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Minimum-Width Method of Variable Ordering for 
Binary Decision Diagrams 

SUMMARY Binary Decision Diagrams (BDDs) and Shar­
ed Binary Decision Diagrams (SBDDs), which are improved 
BDDs, are useful for implementing VLSI logic design systems. 
Recently, these representations, which are graph representations 
of Boolean functions, have become popular because of their 
efficiency in terms of time and space. The forms of the BD D vary 
with the order of the input variables though they represent the 
same function. The size of the graphs greatly depends on the 
order. The variable ordering algorithm is one of the most impor­
tant issues in the application of BDDs. In this paper, we consider 
methods which reduce the graph size by reordering input vari­
ables on a given BDD with a certain variable order. We propose 
the Minimum- Width Method which gives a considerably good 
order in a practicable time and space. In the method, the order 
is determined by width of BDDs as a cost function. In addition, 
we show the effect of combining our method with the local 
search method, and also describe the improvement using the 
threshold. Experimental results show that our method can reduce 
the size of BDDs remarkably for most examples. The method 
needs no additional information, such as the topological infor­
mation of the circuit. The results can be a measure for evaluation 
of other ordering methods. 
key words: binGlY decision diagrams, boolean function, logic 
synthesis, variable ordering 

1. Introduction 

Techniques of efficient Boolean function represen­
tation and manipulation are very important in imple­
mentation of VLSI logic design systems such as logic 
synthesis, verification, and test generation. Binary 
Decision Diagrams (BDDs) , which are graph represen­
tations of Boolean functions were presented by Akers(l) 
and Bryant(2). Shared Binary Decision Diagrams 
(SBDDs) (3),(5) are improved BDDs. These representa­
tions have recently become popular because of their 
efficiency in terms of memory requirement and manipu­
lation time. 

In using BDDs, we have to define the order of the 
input variables of the Boolean functions to be re­
presented. The forms of the BDD vary with the order­
ing for the same function. The size of the graphs greatly 
depends on the order. The variable ordering algorithm 
is one of the most important issues in the application 
of BDDs. 

There are some works on the ordering. References 
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(11) and (12) are the methods of finding the optimal 
order. However, it is still difficult to find the best order 
for larger scale functions. As another approach, Refs. 
( 4 ), (13) and ( 3) show the heuristic methods using 
the topological information of logic circuits. Reference 
( 6) uses testability measure for the heuristics, which 
reflect not only topological but logical information of 
the circuit. These heuristic methods can be applied to 
the practical benchmark circuits and can compute a 
good order in many cases. Their weak point is that the 
results depend on the structure of the circuits, and none 
of them are effective for universal circuits(6). Reference 
( 7) shows another approach that improves the order 
for the given BDD by repeating the exchange of the 
variables. It can give further better results than the 
initial BDDs, but sometimes it is trapped in local 
optimum. 

In this paper, we propose a new method that finds 
an appropriate order for the given BDD by reordering 
the variables. Our method features that it evaluates the 
width of the BDD, which we defined. It can compute 
a good order independently of the circuit structure. 
Our experiments show that our method is much 
effective for many practical functions. In a reasonable 
amount of time, it gives good results independently of 
the initial variable orders. 

2. Binary Decision Diagrams 

We begin with an explanation of BDDs which are 
the ground of this paper. 

2. 1 Binary Decision Diagrams 

A Binary Decision Diagram (BDD) is a directed 
graph representation of a Boolean function, as shown 
in Fig. 1 ( a ). This graph is derived by reducing a 
binary tree graph, as shown in Fig. 1 ( b ). The binary 
tree represents the recursive execution of Shannon's 
expansion, which produces the two subfunctions from 
a Boolean function by assigning 0 or 1 to an input 
variable. 

The following reduction process gives a Reduced 
Ordered BDD (ROBDD) which represents a Boolean 
function uniquely. (see Ref. (2) for details). 
1. Fixing the order of the input variables. 
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Fig. I ( a) Binary Decision Diagrams (BODs). 
( b ) Binary Decision Tree. 

x2·XT x2(Bxl x2 + xl 

t 

Fig.2 Shared BODs (SBDDs). 

