

Instructions for use

Title Fast Generation of Prime-Irredundant Covers from Binary Decision Diagrams

Author(s) Minato, Shin-ichi

Citation IEICE transactions on fundamentals of electronics, communications and computer sciences, E76(A6), 967-973

Issue Date 1993-06-25

Doc URL http://hdl.handle.net/2115/47468

Rights copyright©1993 IEICE

Type article

File Information 59_IEICE76_967.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

IEICE TRANS. FUNDAMENTALS. VOL E76-A. NO.6 JUNE 1993
967

iPAPER

Fa Generation of Prime ... lrredundant Covers
from Binary cision Diagrams

SUMMARY Manipulation of Boolean functions is one of
the most important techniques for implementing of VLSI logic
design systems. This paper presents a fast method for generating
prime-irredundant covers from Binary Decision Diagrams
(BDDs), which are efficient representation of Boolean functions.
Prime-irredundant covers are forms in which each cube is a
prime implicant and no cube can be eliminated. This new
method generates compact cube sets from BDDs directly, in
contrast to the conventional cube set reduction algorithms, which
commonly manipulate redundant cube sets or truth tables. Our
method is based on the idea of a recursive operator, proposed by
Morreale. Morreale's algorithm is also based on cube set manipu­
lation. We found that the algorithm can be improved and rear­
ranged to fit BDD operations efficiently. The experimental results
demonstrate that our method is efficient in terms of time and
space. In practical time, we can generate cube sets consisting of
more than 1,000,000 literals from multi-level logic circuits which
have never previously been flattened into two-level logics. Our
method is more than 10 times faster than ESPRESSO in large­
scale examples. It gives quasi-minimum numbers of cubes and
literals. This method should find many useful applications in
logic design systems.
key words: BDDs (BinaJ)1 Decision Diagrams), prime­
irredundant covers, Boolean junctions, sum-oj-products jorms,
logic synthesis

1. Introduction

Manipulation of Boolean functions is one of the
most important techniques for implementing VLSI
logic design systems. Binary Decision Diagrams
(BDDs), which were proposed by Akers(!) and
Bryant, (2) are graph representations of Boolean func­
tions. Recently, BDDs have attracted much attention
because they enable us to manipulate Boolean func­
tions efficiently in terms of time and space.(3),(4)

In many logic design systems, cube sets (also
called covers, PLA forms, sum-of-products forms, or
two-level logics) are employed to represent Boolean
functions. Cube sets have been extensively studied for
many years. Cube set manipulation algorithms will
assume greater importance as time goes on. In general,
it is not so difficult to generate BDDs from cube sets,
but there are no efficient methods for generating com­
pact cube sets from BDDs.

In this paper, we present a fast method of generat-

Manuscript received July 3, 1992.
Manuscript revised December 16, 1992.

t "he author is with NTT LSI Laboratories, Atsugi-shi,
243-U Japan.

Shin-ichi MINATOt, Member

ing prime-irredundant covers from BDDs. In such
covers, each cube is a prime implicant and no cube can
be eliminated.

The minimization or optimization of cube sets has
received much attention, and a number of efficient
algorithms, such as MINI (6) and ESPRESSO (7) have
been developed. Since these methods are based on the
manipulation of cube sets or truth tables, they cannot
be applied to BDD operations directly. Our method is
based on the idea of the recursive operator, proposed
by Morreale.(5) We found that Morreale's algorithm,
which is also based on cube set manipulation, can be
improved and efficiently adapted for BDD operations.

The features of our method are summarized as
follows:

Prime and irredundant representation can be
obtained.
It generates cube sets from BDDs directly without
the temporary generation of redundant cube sets
in the process.
It can handle the don't cares.
The algorithm can be extended to manage multi­
ple output functions.
Experimental results show that our method is

efficient in terms of time and space. In a practical time,
we can generate cube sets consisting of more than
lOO,OOO cubes and 1,000,000 literals from multi-level
logic circuits which have never previously been
flattened into two-level logics. Our method gives the
quasi-minimum numbers of cubes and literals, but it
does not always give the minimum ones.

