

Instructions for use

Title Minimum-Width Method of Variable Ordering for Binary Decision Diagrams

Author(s) Minato, Shin-ichi

Citation IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, E75(A3), 392-399

Issue Date 1992-03-20

Doc URL http://hdl.handle.net/2115/47490

Rights copyright©1992 IEICE

Type article

Note PAPER: Special Section on the 4th Karuizawa Workshop on Circuits and Systems

File Information 62_IEICE75_392.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

TEICE TRANS. FUNDAMENTALS, VOL. E75-A, NO.3 MARCH 1992
392

I PAPER Special Section on the 4th Karuizawa Workshop on Circuits and Systems

Minimum-Width Method of Variable Ordering for
Binary Decision Diagrams

SUMMARY Binary Decision Diagrams (BDDs) and Shar­
ed Binary Decision Diagrams (SBDDs), which are improved
BDDs, are useful for implementing VLSI logic design systems.
Recently, these representations, which are graph representations
of Boolean functions, have become popular because of their
efficiency in terms of time and space. The forms of the BD D vary
with the order of the input variables though they represent the
same function. The size of the graphs greatly depends on the
order. The variable ordering algorithm is one of the most impor­
tant issues in the application of BDDs. In this paper, we consider
methods which reduce the graph size by reordering input vari­
ables on a given BDD with a certain variable order. We propose
the Minimum- Width Method which gives a considerably good
order in a practicable time and space. In the method, the order
is determined by width of BDDs as a cost function. In addition,
we show the effect of combining our method with the local
search method, and also describe the improvement using the
threshold. Experimental results show that our method can reduce
the size of BDDs remarkably for most examples. The method
needs no additional information, such as the topological infor­
mation of the circuit. The results can be a measure for evaluation
of other ordering methods.
key words: binGlY decision diagrams, boolean function, logic
synthesis, variable ordering

1. Introduction

Techniques of efficient Boolean function represen­
tation and manipulation are very important in imple­
mentation of VLSI logic design systems such as logic
synthesis, verification, and test generation. Binary
Decision Diagrams (BDDs) , which are graph represen­
tations of Boolean functions were presented by Akers(l)
and Bryant(2). Shared Binary Decision Diagrams
(SBDDs) (3),(5) are improved BDDs. These representa­
tions have recently become popular because of their
efficiency in terms of memory requirement and manipu­
lation time.

In using BDDs, we have to define the order of the
input variables of the Boolean functions to be re­
presented. The forms of the BDD vary with the order­
ing for the same function. The size of the graphs greatly
depends on the order. The variable ordering algorithm
is one of the most important issues in the application
of BDDs.

There are some works on the ordering. References

Manuscript received July 13, 1991.
Manuscript revised October 5, 1991.

t The author is with NTT LSI Laboratories, Atsugi-shi,
243-01 Japan.

Shin-ichi MINATOt, Member

(11) and (12) are the methods of finding the optimal
order. However, it is still difficult to find the best order
for larger scale functions. As another approach, Refs.
(4), (13) and (3) show the heuristic methods using
the topological information of logic circuits. Reference
(6) uses testability measure for the heuristics, which
reflect not only topological but logical information of
the circuit. These heuristic methods can be applied to
the practical benchmark circuits and can compute a
good order in many cases. Their weak point is that the
results depend on the structure of the circuits, and none
of them are effective for universal circuits(6). Reference
(7) shows another approach that improves the order
for the given BDD by repeating the exchange of the
variables. It can give further better results than the
initial BDDs, but sometimes it is trapped in local
optimum.

In this paper, we propose a new method that finds
an appropriate order for the given BDD by reordering
the variables. Our method features that it evaluates the
width of the BDD, which we defined. It can compute
a good order independently of the circuit structure.
Our experiments show that our method is much
effective for many practical functions. In a reasonable
amount of time, it gives good results independently of
the initial variable orders.

2. Binary Decision Diagrams

We begin with an explanation of BDDs which are
the ground of this paper.

2. 1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed
graph representation of a Boolean function, as shown
in Fig. 1 (a). This graph is derived by reducing a
binary tree graph, as shown in Fig. 1 (b). The binary
tree represents the recursive execution of Shannon's
expansion, which produces the two subfunctions from
a Boolean function by assigning 0 or 1 to an input
variable.

