loading (Pmin•…0). However, fibers that have been in sliding

stage start sliding into matrix when Pmin=-Pmax. Hence , for

further push-in loading from -Pmax to -P0 at which the retrieval of

the fiber into the matrix is completed, we have

(A3)

Dining the sliding-in of fibers, ƒ¢ƒÂ is attributed mainly to

sliding distance, which is represented by the first term of (A3)
,

under constant interfacial frictional stress. These three equations

reduce to the form of (8), (9), and (10).

Appendix 2 Derivation of the approximate fiber bridging

constitutive law under cyclic loading

It is assumed that fibers are randomly distributed in a fiber

composite for the fiber centroidal distance, z, and orientation, ƒÓ, at

a designated crack plane (Fig. 1 for angle and centroidal distance).

Under monotonic loading, these bridging fibers can be divided

into two groups (Fig. Al). The first group includes the fibers

that are still undergoing debonding at the fiber-matrix interface,

and the second group includes the fibers that have completed

debonding and are sliding out of the matrix. These two groups

of fibers contribute to the fiber bridging stress. In addition to

these two groups of fibers, there are fibers that have been pulled

out of the matrix, but these fibers do not contribute to the bridging

stress.

A fiber with its embedment length, l, is still in debonding

process and belongs to the first group, if the current crack

opening displacement, is smaller than ƒÂ0=(4ƒÑl2)/(Efdf),

which is the crack opening displacement at complete debonding.

This is given by

(A4)

where ƒÑ=interfacial frictional bond strength, Ef=fiber modulus,

df= fiber diameter, and Lf= fiber length. With z'=z/(Lf/2),

this becomes

(A5)

where ƒÂmax=ƒÂmax/(Lf/2),ƒÂmax=maximum crack opening

displacement in a load cycle, ƒÂ*=(2ƒÑLf)/(Efdf), and this

means that fibers in the domain of {(w=z'/cosƒÓ,ƒÓ)|0<w<z0,

0<0<ƒÎ/0/2} are in debonding process (Fig. Al). Similarly, a

fiber is in sliding-out process and belongs to the second group, if

ƒÂis larger than ƒÂ0 and smaller than l:

(A6)

or

(A7)

This means that fibers in the domain of {(w, ƒÓ)|z0<w<1-

ƒÂmax,0<ƒÓ<2) are in sliding-out process (Fig. Al). The

upper limit on z' ensures that the fibers already pulled out do

not contribute to the bridging stress.

Under cyclic loading, the single fiber behavior is dependent

on the previous monotonic loading. The first group of fibers
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undergoes unstretching and contracting upon unloading, so the

bridging stress arising from this group can be obtained by the

integration of the contribution of individual fibers, ƒ¢P1(ƒ¢ƒÂ) which

is given by (17), in the domain {(w, ƒÓ)|0<w<z0, 0<ƒÓ<ƒÎ/2}.

The second group of fibers is further divided The fibers that

have been in sliding-out process undergo sliding-in subsequent to

unstretching and contracting. The sliding-in of a fiber takes

place when ƒ¢P2>ƒ¢P3. This condition can be solved with the

approximation of the ƒ¢P-ƒ¢ƒÂrelation: (18) and (19). It is given

by

(A8)

where ƒ¢ƒÂ=ƒ¢ƒÂ/(Lf/2). In the second group, the bridging

stress arising from the fibers that are in unstretching and

contracting can be obtained by the integration of the contribution

of individual fibers, ƒ¢P2(ƒ¢ƒÂ) which is given by (18), in the

domain {(w, ƒÓ)|z0<w<z1, 0<ƒÓ<ƒÎ/2}. And the bridging

stress arising from the fibers in sliding-in can be obtained by the

integration of ƒ¢P3(ƒ¢ƒÂ) given by (19) in the domain {(w, ƒÓ)|z1<w

<1-ƒÂ
max, 0<ƒÓ<ƒÎ/2}.

When cyclic loading takes place from a point of the pre-peak

bridging curve (0•…ƒÂmax•…ƒÂ*), the bridging stress is carried by

both of the first and second group of fibers. We have the

contribution of ƒ¢P1(ƒ¢ƒÂ), ƒ¢P2(ƒ¢ƒÂ), and ƒ¢P3(ƒ¢ƒÂ):

(A9)

and this reduces to the form in (21).

