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iPAPER 

Fa Generation of Prime ... lrredundant Covers 
from Binary cision Diagrams 

SUMMARY Manipulation of Boolean functions is one of 
the most important techniques for implementing of VLSI logic 
design systems. This paper presents a fast method for generating 
prime-irredundant covers from Binary Decision Diagrams 
(BDDs), which are efficient representation of Boolean functions. 
Prime-irredundant covers are forms in which each cube is a 
prime implicant and no cube can be eliminated. This new 
method generates compact cube sets from BDDs directly, in 
contrast to the conventional cube set reduction algorithms, which 
commonly manipulate redundant cube sets or truth tables. Our 
method is based on the idea of a recursive operator, proposed by 
Morreale. Morreale's algorithm is also based on cube set manipu­
lation. We found that the algorithm can be improved and rear­
ranged to fit BDD operations efficiently. The experimental results 
demonstrate that our method is efficient in terms of time and 
space. In practical time, we can generate cube sets consisting of 
more than 1,000,000 literals from multi-level logic circuits which 
have never previously been flattened into two-level logics. Our 
method is more than 10 times faster than ESPRESSO in large­
scale examples. It gives quasi-minimum numbers of cubes and 
literals. This method should find many useful applications in 
logic design systems. 
key words: BDDs (BinaJ)1 Decision Diagrams), prime­
irredundant covers, Boolean junctions, sum-oj-products jorms, 
logic synthesis 

1. Introduction 

Manipulation of Boolean functions is one of the 
most important techniques for implementing VLSI 
logic design systems. Binary Decision Diagrams 
(BDDs), which were proposed by Akers(!) and 
Bryant, (2) are graph representations of Boolean func­
tions. Recently, BDDs have attracted much attention 
because they enable us to manipulate Boolean func­
tions efficiently in terms of time and space.(3),(4) 

In many logic design systems, cube sets (also 
called covers, PLA forms, sum-of-products forms, or 
two-level logics) are employed to represent Boolean 
functions. Cube sets have been extensively studied for 
many years. Cube set manipulation algorithms will 
assume greater importance as time goes on. In general, 
it is not so difficult to generate BDDs from cube sets, 
but there are no efficient methods for generating com­
pact cube sets from BDDs. 

In this paper, we present a fast method of generat-
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ing prime-irredundant covers from BDDs. In such 
covers, each cube is a prime implicant and no cube can 
be eliminated. 

The minimization or optimization of cube sets has 
received much attention, and a number of efficient 
algorithms, such as MINI (6) and ESPRESSO (7) have 
been developed. Since these methods are based on the 
manipulation of cube sets or truth tables, they cannot 
be applied to BDD operations directly. Our method is 
based on the idea of the recursive operator, proposed 
by Morreale.(5) We found that Morreale's algorithm, 
which is also based on cube set manipulation, can be 
improved and efficiently adapted for BDD operations. 

The features of our method are summarized as 
follows: 

Prime and irredundant representation can be 
obtained. 
It generates cube sets from BDDs directly without 
the temporary generation of redundant cube sets 
in the process. 
It can handle the don't cares. 
The algorithm can be extended to manage multi­
ple output functions. 
Experimental results show that our method is 

efficient in terms of time and space. In a practical time, 
we can generate cube sets consisting of more than 
lOO,OOO cubes and 1,000,000 literals from multi-level 
logic circuits which have never previously been 
flattened into two-level logics. Our method gives the 
quasi-minimum numbers of cubes and literals, but it 
does not always give the minimum ones. 

The remainder of this paper is organized as fol­
lows. In Sect. 2, we explain the properties of our BDD 
package. In Sect. 3, we show conventional methods of 
generating cube sets from BDDs. In Sect. 4, we present 
the properties of prime-irredundant covers and 
describe our algorithm of generating prime­
irredundant covers from BDDs. The experimental 
results are shown in Sect. 5, followed by conclusion in 
Sect. 6. 