The following reduction process gives a Reduced
Ordered BDD (ROBDD) which represents a Boolean
function uniquely. (see Ref. (2) for details).
1. Fixing the order of the input variables.

MINATO: MINIMUM-WIDTH METHOD OF VARIABLE ORDERING FOR BOD'S

x3 ' x2 + x3 . x2 + xl

t t

(~ (b)

Fig. I (a) Binary Decision Diagrams (BODs).
(b) Binary Decision Tree.

x2·XT x2(Bxl x2 + xl

t

Fig.2 Shared BODs (SBDDs).

2. Eliminating all the redundant nodes whose two
sub-graphs are identicaL
3. Sharing all the equivalent sub-graphs.

ROBDDs have the following properties.
• Equivalence between two functions can be

checked by an isomorphism check of those graphs.
• For many functions, the graph size are feasible

for handling on a computer(8).
• Logic operation can be carried out within a time

almost in proportional to the size of the graphs.
Resent research(9) indicating that ROBDDs enable

the efficient execution of a new algorithm, which used
to be considered impracticable in terms of the memory
requirement and execution time, has contributed to the
current popularity of BDD application.

2. 2 Shared Binary Decision Diagrams

A set of ROBDDs representing multiple functions
can be united into a single graph which consists of the
ROBDDs sharing their sub-graphs with each other.
The efficiency of manipulation can be improved by
uniting all the ROBDDs into a single graph, as in Fig.
2, We call such graphs SBDDs (Shared BDDs) (3).(5).

With an SBDD, two isomorphic BDDs never
coexist because they are completely shared. This prop­
erty offers the following advantages.

• We can compactly represent many functions
together.

• Equivalence between two functions can be
checked by only comparing the pointer to the graph.

393

Generally, the graphs whose variable orders are
not fixed or non-reduced graphs may be referred as
BDDs. In the following section, for the sake of
simplification, BDDs mean ROBDDs (and also
SBDDs).

3. Variable Ordering on BDDs

As mentioned above, BDDs have some good
properties; however, we have to fix the order of the
input variables for the function to be represented in
BDDs. Forms of BDDs may vary according to the
order though they represent the same function. In many
cases, the size greatly depends on the order. Since the
size of the graphs decides not only memory require­
ment but execution time for the graph manipUlation, it
is very important to find a good variable order for the
application of BDDs.

Fluctuations in the BDD size for various variable
orders depend on the function to be handled. There are
very sensitive examples whose BDD size vary extremely
(exponentially to the number of inputs) by only revers­
ing the variable order. On the other hand, the BDDs
for symmetric functions never vary for any variable
order. There are also an example that the multiplier
functions(lO) cannot be represented in a polynomial­
sized BDD in any variable order.

For many functions which are often manipulated
in practical LSI designs, there are good variable orders
which make BDDs much smaller then using random
orderings(3). However, it is not easy to find an appropri­
ate order automatically for any given function. If we
can compute such order in a reasonable amount of
time, BDDs become more practicable and can be used
instead of truth tables or cube sets.

3. 1 General Properties on the Variable Ordering

Empirically, the following properties are observed
on the variable order for the reduction of BDDs(3).

• The group of the inputs with local computability
should be near in the order. Namely, we should keep
inputs near that are closely related with each other and
that have some independence from the other inputs.
For example, in the case of the n-bit adder functions,
each pair of inputs with same figure should be next in
the order.

• The inputs which greatly affect the output func­
tions should be located at higher positions (near
positions to the root) in the order. When the control
inputs and the data inputs can be distinguished, the
control inputs should be located higher than the data
inputs.

If we could find a variable order which satisfies
those two properties, the BDD size would not increase.
However, the two properties are generally mixed
ambiguously, so it is difficult to find always a good

394

order only by considering the two properties.

3.2 The Approach to the Variable Ordering

At first, the variable ordering methods are
classified as follows:

• To seek the best order, which gives the minimum
size of BOD.

o To seek a quasi-minimum solution in a reasonable
time.

Concerning the method to find the best order,
there is an algorithm(ll) of 0 (n Z3n) time, where n is the
number of inputs, that is based on the dynamic pro­
gramming. However, it is still difficult to find the best
order in a practical time for functions with many
inputs, although this algorithm has been improved to
the point where the best order can be found for some
functions with 17 inputs(lZ). In this paper, we discuss
our method of finding an appropriate order for the
larger scale functions in a practical time and space.