2. Eliminating all the redundant nodes whose two 
sub-graphs are identicaL 
3. Sharing all the equivalent sub-graphs. 

ROBDDs have the following properties. 
• Equivalence between two functions can be 

checked by an isomorphism check of those graphs. 
• For many functions, the graph size are feasible 

for handling on a computer(8). 
• Logic operation can be carried out within a time 

almost in proportional to the size of the graphs. 
Resent research(9) indicating that ROBDDs enable 

the efficient execution of a new algorithm, which used 
to be considered impracticable in terms of the memory 
requirement and execution time, has contributed to the 
current popularity of BDD application. 

2. 2 Shared Binary Decision Diagrams 

A set of ROBDDs representing multiple functions 
can be united into a single graph which consists of the 
ROBDDs sharing their sub-graphs with each other. 
The efficiency of manipulation can be improved by 
uniting all the ROBDDs into a single graph, as in Fig. 
2, We call such graphs SBDDs (Shared BDDs) (3).(5). 

With an SBDD, two isomorphic BDDs never 
coexist because they are completely shared. This prop­
erty offers the following advantages. 

• We can compactly represent many functions 
together. 

• Equivalence between two functions can be 
checked by only comparing the pointer to the graph. 
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Generally, the graphs whose variable orders are 
not fixed or non-reduced graphs may be referred as 
BDDs. In the following section, for the sake of 
simplification, BDDs mean ROBDDs (and also 
SBDDs). 

3. Variable Ordering on BDDs 

As mentioned above, BDDs have some good 
properties; however, we have to fix the order of the 
input variables for the function to be represented in 
BDDs. Forms of BDDs may vary according to the 
order though they represent the same function. In many 
cases, the size greatly depends on the order. Since the 
size of the graphs decides not only memory require­
ment but execution time for the graph manipUlation, it 
is very important to find a good variable order for the 
application of BDDs. 

Fluctuations in the BDD size for various variable 
orders depend on the function to be handled. There are 
very sensitive examples whose BDD size vary extremely 
(exponentially to the number of inputs) by only revers­
ing the variable order. On the other hand, the BDDs 
for symmetric functions never vary for any variable 
order. There are also an example that the multiplier 
functions(lO) cannot be represented in a polynomial­
sized BDD in any variable order. 

For many functions which are often manipulated 
in practical LSI designs, there are good variable orders 
which make BDDs much smaller then using random 
orderings(3). However, it is not easy to find an appropri­
ate order automatically for any given function. If we 
can compute such order in a reasonable amount of 
time, BDDs become more practicable and can be used 
instead of truth tables or cube sets. 

3. 1 General Properties on the Variable Ordering 

Empirically, the following properties are observed 
on the variable order for the reduction of BDDs(3). 

• The group of the inputs with local computability 
should be near in the order. Namely, we should keep 
inputs near that are closely related with each other and 
that have some independence from the other inputs. 
For example, in the case of the n-bit adder functions, 
each pair of inputs with same figure should be next in 
the order. 

• The inputs which greatly affect the output func­
tions should be located at higher positions (near 
positions to the root) in the order. When the control 
inputs and the data inputs can be distinguished, the 
control inputs should be located higher than the data 
inputs. 

If we could find a variable order which satisfies 
those two properties, the BDD size would not increase. 
However, the two properties are generally mixed 
ambiguously, so it is difficult to find always a good 
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order only by considering the two properties. 

3.2 The Approach to the Variable Ordering 

At first, the variable ordering methods are 
classified as follows: 

• To seek the best order, which gives the minimum 
size of BOD. 

o To seek a quasi-minimum solution in a reasonable 
time. 

Concerning the method to find the best order, 
there is an algorithm(ll) of 0 (n Z3n ) time, where n is the 
number of inputs, that is based on the dynamic pro­
gramming. However, it is still difficult to find the best 
order in a practical time for functions with many 
inputs, although this algorithm has been improved to 
the point where the best order can be found for some 
functions with 17 inputs(lZ). In this paper, we discuss 
our method of finding an appropriate order for the 
larger scale functions in a practical time and space. 

There are two approaches to seek a quasi­
minimum solution: 

o To find an appropriate order before generating a 
BOD by using logic circuit information which is the 
source of the Boolean function to be represented. 

• To reduce the size of the graph by reordering the 
input variables on a given BOD in a certain variable 
order. 

Some methods using the topological information 
of the Circuit include ones where the circuit is traversed 
in a heuristic manner(l3),(4), and another in which a 
weight is assigned to each net(3). Reference (6) uses 
testability measure for the heuristics. This approach is 
one of the most effective ways at present and gives a 
good order in many cases. Nevertheless, depending on 
the structure of the circuits, this approach may not be 
effective. None of them are effective for universal 
circuits(6). 