The remainder of this paper is organized as fol­
lows. In Sect. 2, we explain the properties of our BDD
package. In Sect. 3, we show conventional methods of
generating cube sets from BDDs. In Sect. 4, we present
the properties of prime-irredundant covers and
describe our algorithm of generating prime­
irredundant covers from BDDs. The experimental
results are shown in Sect. 5, followed by conclusion in
Sect. 6.

2. BDD Package

We begin with an explanation of our BDD pack­
age. BDDs are graph representations of Boolean func­
tions, as shown in Fig. 1. They are graphs of binary

968

x3 . x2 +Xl
t

Fig. I A BDD

x2 . XI x2ffixl Xl

t

o
Fig. 2 A shared BDD.

decision trees representing recursive Shannon's expan­
sions which are completely redllged by eliminating all
redundant nodes and by sharing all the equivalent
nodes. The reduced BDDs are characterized by the fact
that each of them represents a Boolean function
uniquely if the order of the input variables is fixed (see
Refs. (I), (2) for details).

A set of BDDs representing multiple functions can
be united into a single graph that consists of the BDDs
with shared sUbgraphs. The efficiency of manipulation
can be improved by managing all the BDDs that
appear as a single graph, as in Fig. 2. We call such
graphs SBDDs (Shared BDDs) .(9) We can furthermore
reduce the operation time and memory requirement by
using attributed edges,(8),(9) which represent certain
logic operations such as inverting.

Our BDD package, implemented with the above
techniques, exhibits the following useful attributes.

After generating BDDs, the equivalence of two
functions can be checked in a constant time.
Inverting operation can be executed in a constant
time.
Binary operations such as "and," "or" can be
carried out within a time that is almost propor­
tional to the size of the graphs.
The size of BDDs largely depends on the order of

the input variables. It is difficult to derive a method
that always yields the best order, but with some heuris­
tic methods, we are able to find a tolerable order in
many cases.(9)-(!I)

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO.6 JUNE 1993

f

"~--..,,-- x3 . x2
x3 'x2'X!

Fig.3 I-path enumeration method.

3. Conventional Generation of Cube Sets from
BDDs

Akers(l) presented a method of generating cube
sets from BDDs by enumerating the "I" paths. This
method enumerates all the paths from the root node
toward the "1" leaf node and lists the cubes which
represent the input values to activate such paths. In the
example shown in Fig. 3, we can find the three paths
which lead to the cube set:

In reduced BDDs, all the redundant nodes are
eliminated, thereby the literals of the eliminated nodes
never appear in the cubes. In the above example, the
first cube has neither Xl nor Xl. All of the cubes
generated in this method are disjoint because no two
paths can be activated at the same time.

This method is good for generating disjoint covers;
however, it does not necessarily give the minimum
covers. For example in evidence, the literal of the root
node appears in every cube, but some of them may be
needless. In general, they still have considerable redun­
dancy in terms of the number of cubes or literals.

Recently, Jacobi and Trullemans(12) presented the
method of removing such redundancy. The method
generates a prime-irredundant cover from a BDD in a
divide-and-conquer manner. On each node of the
BDD, the method generates two cube sets for the two
subgraphs of the node, and then combines the two by
eliminating redundant literals and cubes.

In this method, a cube set is represented with a list
of BDDs each of which represents a cube. Each cube is
determined whether it is redundant or not by applying
BDD operations. Their experiment shows the method
is efficient in many cases. However, the method still has
inefficiency that it generates redundant cubes tempo­
rarily and removes them during the process.

In the following sections, we propose a fast
method of generating prime-irredundant covers from
BDDs directly.

MINATO: FAST GENERATION OF PRIME-lRR. COVERS FROM BO~'S

4. Generation of Prime-Irredundant Covers

In this section, we present the properties of prime­
irredundant covers and de~cribe the algorithm for
generating prime-irredundant covers from BDDs
directly.

4. I Prime-lrredundant Covers

If a cube set has the following two properties, we
call a prime-irredundant cover.

