

HOKKAIDO UNIVERSITY

Title	New Continuous Speech Feature Adjustment for a Noise-robust CSR System
Author(s)	Sun, Yiming
Citation	グリーン回路とシステムに関する国際ワークショップ. 2011年11月4日(金). 北海道大学情報科学研究科棟 11F17号室. 札幌市. (International Workshop on Green Circuits and Systems. Friday, 4 November, 2011. Room No.17, 11th floor of Graduate School of Information Science and Technology, Hokkaido University. Sapporo City.)
Issue Date	2011-11-04
Doc URL	http://hdl.handle.net/2115/47544
Туре	conference presentation
File Information	Yiming_SUN.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

New Continuous Speech Feature Adjustment for a Noise-robust CSR System

Yiming SUN

Information Communication Networks Laboratory Graduate School of Information Science and Technology Hokkaido University, Sapporo, Japan sunny@icn.ist.hokudai.ac.jp

Overview

- Introduction
- Conventional Methods
- Robust Continuous Speech Recognition (CSR)
 System
- Noise Disturbance
- Block Based DRA
- Results

Introduction

Background

• The dynamic range adjustment (DRA) method has been developed as the compensation method for such difference in an isolated word and phrase.

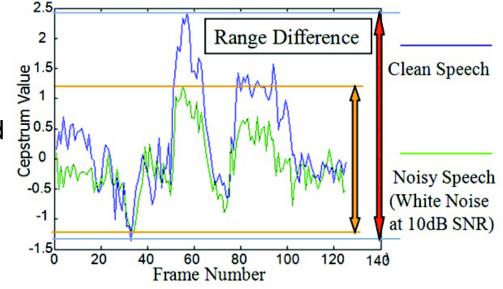


Fig.1 Noise influences in word feature vectors

- Summary
- The proposed method introduces a short time length block chosen stochastically from the feature sequence of continuous speech.
- The modified technique of a DRA is proposed to a CSR system.

Conventional Methods

- CMS: cepstrum means subtraction
 - CMS is a channel normalization approach to compensate for the acoustic channel.
- RSA: running spectrum analysis
 - RSA is directly used in the modulation spectrum domain.
 - RSA can realize an ideal processing filter.
 - The components of low and high frequency are reduced by using RSA.
- DRA: dynamic range adjustment
 - Adjust the dynamic range of MFCC by normalizing the amplitude of each component.

Robust CSR System

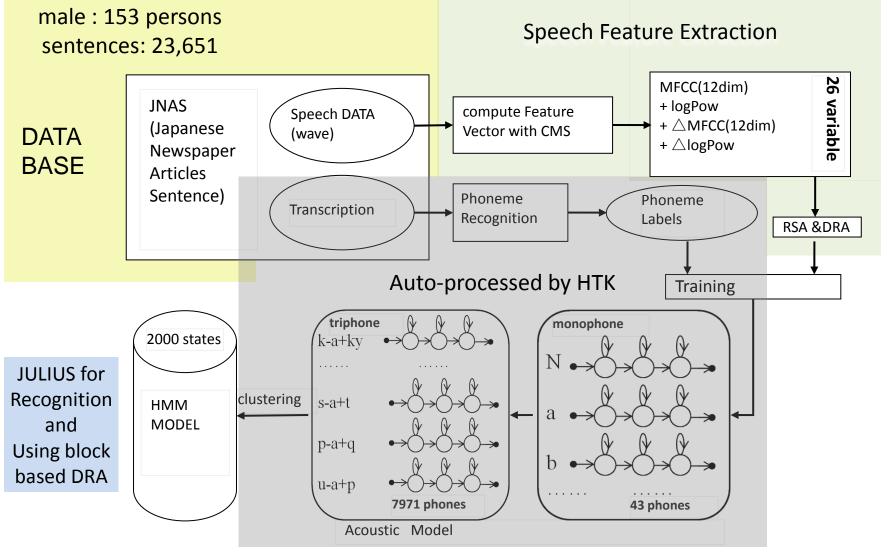
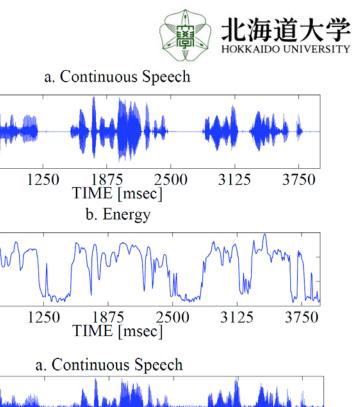