On the other hand, one of the disadvantages of the 
latter approach, which reorders on a given BOD, is that 
it cannot be executed if we cannot make an initial 
BOD of a reasonable size. In most of the application 
based on BODs at present, especially in logic 
verification, the problems can be solved if the initial 
BOOs are generated. However, there are some applica­
tions, such as logic synthesis, that require many logic 
operations after generating of initial BOOs(9). In such 
cases, variable reordering is an important technique 
because the efficiency of the programs is sensitive to the 
size 0 BOOs. It is useful especially when the heuristics 
with circuit information is not available or ineffective. 
We discuss this reordering approach later in this paper. 

Next, there are two reordering algorithms to 
reduce BOOs: 

• Local search: Repeating the swap of the variables 
if it improves the size of BOOs. 

• Greedy method: Fixing the positions of the 
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variables one by one, based on a certain cost function. 
As a local search algorithm, there is a method 

which swaps the pairs of variables at the next position 
with each other. Some good results have been re­
ported(7). There is the interesting idea of swapping 
variables at random(lZ). In any case, the local search 
greatly depends on the initial order. If the initial order 
is far from the best, many swaps are needed. This takes 
a long time, and there is the higher risk of being 
trapped in a bad local minimum solution. But at least, 
this algorithm never gives a result worse than the 
initial order, therefore, it is adequate for the last 
optimization in combination with other ordering 
methods. 

The greedy method seeks a solution with a global 
view. Its good points include that it is robust to the 
variation of the initial order. An algorithm for this 
method has been proposed(14). In greedy methods, the 
most important and difficult point is to find an 
effective cost function. In this paper, we propose a new 
ordering method using the width of BODs, as a cost 
function. 

4. Minimum-Width Method 

We describe our ordering method in this section. 
In the following, n denotes the number of the input 
variables. Each variable is identified by an index 
number, as Xl, Xz, ... , X n , where the variable with a 
larger index is located at a higher position (near to the 
root) in the BOOs. 

4. 1 The Cost Function for the Greedy Method 

Our method is based on the greedy method. At 
first, we choose one variable from among the all, and 
fix it at the highest position (Xn). Next, another vari­
able is chosen from among the rest, and fixed at the 
second highest position (Xn-l). In this manner, all the 
variables are chosen one by one, and they are fixed 
from the highest to the lowest. This algorithm has no 
back tracking. 

When choosing Xk (1:2 k:2 n), the variables with 
higher indexes than k have already been fixed, and the 
form of the higher part of the graph never varies. 
Namely, the choice of Xk affects only the part of the 
graph lower than Xk. The aim on each step is to choose 
Xk which minimizes the lower part of the graph. 

However, it is dfficult to know how the lower part 
of the graph will be minimized, because the positions 
of the lower variables has not been fixed yet. To avoid 
back tracking, we decide to choose Xk by evaluating 
with a certain cost function. 

It is desired that the cost function should give a 
good estimation of the minimum size of the graph for 
each choice of Xk. Furthermore, the cost function 
should be computable within a feasible time. We 
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propose the use of the width of BDDs as the cost 
function to satisfy those requirements. 

4. 2 The Width of BDDs 

We define the width of BDDs here. 
Definition: The width of BDDs at height k, de­
noted as Widthk , is the number of edges crossing the 
section of the graph between x" and Xil+l, where the 
edges pointing to the same node are counted as one. 
The width between Xl and the bottom of graph is 
denoted as widt~. 0 

An example is shown in Fig. 3. widthk ' resembles 
to the number of the nodes with Xk; however, they are 
generally different. widthk may be larger than the 
number of the Xk nodes because the width can count 
the edges which skips the node with Xk. 

We present the following theorem on the width of 
BDDs. 
Theorem: The widthk is constant for any permutation 
among {Xl, Xz, "', Xk} and any permutation among 
{Xk+l, X,,+z, "', Xn}. 