Each cube is a prime implicant; that is, no literal
can be eliminated without changing the function.
There are no redundant cubes. In other words, no
cube can be eliminated without changing the
function.
For example, the expression xyz+xy is not a

prime-irredundant cover because we can eliminate a
literal without changing the fuction. The expression
xz + xy is a prime-irredundant cover.

Prime-irredundant covers are very compact in
general, but they are not necessarily the minimum
form. The following three expressions represent the
same function and all of them are prime and irredun­
dant.

xy+xz+xy+xz, xy+xy+ yz+ yz,

xy+.xz+ yz

From this we can see that prime-irredundant covers as
well as their size can vary. However, empirically they
are not very different from the minimum form in terms
of size.

Prime-irredundant covers are useful Jor many
applications including logic synthesis, fault testable
design, and combinatorial optimization problems.

4. 2 Morreale's Algorithm

Our method is based on the recursive operator
proposed by Morreale. (5) His algorithm recursively
deletes redundant cubes and literals from a given cube
set. The basic idea is summarized in this expansion:

isop = ii· isopo + v' iSOPl + isop*

where isop represents the cube set of a prime­
irredundant cover, and v is one of the input variables.
This expansion means that the cube set can be divided
into three subsets containing ii, v, an the others. Then,
excluding v and v from each cube, the three subsets of
iSOPI, iso]Jo and isop* should also be prime-irredundant
covers. Based on this expansion, the algorithm gener­
ates a prime-irredundant cover recursively (see Ref. (5)
for details).

Unfortunately, Morreale's method is not efficient
for large-scale functions because the algorithm is based

969

on cube set representation and it takes a long time to
manipulate cube sets for tautology checking, inverting,
and other logic operations. However, the basic idea of
"recursive expansion" is well suited to BDD manipula-

ISOP(J(x)) {
1* (input) f(x) : {o,l}n -} {O,l,*} */
1* (output) isop : prime-irredundant covers* /

if('t/x E {o,l}n;f(x) #1) {isop <c- O;}

}

else if ('t/x E {O, l}n; f(x) # 0) { isop <c- 1 ; }
else {

}

v <c- one of x ;
1* v is the input with highest order in BDD * /

fa (- f(x Iv=o) ; 1* the subfunction on.v = 0 * /
II <c- f(x Iv=I) ; /* the subfunction on v = 1 * /
Compute f~, ff in the following rules;

fa fa
f,' .

o' 1 0 * *
* 0 * *

isopo <c- ISOP(J~) ;

f '· l' 1

*
1

* * * * *
/* recursively generates cubes including v * /

iSOPI <c- ISOP(J{) ;
/* recursively generates cubes including v * /

Let go, gi be the covers of isopo, iSOPI, respectively;
Compute fO', ff' in the following rules;

fa 0 1 II 0
f 0' : f f/: o:u.,..-l-,;;,--r-,,:,:-

1 * * 1 * * Compute f. in the following rule;

"f~'
f*:

1 0 1 1
* 0 1 *

isop* <c- ISOP(J*) ;
/* recursively generates cubes excluding v, v * /

isop <c- v· isopo + v . iSOPI + isop* ;

return isop ;

Fig. 4 Algorithm for generating prime-irredundant covers.

fO(v=O) fl (v= 1) fO" fl"

1 1 0 0 * * 0 0

0 1 1 1 0 1 * * (a) (e)
1 1 1 1 * 1 * *
1 0 0 0 * 0 0 0

fO'

isopO

1(1 1 0 0 V < 0 * * 1

* * * *

0 0 0 0

0 1 1 ~p -
* 1 1 *

sopI

(b) (d)

1 0 0 0 0 0 0 0

Fig. 5 An example.

970

tion, which is what motivated us to improve and adapt
Morreale's method for BDD representation.