When cyclic loading takes place from a point of the

post-peak bridging curve (ƒÂ*<ƒÂmax•…1), the bridging stress is

carried by the second group of fibers only. This is because all

fibers have completed debonding at the peak bridging stress, and

no fibers of the first group exists. For a small COD amplitude

(ƒÀ•…ƒÀ0), there are fibers in unstretching and contracting and in

sliding-in. Hence, we have the contribution of ƒ¢P2(ƒ¢ƒÂ) and

ƒ¢P3(ƒ¢ƒÂ):

(A10)

and we obtain (22). For a large COD amplitude (ƒÀ0<ƒÀ), all

fibers are in sliding-in, and we only have the contribution of

ƒ¢P3(ƒ¢ƒÂ):

(A11)

and we obtain (24).

Fig. Al Domain of the fiber centroidal distance, z, and orientation,ƒÓ

References

1) Li, V. C., Postcrack Scaling Relations for Fiber Reinforced
Cementitious Composites, Journal of Materials in Civil

Engineering, 4 (1), 41-57, 1992.

2) Li, V. C. and Leung, C. K. Y., Steady State and Multiple
Cracking of Short Random Fiber Composites, Journal of

Engineering Mechanics, 188 (11), 2246-2264, 1992.

3) Matsumoto, T. and Li, V. C., Uniaxial Cyclic Behavior of
Discontinuous Fiber Reinforced Composites. Proc. ASCE

4th Materials Engineering Conference, Washington D. C.,

USA, 426-435, 1996.
4) Li, V. C., Wang, Y., and Backer, S., Effect of Inclining Angle,

Bundling, and Surface Treatment on Synthetic Fiber Pull-Out

from a Cement Matrix, Journal of Composites, 21 (2),
132-140. 1990.

5) McMeeking, R. M. and Evans, A. G., Matrix Fatigue

•\ 932•\



Cracking in Fiber Composites, Mechanics of Materials, 9,

217-227, 1990.

6) Li, V.C. and Matsumoto, T., Fatigue Crack Growth Analysis

of Fiber Reinforced Concrete with Effect of Interfacial Bond
Degradation, Journal of Cement and Concrete Composites,

20 (5), 339-351, 1998.

7) Matsumoto, T. and Li, V.C., Fatigue Crack Fracture and

Arrest in Fiber Reinforced Concrete under Interfacial Bond
Degradation, Fracture Mechanics of Concrete Structures

(FRAMCOS-3), Gifu, Japan, 541-550,1998.
8) Matsumoto, T. and Li, V.C., Fatigue Life Analysis of Fiber

Reinforced Concrete with a Fracture Mechanics Based

Model, Journal of Cement and Concrete Composites, 21 (4),
249-261, 1999.

9) Zhang, J., Stang, H., and Li, V.C., Experimental Study on

Crack Bridging in FRC under Uniaxial Fatigue Tension,

Journal of Materials in Civil Engineering, 12 (1), 66-73,
2000.

10) Gopalaratnam, V.S. and Shah, S.P., Tensile Failure of Steel

Fiber-Reinforced Mortar, Journal of Engineering Mechanics,

113 (5), 635-652. 1987.

11) Mishra, D., Performance of Engineered Cementitious

Composites Under Shear Load, Doctoral Thesis, The
University of Michigan, Ann Arbor. 1995.

12) Stang, H., Evaluation of Properties of Cementitious Fiber

Composite Materials, International RILEM/ACI Workshop,

High Performance Fiber Cement Composites, 388-406,
1992.

13) Cook, J. and Gordon, J.E., A Mechanism for the Control of

Crack Propagation in All Brittle Systems, Proceedings of the

Royal Society of London, A282, 508-520. 1964.

14) Li, V.C., Stang, H., and Krenchel, H., Micromechanics of

Crack Bridging in Fiber Reinforced Concrete, Materials and
Structures, 26, 486-494. 1993.

15) Li, V.C. and Stang, H., Interface Property Characterization

and Strengthening Mechanisms in Fiber Reinforced Cement

Based Composites, Journal of Advanced Cement Based
Materials, 6 (1), 1-20, 1997.

 (Received: April 12, 2007)

•\ 933•\