Proof: Each edge crossing the section of the graph 
between Xk+l and Xk represents a sub-function 

f1 f2 

width 2 = 2 

width 1 = 3 

............. ~~ ................................ . 
[II 1 

width 0 = 2 

Fig. 3 The width of BDDs. 

f1 f2 f3 

variables 
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obtained by assigning a vector of Boolean values {O, 
l}n-" to the input variables along the path from the 
root node to that edge. BDDs have the property that 
the edges representing the same sub-function point to 
the same node. Therefore, width" means the number of 
all the sub-functions obtained by-assigning all the 
patterns of the vector {O, l}n-" into the input variables 
{x,,+I, X,,+z, "', Xn}. 

In assigning all the patterns of the vector into the 
variables, the order of the patterns does not affect the 
result. The permutation of the variables can be regard­
ed as the change of the order of the patterns. That is to 
say, the width" is constant for any permutation among 
{Xk+I, X,,+z, "', Xn}. 

All the sub-functions, which are obtained by 
assigning all the patterns of the vector, are uniquely 
represented in BDDs with the same variable order of 
{Xl, X2, "', X,,}. For any permutation among these 
variables, the number of the sub-functions is constant 
because the sub-functions are still represented unique­
ly. Therefore, width" never varies for any permutation 
among {x!, X2, "', Xk}' 0 

4. 3 Minimum-Width Method 

Our ordering method uses the width of the BDD as 
a cost function to estimate the complexity of the graph, 
and the variables are chosen one by one from the 
highest to the lowest by observing the cost function. 
Namely, we choose x" which gives minimum width"-l 
among the rest of the variables, as shown in Fig. 4. We 
call this algorithm the Minimum- Width Method. If 
there are two candidates with the same width"-l, the 
variable at the higher position in the initial order is 
chosen before the other. 

The grounds for using the width of BDDs as a cost 
function are as follows. 

• On choosing X,,; width"-l is independent from the 
order of the rest of the variables Xl, X2, "', X,,-I, as in 
the above theorem. Therefore, it is robust for the 
variation of the initial order. 

• It is clear that we should avoid to choose x" that 
makes width,,-l large because width"_l is a lower 
bound of the number of the nodes in the part of the 
graph lower than x". 

• It is not difficult to compute width". 
For these reasons, it is effective to use the width of 

BDDs as the cost function. 
The time complexity of our method is 0 (n 2 G), 

where G is the average size of the graph since the size 
varies during the ordering. This complexity is consider­
ably less than the conventional algorithms which seeks 
the best order. 

5. Implementation of Minimum-Width Method 

Fig.4 Minimum-width method. In this section, we present the techniques of im-
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plementing the Minimum-Width Method efficiently. 

5. 1 Swapping of Variables 

Basically, there are two methods of modifying 
BODs by permuting the variable order. They are 

• deleting the initial BDDs, and regenerating new 
BODs in a new order, 

• and applying the logic operations of swapping 
variables on the initial BDDs. 

When all the variables are reordered at one time, 
the former method is more efficient. In this paper, we 
use the latter method because the Minimum-Width 
Method repeats partial permutation of the variable 
order. 

Any permutation is carried out by combining the 
swap of a pair of variables. Now, we consider the 
realization of swapping of two variables using logic 
operations. 

We describe here the sub-functions obtained by 
assigning a value of (0, 1) into the two variables Xi and 
Xj for a Boolean function f 

Xi=O Xj=O: /00 
Xi=O Xj= 1: /01 
Xi= 1 Xj=O: /10 
Xi= 1 Xj= 1: /ll 

In the above case, we can swap Xi and Xj by swapping 
only /01 and /10, We do not have to move /00 and /11, 
The swapping can be completed by reconstructing 
these swapped sub-functions. Namely, the swap opera­
tion is represented as: 

Iswap= Xi Xj/oO+ XiXj!lO+ Xi Xj/o 1 + XiXi.!Il' 

This operation requires no traverse on the part of 
the graph lower than Xi and Xj. The operation time is 
in proportion to the number of the nodes at positions 
higher then Xi and Xj. Therefore, the higher variable 
can be swapped more quickly. 

5. 2 Computing of the Width of BODs 

The widthk can be computed by counting the 
number of elements in the set Sk, where Sk consists of 
all the sub-functions obtained by assigning any combi­
nation of value (0, 1) to the input variables at posi­
tions higher than x". In our implementation, each 
sub-function is identified by a I-word index. In count­
ing procedure, we enter the indexes which have already 
counted into a hash table to check equivalent sub­
functions. The widthk can be computed in a time that 
is proportional to the number of the nodes at the 
positions higher than k. 