4.3 Algorithm Using~DDs

Our method generates a compact cube set from a
BDD directly, not through redundant cube sets. The
algorithm, called [SOP (Irredundant Sum-Of-Poducts
generation), is described in Fig. 4. Here we illustrate
how it works using the example shown in Figs. 5 (a)
through (d). In Fig. 5 (a), the function f is divided
into the two subfunctions, /0 and j;, by assigning 0, 1
to the input variable with the highest order in the
BD.D .. In (b), /0' an j;' are derived from /0 and j; by
assIgnmg a don't care value to the minterms which
commonly give /0= 1 and j; = 1. /0' and j;' represent the
minterms to be covered by the cubes including v or v.
We thereby generate their prime-irredundant covers
iso~ and iSOPl recursively. In Fig. 5 (c) , /0" and j;" are
denved from /0 and j; by assigning a don't care value
to the minterms which are already covered by isoPo or
isop)' and in (d) f* is computed with /0" and j;"
represents the minterms to be covered by the cubes
~xcluding v and v. We thereby generate its prime­
Irredundant cover isop* recursively. Finally, the result
~f isop can be obtained as the united set of V· isoPo, V·

lSOPl and isop*.
Note that in practice the functions are represented

and manipulated using BDDs. Here we employ
Karnaugh maps to illustrate.

If the expanding order of the input variables is
fixed, ISOP generates a unique form for each function
i.e., it gives a unique form for an ordered BDD:
Another feature of this algorithm is that it can be
applied for functions with don't cares.

This algorithm is well suited for BDD operations
because:

The subfunctions /0 and j; can be derived from f
10 a constant time.
Many redundant expansions can be avoided natu­
rally because the redundant nodes are eliminated
in reduced BDDs.
Results can be returned quickly by checking the
tautol?gy of subfunctions and interrupting the
recurSIve process.

. It is .difficult to exactly evaluate the time complex­
Ity of thIS algorithm. In our experiments, as will be
s~own later, the execution time was almost propor­
tIonal to the product of the BDD size and the size of
the cover generated.

4.4 Techniques for Implementation

In our method, ternary-valued functions including
the don't care value are manipulated. Since our BDD
package can only manage binary functions, we repre­
sent a ternary function with a pair of binary functions

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO.6 JUNE 1993

(l f J, r f l) ,coded as

f If J r f l
o 0

1

* 0

o

In this coding, the tautology of the function allowing
the don't cf!re value can be checked as r f l= 1. The
special operation for ternary-valued functions can be
computed in the combination of ordinary logic opera­
tion for If J and r f l For example, the ternary-valued
operation:

o
/0':

1

*

/0 0 *
o *
o * *
o * *

can be written as:

We described earlier that isop is obtained as the
union of the three cube sets, as shown in Fig. 4. In
order to avoid cube set manipulation, we implemented
the method in such a way that the results of cubes are
directly dumped out to a file. On each recursive call we
push the processing literal to a stack, which we c~ll a
cube stack. When a tautology function is detected, the
current content of the cube stack is appended to the
output file as a cube. This approach is efficient because
we can only manipulate BDDs, no matter how large
the result of the cube set becomes.

Our method can be extended to manage multiple
output functions. Sharing the common cubes among
different outputs, we obtain more compact representa­
tion than if each output were processed separately. In
our implementation, the cube sets of all the outputs are
generated concurrently; that is, in Fig. 4 we extend f
to be an array of BDDs as a multiple output function.
Repeating recursive calls in the same manner as a
single output function eventuates in the detection of a
multiple output constant which consists of tautology
outputs and inconsistency outputs. The tautology
outputs means that those output functions include the
cube which is currently kept in the cube stack.

5. Experimental Results

We implemented the method described in the
foregoing section, and conducted some experiments to
evaluate its performance. We used a SPARC Station 2
(SunOS 4. 1. 1, 32 MByte). The program is written in
C and C++.

MINATO: FAST GENERATION OF PRIME-IRR. COVERS FROM BDD'S

5. I Comparison with ESPRESSO

First, we generated initial BDDs for the output
functions of practical comQinational circuits which
may be multi-level or multiple output circuits. Then,
we generated prime-irredundant covers from the BDDs
and counted the numbers of the cubes and literals. We
applied the Dynamic Weight Assignment Method(9) to
find the proper order of the input variables for the
initial BDD. The execution time includes the time to
determine ordering, the formation of initial BDDs, and
the time to generate prime-irredundant covers.