2. BDD Package 

We begin with an explanation of our BDD pack­
age. BDDs are graph representations of Boolean func­
tions, as shown in Fig. 1. They are graphs of binary 
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Fig. 2 A shared BDD. 

decision trees representing recursive Shannon's expan­
sions which are completely redllged by eliminating all 
redundant nodes and by sharing all the equivalent 
nodes. The reduced BDDs are characterized by the fact 
that each of them represents a Boolean function 
uniquely if the order of the input variables is fixed (see 
Refs. (I), (2) for details). 

A set of BDDs representing multiple functions can 
be united into a single graph that consists of the BDDs 
with shared sUbgraphs. The efficiency of manipulation 
can be improved by managing all the BDDs that 
appear as a single graph, as in Fig. 2. We call such 
graphs SBDDs (Shared BDDs) .(9) We can furthermore 
reduce the operation time and memory requirement by 
using attributed edges,(8),(9) which represent certain 
logic operations such as inverting. 

Our BDD package, implemented with the above 
techniques, exhibits the following useful attributes. 

After generating BDDs, the equivalence of two 
functions can be checked in a constant time. 
Inverting operation can be executed in a constant 
time. 
Binary operations such as "and," "or" can be 
carried out within a time that is almost propor­
tional to the size of the graphs. 
The size of BDDs largely depends on the order of 

the input variables. It is difficult to derive a method 
that always yields the best order, but with some heuris­
tic methods, we are able to find a tolerable order in 
many cases.(9)-(!I) 
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3. Conventional Generation of Cube Sets from 
BDDs 

Akers(l) presented a method of generating cube 
sets from BDDs by enumerating the "I" paths. This 
method enumerates all the paths from the root node 
toward the "1" leaf node and lists the cubes which 
represent the input values to activate such paths. In the 
example shown in Fig. 3, we can find the three paths 
which lead to the cube set: 

In reduced BDDs, all the redundant nodes are 
eliminated, thereby the literals of the eliminated nodes 
never appear in the cubes. In the above example, the 
first cube has neither Xl nor Xl. All of the cubes 
generated in this method are disjoint because no two 
paths can be activated at the same time. 

This method is good for generating disjoint covers; 
however, it does not necessarily give the minimum 
covers. For example in evidence, the literal of the root 
node appears in every cube, but some of them may be 
needless. In general, they still have considerable redun­
dancy in terms of the number of cubes or literals. 

Recently, Jacobi and Trullemans(12) presented the 
method of removing such redundancy. The method 
generates a prime-irredundant cover from a BDD in a 
divide-and-conquer manner. On each node of the 
BDD, the method generates two cube sets for the two 
subgraphs of the node, and then combines the two by 
eliminating redundant literals and cubes. 

In this method, a cube set is represented with a list 
of BDDs each of which represents a cube. Each cube is 
determined whether it is redundant or not by applying 
BDD operations. Their experiment shows the method 
is efficient in many cases. However, the method still has 
inefficiency that it generates redundant cubes tempo­
rarily and removes them during the process. 

In the following sections, we propose a fast 
method of generating prime-irredundant covers from 
BDDs directly. 
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4. Generation of Prime-Irredundant Covers 

In this section, we present the properties of prime­
irredundant covers and de~cribe the algorithm for 
generating prime-irredundant covers from BDDs 
directly. 

4. I Prime-lrredundant Covers 

If a cube set has the following two properties, we 
call a prime-irredundant cover. 

Each cube is a prime implicant; that is, no literal 
can be eliminated without changing the function. 
There are no redundant cubes. In other words, no 
cube can be eliminated without changing the 
function. 
For example, the expression xyz+xy is not a 

prime-irredundant cover because we can eliminate a 
literal without changing the fuction. The expression 
xz + xy is a prime-irredundant cover. 

Prime-irredundant covers are very compact in 
general, but they are not necessarily the minimum 
form. The following three expressions represent the 
same function and all of them are prime and irredun­
dant. 

xy+xz+xy+xz, xy+xy+ yz+ yz, 

xy+.xz+ yz 

From this we can see that prime-irredundant covers as 
well as their size can vary. However, empirically they 
are not very different from the minimum form in terms 
of size. 

Prime-irredundant covers are useful Jor many 
applications including logic synthesis, fault testable 
design, and combinatorial optimization problems. 