In the Minimum-Width Method, we compute the 
widthk for each k from k n 1 to k=O. In this case, 
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we can compute widthk_1 using the result of counting 
widthk. When we store the set of sub-function Sk, 
which has been generated in computing widthk, the 
next set Sk-I can be obtained by only assigning Xk=O 
and Xk = 1 for Sk. 

In addition, if we assign Xi = 0 and Xi = 1 ( 1 ~ i ;?; 
k) for Sk, the next set Sk-I represents the sub-functions 
when we choose Xi as the variable at the k-th highest 
position in the order. Therefore, we do not have to 
repeat swapping between Xk and Xi for all (I;?; i;?; k) 
in choosing x". 

5. 3 Management of Attributed Edges 

In our BDD manipulator, we have implemented 
attributed edges(3) in order to reduce the storage and 
the time. They are the edges attached some sorts of 
attributes; each attribute represents a certain opera­
tions. Three attributes are proposed: 

• Output inverters, to complement an output func­
tion. 

• Input inverters, to complement an input variable. 
Variable Shifters, to shift the index numbers of 

the input variables. 
Here, we present how the attributed edges are managed 
in our ordering method. 

In using the attributed edges, the property is kept 
that a BDD represents a Boolean function uniquely, 
although the size of graphs and execution time can be 
different. If we apply the Minimum-Width Method to 
the BDDs with the attributed edges, the same order 
should be computed as to the original BDDs, because 
the Minimum-Width Method is based on logic opera­
tions. The order are computed for the reduction of the 
original BODs; however, empirically the results are 
also effective for BDDs with the attributed edges. 

The ordering method can be improved by con­
sidering the affect of the attributed edges. In using 
attributed edges, there are the edges pointing to the 
same node but whose attributes are different. Since 
these edges represent different sub-functions, they were 
counted as different ones in the computing of the width 
of BDDs in original method. Regarding such edges as 
identity to be counted one, we can obtain the order for 
the BDDs with attributed edges. In our implementa­
tions, only the effect of output inverters are considered. 

5. 4 Preventing Temporary Increases in Graph Size 

Our method repeats the swap of two variables to 
approach an appropriate order. During the ordering, 
the size of graph increases temporarily. Some increase 
may be unavoidable since we may not be able to 
reduce BDDs monotonously; however, the increase 
cannot be overlooked if it becomes too large. 

For example, when Xi is chosen for the k-th 
highest variable, we simply swap Xi and x". Repeating 
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this procedure, the rest of the variables may be shuffled 
at random and the graph size increases temporarily. In 
the worst case, this random shuffling causes memory 
overflow in the ordering halfway through, in spite of 
the fact that the final result rs a smaller graph. We had 
better not to change the order of the rest of the vari­
ables during the ordering process. 

There are two devices. The first one is to choose 
the variable at a higher position in the initial order 
when there are two candidates with the same widthk - 1, 

as written in the preceding section. This does not 
modify the part of the graph lower than the chosen 
variable, therefore, the risk of the memory overflow is 
lessened. 

The other device involves the manner of the swap­
ping. In our first implementation, we fixed the variable 
one by one from the highest to the lowest as X n , Xn-l, 

"', XI. In this way, the variables of the former occu­
pants were forced to move to a lower position. This is 
one of the reasons that the rest of the variables are 
shuffled. To avoid this, we move the chosen variables 
to X2n, X2n-l, "', Xn+l, which are new variables higher 
than X n , so that the rest of the variables do not have to 
move. This device enables us to avoid the meaningless 
shuffles of the variables. After moving all the variables, 
the indexes have to be revised by subtracting n. The 
revision can be executed easily if the variable shifters(3) 
are implemented. 

6. Experiments 

We implemented our ordering method as shown 
above, and conducted some experiments for an evalua­
tion. We used a SPARC Station 2 (SunOS 4.1.1,32 M 
Byte). The program is described in C andC++. The 
memory requirement ofBDDs is about 21 Bytes a node. 

6. 1 Experimental Results 

In our experiments, we generated initial BDDs for 
given logic circuits in a certain order of the variables 
and applied our ordering method to the initial BDDs. 
We use the three kinds of the attributed edges. Our 
ordering method works on the BDDs with the three 
attributed edges, but it considers only the effect of 
output inverters. There are no serious differences of the 
performance empirically. 