There are two approaches to seek a quasi­
minimum solution:

o To find an appropriate order before generating a
BOD by using logic circuit information which is the
source of the Boolean function to be represented.

• To reduce the size of the graph by reordering the
input variables on a given BOD in a certain variable
order.

Some methods using the topological information
of the Circuit include ones where the circuit is traversed
in a heuristic manner(l3),(4), and another in which a
weight is assigned to each net(3). Reference (6) uses
testability measure for the heuristics. This approach is
one of the most effective ways at present and gives a
good order in many cases. Nevertheless, depending on
the structure of the circuits, this approach may not be
effective. None of them are effective for universal
circuits(6).

On the other hand, one of the disadvantages of the
latter approach, which reorders on a given BOD, is that
it cannot be executed if we cannot make an initial
BOD of a reasonable size. In most of the application
based on BODs at present, especially in logic
verification, the problems can be solved if the initial
BOOs are generated. However, there are some applica­
tions, such as logic synthesis, that require many logic
operations after generating of initial BOOs(9). In such
cases, variable reordering is an important technique
because the efficiency of the programs is sensitive to the
size 0 BOOs. It is useful especially when the heuristics
with circuit information is not available or ineffective.
We discuss this reordering approach later in this paper.

Next, there are two reordering algorithms to
reduce BOOs:

• Local search: Repeating the swap of the variables
if it improves the size of BOOs.

• Greedy method: Fixing the positions of the

IEICE TRANS. FUNDAMENTALS, VOL. E75-A, NO.3 MARCH 1992

variables one by one, based on a certain cost function.
As a local search algorithm, there is a method

which swaps the pairs of variables at the next position
with each other. Some good results have been re­
ported(7). There is the interesting idea of swapping
variables at random(lZ). In any case, the local search
greatly depends on the initial order. If the initial order
is far from the best, many swaps are needed. This takes
a long time, and there is the higher risk of being
trapped in a bad local minimum solution. But at least,
this algorithm never gives a result worse than the
initial order, therefore, it is adequate for the last
optimization in combination with other ordering
methods.

The greedy method seeks a solution with a global
view. Its good points include that it is robust to the
variation of the initial order. An algorithm for this
method has been proposed(14). In greedy methods, the
most important and difficult point is to find an
effective cost function. In this paper, we propose a new
ordering method using the width of BODs, as a cost
function.

4. Minimum-Width Method

We describe our ordering method in this section.
In the following, n denotes the number of the input
variables. Each variable is identified by an index
number, as Xl, Xz, ... , X n , where the variable with a
larger index is located at a higher position (near to the
root) in the BOOs.

4. 1 The Cost Function for the Greedy Method

Our method is based on the greedy method. At
first, we choose one variable from among the all, and
fix it at the highest position (Xn). Next, another vari­
able is chosen from among the rest, and fixed at the
second highest position (Xn-l). In this manner, all the
variables are chosen one by one, and they are fixed
from the highest to the lowest. This algorithm has no
back tracking.

When choosing Xk (1:2 k:2 n), the variables with
higher indexes than k have already been fixed, and the
form of the higher part of the graph never varies.
Namely, the choice of Xk affects only the part of the
graph lower than Xk. The aim on each step is to choose
Xk which minimizes the lower part of the graph.

However, it is dfficult to know how the lower part
of the graph will be minimized, because the positions
of the lower variables has not been fixed yet. To avoid
back tracking, we decide to choose Xk by evaluating
with a certain cost function.

It is desired that the cost function should give a
good estimation of the minimum size of the graph for
each choice of Xk. Furthermore, the cost function
should be computable within a feasible time. We

MINATO: MINIMUM-WIDTH METHOD OF VARIABLE ORDERING FOR BOD'S

propose the use of the width of BDDs as the cost
function to satisfy those requirements.

4. 2 The Width of BDDs

We define the width of BDDs here.
Definition: The width of BDDs at height k, de­
noted as Widthk , is the number of edges crossing the
section of the graph between x" and Xil+l, where the
edges pointing to the same node are counted as one.
The width between Xl and the bottom of graph is
denoted as widt~. 0

An example is shown in Fig. 3. widthk ' resembles
to the number of the nodes with Xk; however, they are
generally different. widthk may be larger than the
number of the Xk nodes because the width can count
the edges which skips the node with Xk.