We compared our results with a conventional
cube-based method. We flattened the given circuits into
cube sets with the system MIS-II,(13) and then optim­
ized the cube sets by ESPRESSO.(7)

The results are shown in Table 1. For circuits in
this work we applied: an 8-bit data selector (dec8), an
8-bit priority encoder (enc8), a 4+4 bit adder (add4) ,
an 8+ 8 bit adder (add8), a 2 X 2 bit multiplier
(mult4) a 3 X 3 bit multiplier (mult6), a 24 input
Achilles' heel function(7) (achiI8p), and its comple­
ment (achiI8n). Other items were chosen from bench­
marks at MCNC'90.

The table shows that our method is much faster
than ESPRESSO, with especially more than 10 times
acceleration for the large scale circuits. The speed up
was most impressive the c432 and c880, where we
generated prime-irredundant covers consisting of more
than 100,000 cubes and 1,000,000 literals within a
reasonable time. We could not apply ESPRESSO to
these circuits because we were unable to flatten them
into cube sets even after ten hours. In another example,
ESPRESSO performed poorly for achil8n because the
Achilles' heel function requires a great many cubes

Table I Comparison with ESPRESSO.

Name In. Out. Our method ESPRESSO

Cubes Literals Time(s) Cubes Lit. Time(s

dec8 12 2 17 90 0.3 17 90 0.2

enc8 9 4 17 56 0.2 15 51 0.3
add4 9 5 135 819 0.7 135 819 1.9
add8 17 9 2519 24211 13.3 2519 24211 443.1

mult4 8 8 145 945 1.4 130 874 5.0
mult6 12 12 2284 22274 26.7 1893 19340 1126.2

achi18p 24 1 8 32 0.2 8 32 2.0
achi18n 24 1 6561 59049 8.7 6561 59049 3512.7

5xpl 7 10 72 366 0.8 65 347 1.5
9sym 9 1 148 1036 0.9 87 609 10.7

alupla 25 5 2155 26734 20.5 2144 26632 257.3

bw 5 28 68 374 1.1 22 429 1.4

duke2 22 29 126 1296 3.2 87 1036 28.8

rd53 5 3 35 192 0.3 31 175 0.5

rd73 7 3 147 1024 1.2 127 903 4.2

sao2 10 4 76 575 1.1 58 495 2.4
vg2 25 8 110 914 1.9 110 914 42.8

c432 36 7 84235 969037 1744.8 x X >36k
c880 60 26 114299 1986014 1096.6 x X >36k

971

when we invert it. Here, our method still puts in a good
performance because the complementary function can
be represented with the same size BDD as the original
one.

As far as the number of cubes and literals is
concerned, our method in general may give somewhat
larger results than ESPRESSO. In most cases, the
differences range between 0% and 20%. In none of
experiments, did we find an example giving more than
two times the difference in terms of number of literals.

5.2 Effect of Variable Ordering

We conducted another experiment to evaluate the
effect of variable ordering. In general, the size of BDDs
depends greatly on the order. We generated prime­
irredundant covers from the two BDDs of the same
function but in a different order: one was in fairly
good order (obtained using the minimum-width
method(ll» , and the other was in a random order.

As shown in Table 2, the numbers of cubes and
literals are almost the same for both, while the size of
BDDs varies greatly. The result demonstrates that our
method is robust for variation in order. However,
variable ordering is still important because it affects

Table 2 Effect of variable ordering.

Name Heuristic order Random order

#BDD Cubes Lit. Time(s) #BDD Cubes Lit. Time(s)
dec8 16 17 90 0.3 41 17 90
enc8 21 17 56 0.2 25 17 56
add8 41 2519 ~4211 13.3 383 2519 24211
mult6 1274 2284 ~2274 26.7 1897 2354 ?2963
achi18r 24 6561 fS 9049 8.7 771 6561 59049
5xpl 43 72 366 0.8 60 72 364
alupla 1376 2155 ~6734 20.4 4309 2155 26730
bw 85 68 374 1.1 90 64 353
duke2 396 126 1296 3.2 609 125 1280
sao2 143 76 575 1.1 133 76 571
vg2 108 110 914 1.9 1037 110 914