4. 2 Morreale's Algorithm 

Our method is based on the recursive operator 
proposed by Morreale. (5) His algorithm recursively 
deletes redundant cubes and literals from a given cube 
set. The basic idea is summarized in this expansion: 

isop = ii· isopo + v' iSOPl + isop* 

where isop represents the cube set of a prime­
irredundant cover, and v is one of the input variables. 
This expansion means that the cube set can be divided 
into three subsets containing ii, v, an the others. Then, 
excluding v and v from each cube, the three subsets of 
iSOPI, iso]Jo and isop* should also be prime-irredundant 
covers. Based on this expansion, the algorithm gener­
ates a prime-irredundant cover recursively (see Ref. (5) 
for details). 

Unfortunately, Morreale's method is not efficient 
for large-scale functions because the algorithm is based 
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on cube set representation and it takes a long time to 
manipulate cube sets for tautology checking, inverting, 
and other logic operations. However, the basic idea of 
"recursive expansion" is well suited to BDD manipula-

ISOP(J(x)) { 
1* (input) f(x) : {o,l}n -} {O,l,*} */ 
1* (output) isop : prime-irredundant covers* / 

if( 't/x E {o,l}n;f(x) #1) {isop <c- O;} 

} 

else if ( 't/x E {O, l}n; f(x) # 0 ) { isop <c- 1 ; } 
else { 

} 

v <c- one of x ; 
1* v is the input with highest order in BDD * / 

fa (- f(x Iv=o) ; 1* the subfunction on.v = 0 * / 
II <c- f(x Iv=I) ; /* the subfunction on v = 1 * / 
Compute f~, ff in the following rules; 

fa fa 
f,' . 

o' 1 0 * * 
* 0 * * 

isopo <c- ISOP(J~) ; 

f '· l' 1 

* 
1 

* * * * * 
/* recursively generates cubes including v * / 

iSOPI <c- ISOP(J{) ; 
/* recursively generates cubes including v * / 

Let go, gi be the covers of isopo, iSOPI, respectively; 
Compute fO', ff' in the following rules; 

fa 0 1 II 0 
f 0' : f f/: o:u.,..-l-,;;,--r-,,:,:-

1 * * 1 * * Compute f. in the following rule; 

"f~' 
f*: 

1 0 1 1 
* 0 1 * 

isop* <c- ISOP(J*) ; 
/* recursively generates cubes excluding v, v * / 

isop <c- v· isopo + v . iSOPI + isop* ; 

return isop ; 

Fig. 4 Algorithm for generating prime-irredundant covers. 

fO(v=O) fl (v= 1) fO" fl" 

1 1 0 0 * * 0 0 

0 1 1 1 0 1 * * (a) (e) 
1 1 1 1 * 1 * * 
1 0 0 0 * 0 0 0 

fO' 

isopO 

1(1 1 0 0 V < 0 * * 1 

* * * * 

0 0 0 0 

0 1 1 ~p -
* 1 1 * 

sopI 

(b) (d) 

1 0 0 0 0 0 0 0 

Fig. 5 An example. 
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tion, which is what motivated us to improve and adapt 
Morreale's method for BDD representation. 

4.3 Algorithm Using~DDs 

Our method generates a compact cube set from a 
BDD directly, not through redundant cube sets. The 
algorithm, called [SOP (Irredundant Sum-Of-Poducts 
generation), is described in Fig. 4. Here we illustrate 
how it works using the example shown in Figs. 5 (a) 
through (d). In Fig. 5 (a), the function f is divided 
into the two subfunctions, /0 and j;, by assigning 0, 1 
to the input variable with the highest order in the 
BD.D .. In (b), /0' an j;' are derived from /0 and j; by 
assIgnmg a don't care value to the minterms which 
commonly give /0= 1 and j; = 1. /0' and j;' represent the 
minterms to be covered by the cubes including v or v. 
We thereby generate their prime-irredundant covers 
iso~ and iSOPl recursively. In Fig. 5 (c) , /0" and j;" are 
denved from /0 and j; by assigning a don't care value 
to the minterms which are already covered by isoPo or 
isop)' and in (d) f* is computed with /0" and j;" 
represents the minterms to be covered by the cubes 
~xcluding v and v. We thereby generate its prime­
Irredundant cover isop* recursively. Finally, the result 
~f isop can be obtained as the united set of V· isoPo, V· 

lSOPl and isop*. 
Note that in practice the functions are represented 

and manipulated using BDDs. Here we employ 
Karnaugh maps to illustrate. 