We present the following theorem on the width of
BDDs.
Theorem: The widthk is constant for any permutation
among {Xl, Xz, "', Xk} and any permutation among
{Xk+l, X,,+z, "', Xn}.

Proof: Each edge crossing the section of the graph
between Xk+l and Xk represents a sub-function

f1 f2

width 2 = 2

width 1 = 3

............. ~~
[II 1

width 0 = 2

Fig. 3 The width of BDDs.

f1 f2 f3

variables

395

obtained by assigning a vector of Boolean values {O,
l}n-" to the input variables along the path from the
root node to that edge. BDDs have the property that
the edges representing the same sub-function point to
the same node. Therefore, width" means the number of
all the sub-functions obtained by-assigning all the
patterns of the vector {O, l}n-" into the input variables
{x,,+I, X,,+z, "', Xn}.

In assigning all the patterns of the vector into the
variables, the order of the patterns does not affect the
result. The permutation of the variables can be regard­
ed as the change of the order of the patterns. That is to
say, the width" is constant for any permutation among
{Xk+I, X,,+z, "', Xn}.

All the sub-functions, which are obtained by
assigning all the patterns of the vector, are uniquely
represented in BDDs with the same variable order of
{Xl, X2, "', X,,}. For any permutation among these
variables, the number of the sub-functions is constant
because the sub-functions are still represented unique­
ly. Therefore, width" never varies for any permutation
among {x!, X2, "', Xk}' 0

4. 3 Minimum-Width Method

Our ordering method uses the width of the BDD as
a cost function to estimate the complexity of the graph,
and the variables are chosen one by one from the
highest to the lowest by observing the cost function.
Namely, we choose x" which gives minimum width"-l
among the rest of the variables, as shown in Fig. 4. We
call this algorithm the Minimum- Width Method. If
there are two candidates with the same width"-l, the
variable at the higher position in the initial order is
chosen before the other.

The grounds for using the width of BDDs as a cost
function are as follows.

• On choosing X,,; width"-l is independent from the
order of the rest of the variables Xl, X2, "', X,,-I, as in
the above theorem. Therefore, it is robust for the
variation of the initial order.

• It is clear that we should avoid to choose x" that
makes width,,-l large because width"_l is a lower
bound of the number of the nodes in the part of the
graph lower than x".

• It is not difficult to compute width".
For these reasons, it is effective to use the width of

BDDs as the cost function.
The time complexity of our method is 0 (n 2 G),

where G is the average size of the graph since the size
varies during the ordering. This complexity is consider­
ably less than the conventional algorithms which seeks
the best order.

5. Implementation of Minimum-Width Method

Fig.4 Minimum-width method. In this section, we present the techniques of im-

396

plementing the Minimum-Width Method efficiently.

5. 1 Swapping of Variables

Basically, there are two methods of modifying
BODs by permuting the variable order. They are

• deleting the initial BDDs, and regenerating new
BODs in a new order,

• and applying the logic operations of swapping
variables on the initial BDDs.

When all the variables are reordered at one time,
the former method is more efficient. In this paper, we
use the latter method because the Minimum-Width
Method repeats partial permutation of the variable
order.

Any permutation is carried out by combining the
swap of a pair of variables. Now, we consider the
realization of swapping of two variables using logic
operations.

We describe here the sub-functions obtained by
assigning a value of (0, 1) into the two variables Xi and
Xj for a Boolean function f

Xi=O Xj=O: /00
Xi=O Xj= 1: /01
Xi= 1 Xj=O: /10
Xi= 1 Xj= 1: /ll

In the above case, we can swap Xi and Xj by swapping
only /01 and /10, We do not have to move /00 and /11,
The swapping can be completed by reconstructing
these swapped sub-functions. Namely, the swap opera­
tion is represented as:

Iswap= Xi Xj/oO+ XiXj!lO+ Xi Xj/o 1 + XiXi.!Il'

This operation requires no traverse on the part of
the graph lower than Xi and Xj. The operation time is
in proportion to the number of the nodes at positions
higher then Xi and Xj. Therefore, the higher variable
can be swapped more quickly.

5. 2 Computing of the Width of BODs

The widthk can be computed by counting the
number of elements in the set Sk, where Sk consists of
all the sub-functions obtained by assigning any combi­
nation of value (0, 1) to the input variables at posi­
tions higher than x". In our implementation, each
sub-function is identified by a I-word index. In count­
ing procedure, we enter the indexes which have already
counted into a hash table to check equivalent sub­
functions. The widthk can be computed in a time that
is proportional to the number of the nodes at the
positions higher than k.