The results for some examples are summarized in 
Table 1. In this table, dec8 is the output function of an 
8-bit data selector, and the function enc8 is an 8-bit 
priority encoder. adder8 is an 8 + 8 bit adder, and 
mult6 is a 6 X 6 bit multiplier. The other items were 
chosen from the benchmark circuits in DAC'86(l5). 
These circuits generally have multiple outputs. Our 
program can handle multiple output functions using 
Shared BDDs. 

In this experiment, the initial order is important. 
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Table I Experimental results. 

June. In. out. #node: ave.(min.-max.) time 
init. after (sec) 

dee8 12 2 75.2 (19-204 ) 17.8 (16-20) ~6Jl9 

ene8 9 4 25.2 (23-28) 19.9 (19-22) 0.05 
adder8 17 9 543.1 (337-938) 40;0 (40-40) 0.53 
mult6 6 6 2803.5 (2382-3209) 2145.9(2123-2296) 6.63 
5xpl 7 10 63.9 (58-72) 36.0 (36-36) 0.20 
9sym 9 1 23.0 (23-23) 23.0 (23-23) 0.25 
alupla 25 5 8101.7(4178-12952) 1055.0 (856-1178) 33.21 
vg2 25 8 861.2 (562-1688) 84.2 (81-87) 1.80 

Table 2 Experiments on large scale examples. 
--

fune. In. out. #node time 
init. after (sec) 

e432 36 7 23290 1383 177.5 
c499 41 32 29702 21962 1311.8 
e880 60 26 19100 18336 721.1 
c1908 33 25 11083 6590 239.1 
e3540 50 22 214941 33975 7493.9 
e5315 178 123 27958 2066 14548.3 

We generated 10 initial BDDs in random orders, and 
applied our ordering method in each case. The table 
shows the maximum, minimum, and average number of 
the nodes before and after ordering. CPU time is the 
average time of ordering for 10 cases (including the 
time of generating initial BDDs). 

The results show that our method can reduce the 
size of BDDs remarkably for the most examples, except 
for 9sym. (This is natural because 9sym is a symmetric 
function.) Note that for the various initial order, the 
fluctuation of the size after ordering is comparably 
smaller than the initial BDDs. This shows that our 
Minimum-Width Method gives a good solution in­
dependently of the initial order. This solution can act 
as the guiding values for the BDDs for which the best 
order has not been found, and it is useful in the 
evaluation of other ordering methods. In terms of 
speed, it takes a reasonable time for a BDD with scores 
of inputs and thousands of nodes. 

Next, the similar experiments were conducted for 
the larger examples. The functions were chosen from 
the benchmark circuits in ISCAS'8S(16). On these ben­
chmark circuits, there are several reports of the heuris­
tic ordering method using the circuit infor­
mation(4),(13),(3),(6). We cannot exactly compare these 
heuristics because the manners of the experiments are 
different. (Someone counts the maximum size ofBDDs 
in the operations, others count the size of the Shared 
BDD of all output functions or all functions which 
includes internal nets.) However, Butler(6) concludes 
that none of them are effective for universal circuits. 

In our experiments, the initial orders are given by 
the Dynamic Weight Assign Method(3), which is one of 
the heuristic methods using the circuit information. 
These benchmark circuits are too complex to generate 
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initial BDDs in a random order. 
The results are shown in Table 2. Our method is 

also effective for large scale functions in terms of graph 
reduction, thought it- takes longer time (but much 
faster than the methods which seeks best order). The 
sizes of the BDDs after reordering are almost equal to 
the heuristic methods(4),(13),(3),(6) which use circuit infor-
mation, and our method may be more generally 
effective for all the circuits. Remarkably, we find that 
c5315 can be represented in only about 2000 nodes, 
which is far less than the results by any oter method (as 
about 18000 nodes(l7). Our results are useful to evalu­
ate other heuristic methods of variable ordering. 

The weak points of our method include that it 
takes longer time than the heuristic methods using the 
circuit information and that it requires a certain initial 
BDDs. However, we can say that it is effective to the 
applications which have many logic operations after 
generating of BDDs. 

6. 2 Comparison and Combination with the Local 
Search Method 

We did another experiment to compare the prop­
erties of the Minimum-Width Method and the local 
search method, which was presented in the preceding 
section. We implemented a local search method of 
variable ordering which swaps the pairs of variables on 
the next position with each other if the swap reduces 
the size of the graph. 