If the expanding order of the input variables is 
fixed, ISOP generates a unique form for each function 
i.e., it gives a unique form for an ordered BDD: 
Another feature of this algorithm is that it can be 
applied for functions with don't cares. 

This algorithm is well suited for BDD operations 
because: 

The subfunctions /0 and j; can be derived from f 
10 a constant time. 
Many redundant expansions can be avoided natu­
rally because the redundant nodes are eliminated 
in reduced BDDs. 
Results can be returned quickly by checking the 
tautol?gy of subfunctions and interrupting the 
recurSIve process. 

. It is .difficult to exactly evaluate the time complex­
Ity of thIS algorithm. In our experiments, as will be 
s~own later, the execution time was almost propor­
tIonal to the product of the BDD size and the size of 
the cover generated. 

4.4 Techniques for Implementation 

In our method, ternary-valued functions including 
the don't care value are manipulated. Since our BDD 
package can only manage binary functions, we repre­
sent a ternary function with a pair of binary functions 
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(l f J, r f l) ,coded as 

f If J r f l 
o 0 

1 

* 0 

o 

In this coding, the tautology of the function allowing 
the don't cf!re value can be checked as r f l= 1. The 
special operation for ternary-valued functions can be 
computed in the combination of ordinary logic opera­
tion for If J and r f l For example, the ternary-valued 
operation: 

o 
/0': 

1 

* 

/0 0 * 
o * 
o * * 
o * * 

can be written as: 

We described earlier that isop is obtained as the 
union of the three cube sets, as shown in Fig. 4. In 
order to avoid cube set manipulation, we implemented 
the method in such a way that the results of cubes are 
directly dumped out to a file. On each recursive call we 
push the processing literal to a stack, which we c~ll a 
cube stack. When a tautology function is detected, the 
current content of the cube stack is appended to the 
output file as a cube. This approach is efficient because 
we can only manipulate BDDs, no matter how large 
the result of the cube set becomes. 

Our method can be extended to manage multiple 
output functions. Sharing the common cubes among 
different outputs, we obtain more compact representa­
tion than if each output were processed separately. In 
our implementation, the cube sets of all the outputs are 
generated concurrently; that is, in Fig. 4 we extend f 
to be an array of BDDs as a multiple output function. 
Repeating recursive calls in the same manner as a 
single output function eventuates in the detection of a 
multiple output constant which consists of tautology 
outputs and inconsistency outputs. The tautology 
outputs means that those output functions include the 
cube which is currently kept in the cube stack. 

5. Experimental Results 

We implemented the method described in the 
foregoing section, and conducted some experiments to 
evaluate its performance. We used a SPARC Station 2 
(SunOS 4. 1. 1, 32 MByte). The program is written in 
C and C++. 
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5. I Comparison with ESPRESSO 

First, we generated initial BDDs for the output 
functions of practical comQinational circuits which 
may be multi-level or multiple output circuits. Then, 
we generated prime-irredundant covers from the BDDs 
and counted the numbers of the cubes and literals. We 
applied the Dynamic Weight Assignment Method(9) to 
find the proper order of the input variables for the 
initial BDD. The execution time includes the time to 
determine ordering, the formation of initial BDDs, and 
the time to generate prime-irredundant covers. 

We compared our results with a conventional 
cube-based method. We flattened the given circuits into 
cube sets with the system MIS-II,(13) and then optim­
ized the cube sets by ESPRESSO.(7) 

The results are shown in Table 1. For circuits in 
this work we applied: an 8-bit data selector (dec8), an 
8-bit priority encoder (enc8), a 4+4 bit adder (add4) , 
an 8+ 8 bit adder (add8), a 2 X 2 bit multiplier 
(mult4) a 3 X 3 bit multiplier (mult6), a 24 input 
Achilles' heel function(7) (achiI8p), and its comple­
ment (achiI8n). Other items were chosen from bench­
marks at MCNC'90. 