Fig.1 Structure of noise robust CSR system

Noise disturbance

Sentence selection

- A continuous speech has many non-speech parts and only noises. These parts effect DRA inappropriately.
- The unbalance of several dynamic ranges existed in a continuous speech can be compensated.

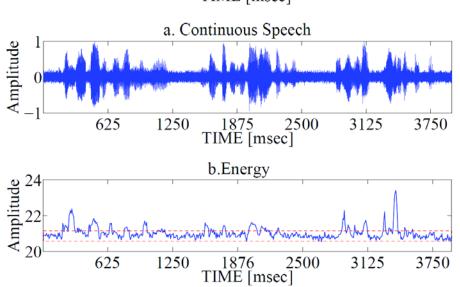


Fig.2 Noise disturbance in energy of continuous speech

0.2

-0.2

20

15

10

625

625

Amplitude

Amplitude

Block Based DRA (1)

A short sentence and blocks

- The algorithm finds out the maximum value in a given short sentence, i.e., "Peak Point" in Fig.3.
- First step: block separation

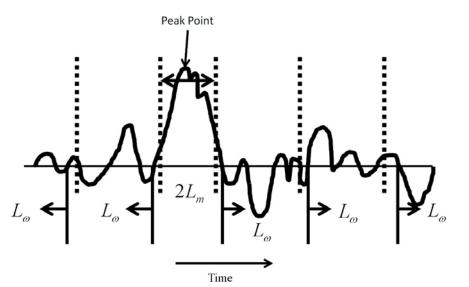


Fig.3 An example for a short sentence and blocks

- The main block is selected between the above two zero-crossing points nearby the "Peak Point".
- The shortest length of other blocks is L_{w} .

Block Based DRA (2)

- Second step: determination of the maximum value
 - $P_{\pm i,i}$ is defined as the maximum value within the $\pm i$ -th block
 - Determine the maximum value among $P_{i,j}$ (i = 1, 2, ..., M) as $T_{1,j}$.
 - If $P_{0,j} T_{1,j} < \sigma_p$ and $T_{1,j} P_{i,j} < \sigma_p$ then set $P_{i,j}$ as the adjustment value.
 - If $P_{0,j} T_{1,j} < \sigma_p \text{ or } T_{1,j} P_{i,j} < \sigma_p \text{ then set } P_{i,j} = T_{1,j}$.
 - If $P_{0,j} T_{1,j} > \sigma_p$ and $T_{1,j} P_{i,j} > \sigma_p$ then set $P_{i,j} = P_{0,j} \sigma_p$.
- Third step: using block based DRA
 - In each block, the following block-based DRA is applied:

$$p_{k,i}' = \frac{p_{k,i}}{P_{\pm i,j}},$$

Block Based DRA (3)

➤ An Example

• The proposed algorithm uses the assumption in which there is not large difference between the adjustment values of neighborhood blocks.

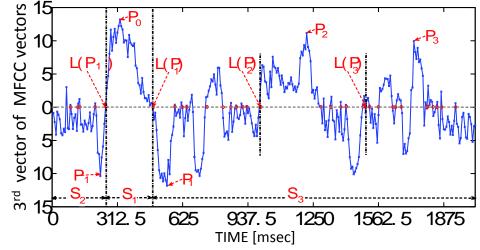


Fig.4 An example for separating blocks and determining maximum

- > Parameter Setting (L_m)
 - The main block width includes at least a vowel.

Table 1: Long vowel frame average length	Table 1: Long	vowel frame	average	length
--	---------------	-------------	---------	--------

Phoneme	Means	Variance	Appear Times
a:	13.35	13.50	2054
e:	14.46	15.59	12688
i:	14.93	20.97	1724
0:	13.83	19.01	37657
u:	10.64	17.50	4831

Block Based DRA (4)

- > Parameter Setting (L_w)
 - The recognition result becomes high when we set $L_w = 80$.