For the three examples, we applied both ordering 
methods to the BDDs with various initial orders, that 
include the best and worst orders in our knowledge, 
and average size for 10 random orders, as shown in 
Table 3. It shows that the two ordering methods have 
complementary properties. The local search never gives 
worse results than the initial order, but the effect 
greatly depends on the initial order. On the other hand, 
the Minimum-Width Method does not guarantee 
obtaining a better result than the initial order; how­
ever, the result is always close to the best solution. 

These properties lead us to conclude that it is 
effective to apply the Minimum-Width Method at first 
because it seeks a good order with a global view, and 
then to apply the local search for the least optimiza-

Table 3 Comparison with the local search. 

-fum-. -[ init.#n-;;de !Mi;:;.:-widtblocal se~rch ombinatiol; 
-dee8 (best) 8 ---- 12 ---8---- '--10-"-' 

(worst) 382 17 11 
(random) 75.2 17.8 10.1 

adder8 (best) ~---40-

(worst) 1U9 40 178 40 
(random) 543.1 40.0 182.9 40.0 

-;l-;:;pla (best)--S30--969-

(worst) 12968 979 2835 830 
~ndom) 8101.7 1055.Q. __ .. 2311..:..~ __ ~~ 
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tion. The results of our experiments with such combi­
nation, which are summarized in Table 3, show that 
the combination is more effective than applying either 
of the two methods. 

6. 3 An Improvement with Threshold 

The Minimum-Width Method may give an order 
worse than the initial BDD, when the initial variable 
order is already nearly the best. This property is not 
good for the practical use, and in the following, we 
consider how to prevent this increase in graph size. 

In our method, the width of the BDD shows a 
lower bound of the number of the nodes in the part of 
the graph which has not been fixed yet. It is clearly 
unfavorable to choose variables which make the lower 
bound large because the chance of reducing the graph 
size may be lost. The important point is that we should 
not choose variables which make the lower bound 
large but that it is not important to actually seek the 
minimum lower bound itself. If we repeat the swap of 
variables based on the small differences in the widths, 
there is no great effect and the order may be shuffled 
thoughtlessly. 

We made a further improvement in which a swap 
of the variables is canceled if the difference of the 
widths is less than a threshold value. Precisely speak­
ing, we do not swap the variables when the reduction 
ratio of the minimum width to the width of the former 
occupant variable is not greater than the threshold 
value. 

When the initial order is nearly the best, some 
swaps are canceled since the fluctuation of the width is 
smaller than the threshold, and consequently the initial 
order is protected. If the inital order is far from the best 
order, the fluctuation of the width become greater than 
the threshold and the swap is executed as described 
previously. 

To evaluate this improvement, we experimented 
with three threshold values as 5%, 7%, and 10%. The 
initial orders are almost good ones computed by the 
Dynamic Weight Assign Method. The results are 
shown in Table 4, they indicate that this improvement 
is effective to a degree. Too small a threshold cannot 
give a remarkable effect, but one that is too large 
cancels the swaps necessary to reduce the graph. The 
appropriate value of the threshold is about 5% or 10%, 
and may depend on the kind of the function. 

Table 4 Improvement with threshold. 

[une. 
init. 0% 5% 7%' 10% 

-~:-~~---.-~~-~-~~- 2~~~~-~~~~~~----. ;'~~fTI3 -~-!~~~ 
e880 19100 18336 19254 8930 8930 
e1908 11083 6590 5246 5246 5202 

~~-~-~------ -- ,,~~ .. --
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7. Conclusion 

We have shown a method of variable ordering for 
the reduction of BDD size. Our method finds an appro­
priate order using no additional information, such as 
the topological information of the circuit. It reduces 
the size of the graph by reordering the input variables 
on a given BDD with a certain variable order. 

This method has the good property of giving a 
quasi-minimum solution independently of the initial 
order in a reasonable time. The results can be measures 
for the evaluation of other ordering methods. The 
method can reduce some large scale BDDs in a practi­
cal time. We showed the effect of combining our 
method with the local search method, and also de­
scribed the improvement using the threshold. 

The weak point of our method is that it cannot be 
executed if we cannot generate a feasible size of BDD 
in the initial order. When we apply the method to some 
very large scale BDDs, initial BDDs cannot be gene­
rated because of memory overflow. Future work 
remains to develop a method which can compute a 
good order concurrently with generating BDDs. 