The table shows that our method is much faster 
than ESPRESSO, with especially more than 10 times 
acceleration for the large scale circuits. The speed up 
was most impressive the c432 and c880, where we 
generated prime-irredundant covers consisting of more 
than 100,000 cubes and 1,000,000 literals within a 
reasonable time. We could not apply ESPRESSO to 
these circuits because we were unable to flatten them 
into cube sets even after ten hours. In another example, 
ESPRESSO performed poorly for achil8n because the 
Achilles' heel function requires a great many cubes 

Table I Comparison with ESPRESSO. 

Name In. Out. Our method ESPRESSO 

Cubes Literals Time(s) Cubes Lit. Time(s 

dec8 12 2 17 90 0.3 17 90 0.2 

enc8 9 4 17 56 0.2 15 51 0.3 
add4 9 5 135 819 0.7 135 819 1.9 
add8 17 9 2519 24211 13.3 2519 24211 443.1 

mult4 8 8 145 945 1.4 130 874 5.0 
mult6 12 12 2284 22274 26.7 1893 19340 1126.2 

achi18p 24 1 8 32 0.2 8 32 2.0 
achi18n 24 1 6561 59049 8.7 6561 59049 3512.7 

5xpl 7 10 72 366 0.8 65 347 1.5 
9sym 9 1 148 1036 0.9 87 609 10.7 

alupla 25 5 2155 26734 20.5 2144 26632 257.3 

bw 5 28 68 374 1.1 22 429 1.4 

duke2 22 29 126 1296 3.2 87 1036 28.8 

rd53 5 3 35 192 0.3 31 175 0.5 

rd73 7 3 147 1024 1.2 127 903 4.2 

sao2 10 4 76 575 1.1 58 495 2.4 
vg2 25 8 110 914 1.9 110 914 42.8 

c432 36 7 84235 969037 1744.8 x X >36k 
c880 60 26 114299 1986014 1096.6 x X >36k 
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when we invert it. Here, our method still puts in a good 
performance because the complementary function can 
be represented with the same size BDD as the original 
one. 

As far as the number of cubes and literals is 
concerned, our method in general may give somewhat 
larger results than ESPRESSO. In most cases, the 
differences range between 0% and 20%. In none of 
experiments, did we find an example giving more than 
two times the difference in terms of number of literals. 

5.2 Effect of Variable Ordering 

We conducted another experiment to evaluate the 
effect of variable ordering. In general, the size of BDDs 
depends greatly on the order. We generated prime­
irredundant covers from the two BDDs of the same 
function but in a different order: one was in fairly 
good order (obtained using the minimum-width 
method(ll» , and the other was in a random order. 

As shown in Table 2, the numbers of cubes and 
literals are almost the same for both, while the size of 
BDDs varies greatly. The result demonstrates that our 
method is robust for variation in order. However, 
variable ordering is still important because it affects 

Table 2 Effect of variable ordering. 

Name Heuristic order Random order 

#BDD Cubes Lit. Time(s) #BDD Cubes Lit. Time(s) 
dec8 16 17 90 0.3 41 17 90 
enc8 21 17 56 0.2 25 17 56 
add8 41 2519 ~4211 13.3 383 2519 24211 
mult6 1274 2284 ~2274 26.7 1897 2354 ?2963 
achi18r 24 6561 fS 9049 8.7 771 6561 59049 
5xpl 43 72 366 0.8 60 72 364 
alupla 1376 2155 ~6734 20.4 4309 2155 26730 
bw 85 68 374 1.1 90 64 353 
duke2 396 126 1296 3.2 609 125 1280 
sao2 143 76 575 1.1 133 76 571 
vg2 108 110 914 1.9 1037 110 914 

Table 3 Result for variation of input number. 
(100 random functions, single output) 

In. BDD size Cubes Literals ILit./Cube 
1 0.58 0.77 1.35 1.75 
2 1.41 1.25 2.84 2.27 

