The asymmetric arylation of imines with aryl boronic acids was realized by using rhodium/chiral bidentate phosphoramidite ligand ((R, R)-N-Me-BIPAM). This method affords a direct access to chiral α-amino acids in good yield with high enantioselectivities.

Introduction

Arylglycines are a particularly important class of amino acids because they are components of a number of pharmaceutical agents, including glycopeptide antibiotics, the antibacterial agents, and the cardiovascular drug.[1] The synthesis of α-amino acids has been dominated by the Strecker reaction and variants thereof.[2] Multicomponent reactions based on isonitriles (Ugi reaction) have also been developed but they are usually multistep and suffer from side reactions.[3,4] The addition of arylboronic acids to imino acids via Petasis reaction is a powerful method for arylglycine synthesis.[5,6] The asymmetric rhodium-catalyzed addition of arylboron reagents and arylstannanes to imines has been reported.[7-19] Recently, Ellman has reported an elegant method for the asymmetric synthesis of α-amino acids by the rhodium catalyzed addition of arylboronic acids to N-tert-butanesulfinylimine, which precedes in high yield with high diastereoselectivity for both electron-rich and electron-poor arylboronic acids.[20-23] N-tert-Butanesulfinyl protected arylglycine derivatives have also been synthesized by the transition metal-catalyzed addition of arylboronic acids to N-tert-butanesulfinyl imino esters.[23-25] We recently reported a chiral N-linked C₂-symmetric bidentate phosphoramidite ((R, R)-N-Me-BIPAM)[26-29] was newly developed for the rhodium-catalyzed enantioselective addition of arylboronic acids to N-sulfonylimines. This ligand achieved high enantioselectivities.[30] As part of our program to develop catalyzed reaction of organoboronic acids with rhodium or palladium catalyst, we wish to report synthesis of chiral arylglycine derivatives by using enantioselective addition of arylboron reagents to imines (Scheme 1).
Result and discussion

Furyl rings are excellent synthons of the hydroxycarbonyl group that allow various synthesis of amino acids.[31-34,40] However, attempts at arylation of imines with heteroarylboronic acids, such as 2-furalylboronic acid, were unsuccessful because of competitive B-C bond cleavage with water relative to addition reaction. This is attributable to the high coordination ability of heteroatoms to catalysts and slow transmetalation and insertion of electron-deficient heteroaryl rings. Thus, we recently developed tetracoordinated ate-complexes of boronic esters for metal catalyzed reactions in nonaqueous media.[35-40] Initially, we chose arylation of N-tosyl-2-furylimine for synthesis of N-tosylaryl(furyl)amine (Table 1). The Rh(acac)(C\textsubscript{2}H\textsubscript{4})\textsubscript{2} previously used for addition of arylboronic acids to N-tosylaldimines resulted in lower selectivities (75\% ee, entry 1).[30] The reaction took place smoothly in DME at 50 °C for 16 hours in the presence of Rh(acac)((R, R)-N-Me-bipam) with 97\% yield and 96\% ee (entry 2). Results of the arylation of N-tosyl-2-furylimine with representative arylboronic acids at 50 °C in DME are summarized in Table 1. High enantioselectivities were achieved in donating or withdrawing substituents at the boronic acids.

\textbf{Table 1. Arylation of N-tosyl-2-furylimine}A
Next, we tried the addition reaction of 2-furylboronic acid derivatives (4a-d) to 4-methoxybenzylaldehyde N-tosylimine (2c) (Table 2). The best selectivity was obtained with lithium 5-methylfuryltriolborate (4c) (entry 3), whereas 2-furylboronic acid or 2-furyltriolborate resulted in lower selectivities than that of 4c. Furthermore, no desired product was obtained with lithium 5-methoxyfuryltriolborate (4d) (entry 8). By further investigations of the reaction conditions was obtained finally in 62% yield and 99% ee using 3 mol% Rh(acac)(C₂H₄)₂/3.3 mol% (R, R)-N-Me-BIPAM in toluene (4 mL) at 100 °C for 16 h (entry 6).