In the Minimum-Width Method, we compute the
widthk for each k from k n 1 to k=O. In this case,

IElCE TRANS. FUNDAMENTALS, VOL. E7S-A, NO.3 MARCH 1992

we can compute widthk_1 using the result of counting
widthk. When we store the set of sub-function Sk,
which has been generated in computing widthk, the
next set Sk-I can be obtained by only assigning Xk=O
and Xk = 1 for Sk.

In addition, if we assign Xi = 0 and Xi = 1 (1 ~ i ;?;
k) for Sk, the next set Sk-I represents the sub-functions
when we choose Xi as the variable at the k-th highest
position in the order. Therefore, we do not have to
repeat swapping between Xk and Xi for all (I;?; i;?; k)
in choosing x".

5. 3 Management of Attributed Edges

In our BDD manipulator, we have implemented
attributed edges(3) in order to reduce the storage and
the time. They are the edges attached some sorts of
attributes; each attribute represents a certain opera­
tions. Three attributes are proposed:

• Output inverters, to complement an output func­
tion.

• Input inverters, to complement an input variable.
Variable Shifters, to shift the index numbers of

the input variables.
Here, we present how the attributed edges are managed
in our ordering method.

In using the attributed edges, the property is kept
that a BDD represents a Boolean function uniquely,
although the size of graphs and execution time can be
different. If we apply the Minimum-Width Method to
the BDDs with the attributed edges, the same order
should be computed as to the original BDDs, because
the Minimum-Width Method is based on logic opera­
tions. The order are computed for the reduction of the
original BODs; however, empirically the results are
also effective for BDDs with the attributed edges.

The ordering method can be improved by con­
sidering the affect of the attributed edges. In using
attributed edges, there are the edges pointing to the
same node but whose attributes are different. Since
these edges represent different sub-functions, they were
counted as different ones in the computing of the width
of BDDs in original method. Regarding such edges as
identity to be counted one, we can obtain the order for
the BDDs with attributed edges. In our implementa­
tions, only the effect of output inverters are considered.

5. 4 Preventing Temporary Increases in Graph Size

Our method repeats the swap of two variables to
approach an appropriate order. During the ordering,
the size of graph increases temporarily. Some increase
may be unavoidable since we may not be able to
reduce BDDs monotonously; however, the increase
cannot be overlooked if it becomes too large.

For example, when Xi is chosen for the k-th
highest variable, we simply swap Xi and x". Repeating

MINATO: MINIMUM-WIDTH METHOD OF VARIABLE ORDERING FOR BOD'S

this procedure, the rest of the variables may be shuffled
at random and the graph size increases temporarily. In
the worst case, this random shuffling causes memory
overflow in the ordering halfway through, in spite of
the fact that the final result rs a smaller graph. We had
better not to change the order of the rest of the vari­
ables during the ordering process.

There are two devices. The first one is to choose
the variable at a higher position in the initial order
when there are two candidates with the same widthk - 1,

as written in the preceding section. This does not
modify the part of the graph lower than the chosen
variable, therefore, the risk of the memory overflow is
lessened.

The other device involves the manner of the swap­
ping. In our first implementation, we fixed the variable
one by one from the highest to the lowest as X n , Xn-l,

"', XI. In this way, the variables of the former occu­
pants were forced to move to a lower position. This is
one of the reasons that the rest of the variables are
shuffled. To avoid this, we move the chosen variables
to X2n, X2n-l, "', Xn+l, which are new variables higher
than X n , so that the rest of the variables do not have to
move. This device enables us to avoid the meaningless
shuffles of the variables. After moving all the variables,
the indexes have to be revised by subtracting n. The
revision can be executed easily if the variable shifters(3)
are implemented.

6. Experiments

We implemented our ordering method as shown
above, and conducted some experiments for an evalua­
tion. We used a SPARC Station 2 (SunOS 4.1.1,32 M
Byte). The program is described in C andC++. The
memory requirement ofBDDs is about 21 Bytes a node.