- > Parameter Setting (σ_p)
 - The adjustment value focuses on preserving the continuity of the continuous speech features and keeping the relationship between the neighborhood blocks.

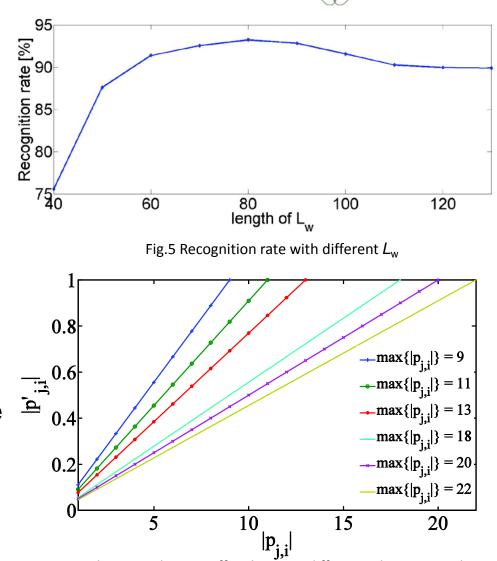
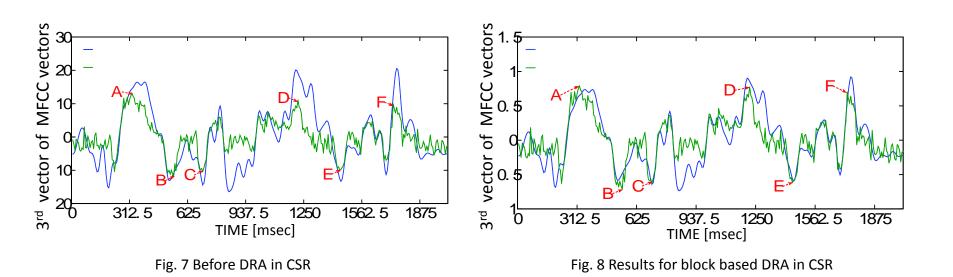


Fig.6 The normalization effect by using different adjustment values

Block Based DRA (5)



Simulation

• The proposed method effectively increases the similarity between clean and noisy speech features, especially in the marked position from A to F.

Table 2: Acoustic analysis conditions

Sampling frequency	16 kHz			
Frame shift	10.0 ms			
Frame length	25.0 ms			
Window type	Hanning			
Training data	23651 sentences from 153 people			
Emphasizing of High Frequency $1 - 0.97z^{-1}$				
HMM state number	5 states			
	(include start and end states)			
Number of Gaussian Mixtures	16			
Clustering	about 2000 states			

制 北海道大学 HOKKAIDO UNIVERSITY

Results

Table 3: Noise types

Noise	babble	buccaneer1	buccaneer2	destroyerengniner	destroyerops
Туре	f16	factory1	factory2	hfchannel	leopard
(15 kinds)	m109	machinegun	pink	volvo	white

$$\label{eq:Percent Accuracy} \text{Percent Accuracy} = \frac{N-D-S-I}{N} \times 100\%$$

• Shows accurately the total performance

 $\text{Percent Correct} = \frac{N - D - S}{N} \times 100\%$

• Shows the correct word recognition rate

N: Total number of words D:Deletion errors S:Substitution errors I: Insertion errors Table 4: Average recognition rates under clean and different SNR conditions

		Proposed		Original	
		Corr.	Acc.	Corr.	Acc.
known (clean)		93.22	92.29	92.69	91.49
unknown (clean)		83.90	82.43	82.77	81.52
known	SNR=20dB	80.08	77.72	77.80	75.82
	SNR=15dB	68.06	64.81	61.10	58.40
	SNR=10dB	49.93	46.25	39.23	36.04
unknown	SNR=20dB	73.76	71.31	72.46	70.23
	SNR=15dB	63.01	60.14	58.18	55.95
	SNR=10dB	47.91	44.75	37.06	35.19

Thank you!

Question?