Acknowledgement 

The author would like to express his appreciation 
to Mr. Adachi and Mr. Endo of NTT LSI laboratories 
for their encouragement. The author also thanks the 
members of Professor Yajima's research laboratory of 
Kyoto University for fruitful discussions. 

References 

( I) Akers S. B.: "Binary Decision Diagrams", IEEE Trans. 
Comput., pp. 509-516(1978). 

( 2) Bryant R. E.: "Graph-Based Algorithms for Boolean 
Function Manipulation" , IEEE Trans. Comput., pp. 677 
-691 (1986) . 

( 3) Minato S., Ishiura N. and Yajima S.: "Shared Binary 
Decision Diagram with Attributed Edges for Efficient 
Boolean Function Manipulation", ACM/IEEE Proc. 
27th DAC, pp. 52-57(1990). 

(4) Malik S., Wang A. R., Brayton R. K. and S.-Vincentelli 
A.: "Logic Verification Using Binary Decision Diagrams 
in a Logic Synthesis Environment", Proc. ICCAD'88, pp. 
6-9 (1988). 

( 5) Brace K. S., Rudell R. L. and Bryant R. E.: "Efficient 
Implementation of a BDD Package", ACM/IEEE Proc. 
27th DAC, pp. 40-45(1990). 

( 6) Butler K. M., Ross D. E., Kapur R. and Mercer M. R.: 
"Heuristics to Compute Variable Orderings for Efficient 
Manipulation of Ordered Binary Decision Diagrams", 
ACM/IEEE Proc. 28th DAC, pp. 417-420(1991). 

( 7) Fujita M., Matsunaga Y. and Kakuda T.: "On Variable 
Ordering of Binary Decision Diagrams for the Applica­
tion of Multi-level Logic Synthesis" , Proc. the European 
Conference on Design Automation, pp. 50-54 (1991). 

( 8) Yajima S. and Ishiura N .: "A Class of Logic Functions 
Expressible by a Polynomial-Size Binary Decision Dia-

399 

grams", Proc. Synthesis and Simulation Meeting and Int. 
Interchange (SASIMI'90) (1990). 

( 9) Matsunaga Y. and Fujita M.: "Multi-level Logic Optim­
ization Using Binary Decision Deagrams", Proc. 
ICCAD'89, pp. 556-559 (1989). 

(10) Bryant R. E.: "On the Complexity of VLSI Implementa­
tions and Graph Representations of Boolean Functions 
with Application to Integer Multiplication" , IEEE Trans. 
on Computers, 40, 2(1991). 

(II) Friedman S. J. and Spowit K. J.: "Finding the Optimal 
Variable Ordering for Binary Decision Diagrams", ACM/ 
IEEE Proc. 24th DAC, pp. 348-356(1987). 

(12) Ishiura N ., Sawada H. and Yajima S.: "Minimization of 
Binary Decision Diagrams Based on Exchanges of Vari­
ables", Proc. ICCAD'91, pp. 472-475(1991). 

(13) F ujita M. , Fujisawa H. and Kawato N. : "Evaluations 
and Improvements of a Boolean Comparison Method 
Based on Binary Decision Diagrams", Proc. ICCAD'88, 
pp.2-5 (1988). 

(14) Aborhey S.: "Binary decision graph reduction", lEE 
Proc., 136, Pt.E, 4(1989). 

(15) de Geus A. J.: "Logic Synthesis and Optimization Bench­
marks for the 1986 DAC", ACM/IEEE Proc. , 23rd DAC, 
p. 78 (1986) . 

(16) Brglez F. and Fujiwara H. : "A Neutral Netlist of 10 
Combinational Circuits, Special Session on A TPG and 
Fault Simulation", IEEE Proc., ISCAS'85 (1985). 

(17) Fujita M., Matsunaga Y. and Kakuda T.: "Multi-level ' 
Logic Minimization with Binary Decision Diagrams for 
Large Circuits", Record of 38th IPS Japan National 
Convention, 4N-5, pp. 6.9-6.10(1990). 

systems. 

Shin-ichi Minato was born in Ishik­
awa, Japan, on August 30, 1965. He 
received the B. E. and M. E. degrees in 
Information Science from Kyoto Univer­
sity, Japan in 1988 and 1990, respecvively. 
Since joining NTT LSI Laboratories, 
Kanagawa, Japan in 1990, he has been 
working on the research of logic design 
systems. His current interest is in the 
representation and manipUlation of 
Boolean functions, and logic synthesis 