6. 1 Experimental Results

In our experiments, we generated initial BDDs for
given logic circuits in a certain order of the variables
and applied our ordering method to the initial BDDs.
We use the three kinds of the attributed edges. Our
ordering method works on the BDDs with the three
attributed edges, but it considers only the effect of
output inverters. There are no serious differences of the
performance empirically.

The results for some examples are summarized in
Table 1. In this table, dec8 is the output function of an
8-bit data selector, and the function enc8 is an 8-bit
priority encoder. adder8 is an 8 + 8 bit adder, and
mult6 is a 6 X 6 bit multiplier. The other items were
chosen from the benchmark circuits in DAC'86(l5).
These circuits generally have multiple outputs. Our
program can handle multiple output functions using
Shared BDDs.

In this experiment, the initial order is important.

397

Table I Experimental results.

June. In. out. #node: ave.(min.-max.) time
init. after (sec)

dee8 12 2 75.2 (19-204) 17.8 (16-20) ~6Jl9

ene8 9 4 25.2 (23-28) 19.9 (19-22) 0.05
adder8 17 9 543.1 (337-938) 40;0 (40-40) 0.53
mult6 6 6 2803.5 (2382-3209) 2145.9(2123-2296) 6.63
5xpl 7 10 63.9 (58-72) 36.0 (36-36) 0.20
9sym 9 1 23.0 (23-23) 23.0 (23-23) 0.25
alupla 25 5 8101.7(4178-12952) 1055.0 (856-1178) 33.21
vg2 25 8 861.2 (562-1688) 84.2 (81-87) 1.80

Table 2 Experiments on large scale examples.
--

fune. In. out. #node time
init. after (sec)

e432 36 7 23290 1383 177.5
c499 41 32 29702 21962 1311.8
e880 60 26 19100 18336 721.1
c1908 33 25 11083 6590 239.1
e3540 50 22 214941 33975 7493.9
e5315 178 123 27958 2066 14548.3

We generated 10 initial BDDs in random orders, and
applied our ordering method in each case. The table
shows the maximum, minimum, and average number of
the nodes before and after ordering. CPU time is the
average time of ordering for 10 cases (including the
time of generating initial BDDs).

The results show that our method can reduce the
size of BDDs remarkably for the most examples, except
for 9sym. (This is natural because 9sym is a symmetric
function.) Note that for the various initial order, the
fluctuation of the size after ordering is comparably
smaller than the initial BDDs. This shows that our
Minimum-Width Method gives a good solution in­
dependently of the initial order. This solution can act
as the guiding values for the BDDs for which the best
order has not been found, and it is useful in the
evaluation of other ordering methods. In terms of
speed, it takes a reasonable time for a BDD with scores
of inputs and thousands of nodes.

Next, the similar experiments were conducted for
the larger examples. The functions were chosen from
the benchmark circuits in ISCAS'8S(16). On these ben­
chmark circuits, there are several reports of the heuris­
tic ordering method using the circuit infor­
mation(4),(13),(3),(6). We cannot exactly compare these
heuristics because the manners of the experiments are
different. (Someone counts the maximum size ofBDDs
in the operations, others count the size of the Shared
BDD of all output functions or all functions which
includes internal nets.) However, Butler(6) concludes
that none of them are effective for universal circuits.

In our experiments, the initial orders are given by
the Dynamic Weight Assign Method(3), which is one of
the heuristic methods using the circuit information.
These benchmark circuits are too complex to generate

398

initial BDDs in a random order.
The results are shown in Table 2. Our method is

also effective for large scale functions in terms of graph
reduction, thought it- takes longer time (but much
faster than the methods which seeks best order). The
sizes of the BDDs after reordering are almost equal to
the heuristic methods(4),(13),(3),(6) which use circuit infor-
mation, and our method may be more generally
effective for all the circuits. Remarkably, we find that
c5315 can be represented in only about 2000 nodes,
which is far less than the results by any oter method (as
about 18000 nodes(l7). Our results are useful to evalu­
ate other heuristic methods of variable ordering.

The weak points of our method include that it
takes longer time than the heuristic methods using the
circuit information and that it requires a certain initial
BDDs. However, we can say that it is effective to the
applications which have many logic operations after
generating of BDDs.

6. 2 Comparison and Combination with the Local
Search Method

We did another experiment to compare the prop­
erties of the Minimum-Width Method and the local
search method, which was presented in the preceding
section. We implemented a local search method of
variable ordering which swaps the pairs of variables on
the next position with each other if the swap reduces
the size of the graph.