Table 3 Result for variation of input number.
(100 random functions, single output)

In. BDD size Cubes Literals ILit./Cube
1 0.58 0.77 1.35 1.75
2 1.41 1.25 2.84 2.27

3 3.22 2.30 7.17 3.12

4 6.39 4.20 16.05 3.82

5 11.71 7.85 36.39 4.64
6 20.51 14.88 82.18 5.52

7 36.24 27.09 172.06 6.35

8 64:59 52.27 377.41 7.22

9 118.17 99.31 808.09 8.14

10 210.12 192.26 1738.89 9.04

11 365.04 370.90 3693.49 9.96

12 633.97 722.11 7865.91 10.89

13 1144.12 1406.31 16635.79 11.83

14 2154.49 ~752.53 35154.84 12.77

15 4151.45 5393.25 73980.57 13.72

0.3
0.2

24.3
30.2
30.9

0.9
43.1

1.1
3.7
1.0
2.7

972

the execution time and memory requirement.

5. 3 Statistical Properties

Taking advantage of our method, we examined the
statistical properties of prime-irredundant covers,. We
applied our method to 100 patterns of random func­
tions and took the average for the size of initial BDDs
and generated cube sets. The random functions were
computed using a standard C library.

Table 3 shows the property for variation in input
number. Both BDDs and cube sets grow exponentially.
It is known that the maximum BDD size is 0 (2n In)
(where n is the input number) .0) Our statistical experi­
ment produced similar results. In terms of number of
cubes, we observe about 0 (2n). The ratio of cubes to
literals (the number of literals per cube) is almost
proportional to n.

Table 4 shows the property for variation in output
number when the input number is fixed. Both BDDs

(#)
250

200

150

100

50

Table 4 Result for variation of output number.
(input number= 10)

Out. BDD size Cubes Literals Lit./Cubes
1 209.80 192.13 1737.84 9.05
2 364.44 381.69 3452.20 9.04
3 500.86 568.10 5145.01 9.06

4 630.93 754.88 6842.25 9.06

5 758.33 933.86 8468.70 9.07

6 884.87 1120.83 10166.36 9.07

7 1011.08 1294.84 11750.90 9.08

8 1136.94 1471.63 13355.59 9.08

9 1262.29 1649.47 14978.33 9.08
10 1388.76 1815.44 16493.02 9.08

11 1513.15 1987.56 18078.64 9.10

BOD size

ooo---~~--~--~--~--~~--~--~--w

o 10 20 30 40 50 60 70 80 90 100 (%)

Truth-table density

Fig. 6 Result for variation of truth-table density.
(inputs = 10, output= 1)

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO.6 JUNE 1993

and cube sets grow a little less proportionally, appear­
ing the effect of sharing their subgraphs or cubes. We
expect such data sharing is more effective in practical
circuits, since in many cases the output functions are
relative each other, unlike random functions. The ratio
of cubes to literals is almost constant, as the input
number is fixed.

Next, we investigated the property for variation in
truth-table density, which is the rate of l's in the truth
table. We applied our method to the weighted random
functions with 10 inputs, ranging from 0% to 100% in
density. Figure 6 shows that the BDD size is symmetric
with a center line at 50%, which is like the entropy of
information. The number of cubes is not symmetric
and peeks at about 60%; however, the number of lit­
erals becomes symmetric with BDD size. This result
suggests that the number of literals is better as a
measure of complexity of Boolean functions than the
number of cubes.

6. Conclusion

We have presented a method of generating prime­
irredundant covers from BDDs directly. The experi­
ments show that our method is much faster than con­
ventional methods. It enables us to generate compact
cube sets from large-scale circuits, some of which have
never been flattened into cube sets by previous
methods. In terms of size of the result, our method may
give somewhat larger results than ESPRESSO, but
there are many applications in which such an increase
is tolerable.

Our future work includes improving the method
further more and applying to multi-level logic synthe­
sis. Recently, implicit cube representation ,(14) which is
an compressed representation of cube sets, was present­
ed. It allows us to deal with large-scale cube sets. We
hope our method may be accelerated still more using
the new representation.