3 3.22 2.30 7.17 3.12 

4 6.39 4.20 16.05 3.82 

5 11.71 7.85 36.39 4.64 
6 20.51 14.88 82.18 5.52 

7 36.24 27.09 172.06 6.35 

8 64:59 52.27 377.41 7.22 

9 118.17 99.31 808.09 8.14 

10 210.12 192.26 1738.89 9.04 

11 365.04 370.90 3693.49 9.96 

12 633.97 722.11 7865.91 10.89 

13 1144.12 1406.31 16635.79 11.83 

14 2154.49 ~752.53 35154.84 12.77 

15 4151.45 5393.25 73980.57 13.72 

0.3 
0.2 

24.3 
30.2 
30.9 

0.9 
43.1 

1.1 
3.7 
1.0 
2.7 
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the execution time and memory requirement. 

5. 3 Statistical Properties 

Taking advantage of our method, we examined the 
statistical properties of prime-irredundant covers,. We 
applied our method to 100 patterns of random func­
tions and took the average for the size of initial BDDs 
and generated cube sets. The random functions were 
computed using a standard C library. 

Table 3 shows the property for variation in input 
number. Both BDDs and cube sets grow exponentially. 
It is known that the maximum BDD size is 0 (2n In) 
(where n is the input number) .0) Our statistical experi­
ment produced similar results. In terms of number of 
cubes, we observe about 0 (2n). The ratio of cubes to 
literals (the number of literals per cube) is almost 
proportional to n. 

Table 4 shows the property for variation in output 
number when the input number is fixed. Both BDDs 

(#) 
250 

200 

150 

100 

50 

Table 4 Result for variation of output number. 
(input number= 10) 

Out. BDD size Cubes Literals Lit./Cubes 
1 209.80 192.13 1737.84 9.05 
2 364.44 381.69 3452.20 9.04 
3 500.86 568.10 5145.01 9.06 

4 630.93 754.88 6842.25 9.06 

5 758.33 933.86 8468.70 9.07 

6 884.87 1120.83 10166.36 9.07 

7 1011.08 1294.84 11750.90 9.08 

8 1136.94 1471.63 13355.59 9.08 

9 1262.29 1649.47 14978.33 9.08 
10 1388.76 1815.44 16493.02 9.08 

11 1513.15 1987.56 18078.64 9.10 

BOD size 

ooo---~~--~--~--~--~~--~--~--w 

o 10 20 30 40 50 60 70 80 90 100 (%) 

Truth-table density 

Fig. 6 Result for variation of truth-table density. 
(inputs = 10, output= 1) 
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and cube sets grow a little less proportionally, appear­
ing the effect of sharing their subgraphs or cubes. We 
expect such data sharing is more effective in practical 
circuits, since in many cases the output functions are 
relative each other, unlike random functions. The ratio 
of cubes to literals is almost constant, as the input 
number is fixed. 

Next, we investigated the property for variation in 
truth-table density, which is the rate of l's in the truth 
table. We applied our method to the weighted random 
functions with 10 inputs, ranging from 0% to 100% in 
density. Figure 6 shows that the BDD size is symmetric 
with a center line at 50%, which is like the entropy of 
information. The number of cubes is not symmetric 
and peeks at about 60%; however, the number of lit­
erals becomes symmetric with BDD size. This result 
suggests that the number of literals is better as a 
measure of complexity of Boolean functions than the 
number of cubes. 

6. Conclusion 

We have presented a method of generating prime­
irredundant covers from BDDs directly. The experi­
ments show that our method is much faster than con­
ventional methods. It enables us to generate compact 
cube sets from large-scale circuits, some of which have 
never been flattened into cube sets by previous 
methods. In terms of size of the result, our method may 
give somewhat larger results than ESPRESSO, but 
there are many applications in which such an increase 
is tolerable. 

Our future work includes improving the method 
further more and applying to multi-level logic synthe­
sis. Recently, implicit cube representation ,(14) which is 
an compressed representation of cube sets, was present­
ed. It allows us to deal with large-scale cube sets. We 
hope our method may be accelerated still more using 
the new representation. 

Our method can be utilized to transform BDDs 
into compact cube sets or to flatten multi-level circuits 
into two-level circuits. We expect the method to be 
useful in many logic design system applications. 
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