For the three examples, we applied both ordering
methods to the BDDs with various initial orders, that
include the best and worst orders in our knowledge,
and average size for 10 random orders, as shown in
Table 3. It shows that the two ordering methods have
complementary properties. The local search never gives
worse results than the initial order, but the effect
greatly depends on the initial order. On the other hand,
the Minimum-Width Method does not guarantee
obtaining a better result than the initial order; how­
ever, the result is always close to the best solution.

These properties lead us to conclude that it is
effective to apply the Minimum-Width Method at first
because it seeks a good order with a global view, and
then to apply the local search for the least optimiza-

Table 3 Comparison with the local search.

-fum-. -[init.#n-;;de !Mi;:;.:-widtblocal se~rch ombinatiol;
-dee8 (best) 8 ---- 12 ---8---- '--10-"-'

(worst) 382 17 11
(random) 75.2 17.8 10.1

adder8 (best) ~---40-

(worst) 1U9 40 178 40
(random) 543.1 40.0 182.9 40.0

-;l-;:;pla (best)--S30--969-

(worst) 12968 979 2835 830
~ndom) 8101.7 1055.Q. __ .. 2311..:..~ __ ~~

IEICE TRANS. FUNDAMENTALS, VOL. E75-A, NO.3 MARCH 1992

tion. The results of our experiments with such combi­
nation, which are summarized in Table 3, show that
the combination is more effective than applying either
of the two methods.

6. 3 An Improvement with Threshold

The Minimum-Width Method may give an order
worse than the initial BDD, when the initial variable
order is already nearly the best. This property is not
good for the practical use, and in the following, we
consider how to prevent this increase in graph size.

In our method, the width of the BDD shows a
lower bound of the number of the nodes in the part of
the graph which has not been fixed yet. It is clearly
unfavorable to choose variables which make the lower
bound large because the chance of reducing the graph
size may be lost. The important point is that we should
not choose variables which make the lower bound
large but that it is not important to actually seek the
minimum lower bound itself. If we repeat the swap of
variables based on the small differences in the widths,
there is no great effect and the order may be shuffled
thoughtlessly.

We made a further improvement in which a swap
of the variables is canceled if the difference of the
widths is less than a threshold value. Precisely speak­
ing, we do not swap the variables when the reduction
ratio of the minimum width to the width of the former
occupant variable is not greater than the threshold
value.

When the initial order is nearly the best, some
swaps are canceled since the fluctuation of the width is
smaller than the threshold, and consequently the initial
order is protected. If the inital order is far from the best
order, the fluctuation of the width become greater than
the threshold and the swap is executed as described
previously.

To evaluate this improvement, we experimented
with three threshold values as 5%, 7%, and 10%. The
initial orders are almost good ones computed by the
Dynamic Weight Assign Method. The results are
shown in Table 4, they indicate that this improvement
is effective to a degree. Too small a threshold cannot
give a remarkable effect, but one that is too large
cancels the swaps necessary to reduce the graph. The
appropriate value of the threshold is about 5% or 10%,
and may depend on the kind of the function.

Table 4 Improvement with threshold.

[une.
init. 0% 5% 7%' 10%

-~:-~~---.-~~-~-~~- 2~~~~-~~~~~~----. ;'~~fTI3 -~-!~~~
e880 19100 18336 19254 8930 8930
e1908 11083 6590 5246 5246 5202

~~-~-~------ -- ,,~~ .. --

MINATO: MINIMUM- WIDTH M ETHOD OF VARIABLE ORDERING FOR BOD'S

7. Conclusion

We have shown a method of variable ordering for
the reduction of BDD size. Our method finds an appro­
priate order using no additional information, such as
the topological information of the circuit. It reduces
the size of the graph by reordering the input variables
on a given BDD with a certain variable order.

This method has the good property of giving a
quasi-minimum solution independently of the initial
order in a reasonable time. The results can be measures
for the evaluation of other ordering methods. The
method can reduce some large scale BDDs in a practi­
cal time. We showed the effect of combining our
method with the local search method, and also de­
scribed the improvement using the threshold.

The weak point of our method is that it cannot be
executed if we cannot generate a feasible size of BDD
in the initial order. When we apply the method to some
very large scale BDDs, initial BDDs cannot be gene­
rated because of memory overflow. Future work
remains to develop a method which can compute a
good order concurrently with generating BDDs.