Our method can be utilized to transform BDDs
into compact cube sets or to flatten multi-level circuits
into two-level circuits. We expect the method to be
useful in many logic design system applications.

Acknowledgment

The author would like to express his appreciation
to Mr. Adachi and Mr. Endo of NTT LSI laboratories
for their encouragement. The author also thanks the
members of Professor Yajima's research laboratory of
Kyoto University for fruitful discussions.

References

(1) Akers, S. B., "Binary Decision Diagrams," IEEE Trans.
Comput., vol. C-27, no. 6, pp. 509-516, 1978.

(2) Bryant, R. E., "Graph-Based Algorithm for Boolean

MINATO: FAST GENERATION OF PR!ME-IRR. COVERS FROM BDD'S

Function Manipulation," IEEE Trans. Comput., vol.
C-35, no. 8, pp. 677-691 , 1986.

(3) Minato, S., Ishiura, N. and Yajima, S., "Fast Tautology
Checking Using Shared Binary Decision Diagram­
Benchmark Results," Proc. IFIP International Workshop
on Applied Formal Methods for Correct VLSI Design,
pp.580-584, 1989.

(4) Matsunaga, Y. and Fujita, M., "Multi-level Logic
Optimization Using Binary Decision Diagrams," Proc.
ICCAD'89, pp. 556-559, 1989.

(5) Morreale, E., "Recursive Operators for Prime Implicant
and Irredundant Normal Form Determination," IEEE
Trans. Comput., vol. C-19, no. 6, pp. 504-509, 1970.

(6) Hong, S. J., Cain, R. G. and Ostapko, D. L., "MINI: A
Heuristic Approach for Logic Minimization," IBM Jour­
nal of Res. and Dev., vol. 18, no. 5, pp.443-458, 1974.

(7) Brayton, R. K., McMullen, C. T., Hachtel, G. D., and
S. -Vincentelli A. L., Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers USA,
1984.

(8) Madre, J. C. and Billon, J. P., "Proving Circuit Correct­
ness Using Formal Comparison Between Expected and
Extracted Behavior," A CM / IEEE Proc. 25th DA C, pp.
205-210, 1988.

(9) Minato, S., Ishiura, N . and Yajima, S., "Shared Binary
Decision Diagram with Attributed Edges for Efficient
Boolean Function Manipulation," A CM / IEEE Proc.
27th DAC, pp. 52-57, 1990.

(10) Fujita, M., Matsunaga, Y. and Kakuda, T., "On Variable
Ordering of Binary Decision Diagrams for the Applica­
tion of Multi-level Logic Synthesis," Proc. the European
Conference on Design Automation, pp. 50-54, 1991.

(11) Minato, S., "Minimum-Width Method of Variable Order­
ing for Binary Decision Diagrams," IEICE Trans. Fun­
damentals, vol. E75-A, no . 3, pp. 392-399, Mar. 1992.

(12) Jacobi, R. P. and Trullemans, A. -M., "Generating Prime
and Irredundant Covers for Binary Decision Diagrams,"
IEEE Proc. EDAC-92, pp.104-108, 1992.

(13) Brayton, R. K., Rudell, R. , -Vincentelli, A. S. and Wang,
A. R., "MIS: A Multiple-Level Logic Optimization Sys­
tem," IEEE Trans. Comput. Aided Des. Integrated
Circuits & Syst ., vol. CAD-6, no. 6, pp. 1062-1081,1987.

(14) Coudert, O. and Madre, J. c., "Implicit and Incremental
Computation of Primes and Essential Primes of Boolean
functions," A CM / IEEE Proc. 29th DA C, pp. 36-39,
1992.

terns.

Shin-ichi Minato was born in Ishi­
kawa, Japan, on August 30, 1965. He
received the B.E. and M.E. degrees in
Information Science from Kyoto Univer­
sity, Japan in 1988 and 1990, respectively.
Since joining NTT LSI Laboratories,
Kanagawa, Japan in 1990, he has been
working on the research of logic design
systems. His current interest is in the
representation and manipulation of
Boolean functions for logic synthesis sys-

973