Acknowledgement

The author would like to express his appreciation
to Mr. Adachi and Mr. Endo of NTT LSI laboratories
for their encouragement. The author also thanks the
members of Professor Yajima's research laboratory of
Kyoto University for fruitful discussions.

References

(I) Akers S. B.: "Binary Decision Diagrams", IEEE Trans.
Comput., pp. 509-516(1978).

(2) Bryant R. E.: "Graph-Based Algorithms for Boolean
Function Manipulation" , IEEE Trans. Comput., pp. 677
-691 (1986) .

(3) Minato S., Ishiura N. and Yajima S.: "Shared Binary
Decision Diagram with Attributed Edges for Efficient
Boolean Function Manipulation", ACM/IEEE Proc.
27th DAC, pp. 52-57(1990).

(4) Malik S., Wang A. R., Brayton R. K. and S.-Vincentelli
A.: "Logic Verification Using Binary Decision Diagrams
in a Logic Synthesis Environment", Proc. ICCAD'88, pp.
6-9 (1988).

(5) Brace K. S., Rudell R. L. and Bryant R. E.: "Efficient
Implementation of a BDD Package", ACM/IEEE Proc.
27th DAC, pp. 40-45(1990).

(6) Butler K. M., Ross D. E., Kapur R. and Mercer M. R.:
"Heuristics to Compute Variable Orderings for Efficient
Manipulation of Ordered Binary Decision Diagrams",
ACM/IEEE Proc. 28th DAC, pp. 417-420(1991).

(7) Fujita M., Matsunaga Y. and Kakuda T.: "On Variable
Ordering of Binary Decision Diagrams for the Applica­
tion of Multi-level Logic Synthesis" , Proc. the European
Conference on Design Automation, pp. 50-54 (1991).

(8) Yajima S. and Ishiura N .: "A Class of Logic Functions
Expressible by a Polynomial-Size Binary Decision Dia-

399

grams", Proc. Synthesis and Simulation Meeting and Int.
Interchange (SASIMI'90) (1990).

(9) Matsunaga Y. and Fujita M.: "Multi-level Logic Optim­
ization Using Binary Decision Deagrams", Proc.
ICCAD'89, pp. 556-559 (1989).

(10) Bryant R. E.: "On the Complexity of VLSI Implementa­
tions and Graph Representations of Boolean Functions
with Application to Integer Multiplication" , IEEE Trans.
on Computers, 40, 2(1991).

(II) Friedman S. J. and Spowit K. J.: "Finding the Optimal
Variable Ordering for Binary Decision Diagrams", ACM/
IEEE Proc. 24th DAC, pp. 348-356(1987).

(12) Ishiura N ., Sawada H. and Yajima S.: "Minimization of
Binary Decision Diagrams Based on Exchanges of Vari­
ables", Proc. ICCAD'91, pp. 472-475(1991).

(13) F ujita M. , Fujisawa H. and Kawato N. : "Evaluations
and Improvements of a Boolean Comparison Method
Based on Binary Decision Diagrams", Proc. ICCAD'88,
pp.2-5 (1988).

(14) Aborhey S.: "Binary decision graph reduction", lEE
Proc., 136, Pt.E, 4(1989).

(15) de Geus A. J.: "Logic Synthesis and Optimization Bench­
marks for the 1986 DAC", ACM/IEEE Proc. , 23rd DAC,
p. 78 (1986) .

(16) Brglez F. and Fujiwara H. : "A Neutral Netlist of 10
Combinational Circuits, Special Session on A TPG and
Fault Simulation", IEEE Proc., ISCAS'85 (1985).

(17) Fujita M., Matsunaga Y. and Kakuda T.: "Multi-level '
Logic Minimization with Binary Decision Diagrams for
Large Circuits", Record of 38th IPS Japan National
Convention, 4N-5, pp. 6.9-6.10(1990).

systems.

Shin-ichi Minato was born in Ishik­
awa, Japan, on August 30, 1965. He
received the B. E. and M. E. degrees in
Information Science from Kyoto Univer­
sity, Japan in 1988 and 1990, respecvively.
Since joining NTT LSI Laboratories,
Kanagawa, Japan in 1990, he has been
working on the research of logic design
systems. His current interest is in the
representation and manipUlation of
Boolean functions, and logic synthesis