Table 2. Addition of 2-furylboron reagent to arylimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar =</th>
<th>Yield [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₅ (3a)</td>
<td>89 (5a)</td>
<td>75B (S)</td>
</tr>
<tr>
<td>2</td>
<td>C₆H₅ (3a)</td>
<td>97 (5a)</td>
<td>96 (S)</td>
</tr>
<tr>
<td>3</td>
<td>4-MeC₆H₄ (3b)</td>
<td>91 (5b)</td>
<td>93 (-)</td>
</tr>
<tr>
<td>4</td>
<td>4-MeOC₆H₄ (3c)</td>
<td>93 (5c)</td>
<td>99B (+)</td>
</tr>
<tr>
<td>5</td>
<td>3-MeO C₆H₄ (3d)</td>
<td>99 (5d)</td>
<td>95B (-)</td>
</tr>
<tr>
<td>6</td>
<td>4-CF₃C₆H₄ (3e)</td>
<td>86 (5e)</td>
<td>98B (-)</td>
</tr>
<tr>
<td>7</td>
<td>3-CF₃C₆H₄ (3f)</td>
<td>75 (5f)</td>
<td>98 (-)</td>
</tr>
<tr>
<td>8</td>
<td>3-ClC₆H₄ (3g)</td>
<td>76 (5g)</td>
<td>95 (-)</td>
</tr>
<tr>
<td>9</td>
<td>3-BrC₆H₄ (3h)</td>
<td>84 (5h)</td>
<td>99 (+)</td>
</tr>
<tr>
<td>10</td>
<td>3,4-(CH₂O₂)C₆H₃ (3i)</td>
<td>93 (5i)</td>
<td>90 (+)</td>
</tr>
<tr>
<td>11</td>
<td>3-F-4-BrC₆H₄ (3j)</td>
<td>54 (5j)</td>
<td>95C (-)</td>
</tr>
</tbody>
</table>

*[^]A mixture of furylimine (0.5 mmol), ArB(OH)₂ (0.75 mmol), Rh(acac)((R, R)-N-Me-bipam) (3 mol%) in DME (2 mL) was stirred at 50 °C for 16 h.

[^b]Rh(acac)(C₂H₄)₂ (3 mol%)/(R, R)-N-Me-BIPAM (3.3 mol%) was used instead of Rh(acac)((R, R)-N-Me-bipam) (from ref. [30])

[^c]at 80 °C
Lithium 5-methyl-2-furyltriolborate (4c) was smoothly added to N-tosyl-arylimines in moderate yields and with excellent enantiomeric excess under optimized conditions (Table 3). The furyl rings thus synthesized are excellent synthons of a carboxylic acid group in various synthesis of carboxylic acid.[31-34,40] Ozone is used for the oxidation of the furyl rings because a combination of RuCl₃ and NaIO₄ resulted complex mixture of several products. Thus, ozonolysis of 5h and 5m in methanol smoothly occurred at -78 °C to yield corresponding arylglycine derivatives in 87% and 82% NMR yield, respectively (Scheme 2).

Table 3. Addition of lithium 5-methyl-2-furyltriolborate to arylimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar =</th>
<th>Temp. [°C]</th>
<th>Yield [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₅ (2a)</td>
<td>100</td>
<td>62 (5k)</td>
<td>93 (+)</td>
</tr>
<tr>
<td>2</td>
<td>4-MeC₆H₄ (2b)</td>
<td>90</td>
<td>56 (5l)</td>
<td>89 (+)</td>
</tr>
<tr>
<td>3</td>
<td>4-MeOC₆H₄ (2c)</td>
<td>100</td>
<td>62 (5m)</td>
<td>99 (+)</td>
</tr>
<tr>
<td>4</td>
<td>3-MeOC₆H₄ (2d)</td>
<td>100</td>
<td>44 (5n)</td>
<td>96 (+)</td>
</tr>
<tr>
<td>5</td>
<td>2-MeOC₆H₄ (2e)</td>
<td>100</td>
<td>64 (5o)</td>
<td>96 (+)</td>
</tr>
<tr>
<td>6</td>
<td>4-CF₃C₆H₄ (2f)</td>
<td>70</td>
<td>41 (5p)</td>
<td>66 (+)</td>
</tr>
<tr>
<td>7</td>
<td>4-BrC₆H₄ (2g)</td>
<td>70</td>
<td>51 (5q)</td>
<td>96 (-)</td>
</tr>
<tr>
<td>8</td>
<td>3-ClC₆H₄ (2h)</td>
<td>70</td>
<td>45 (5r)</td>
<td>94 (+)</td>
</tr>
<tr>
<td>9</td>
<td>2-ClC₆H₄ (2i)</td>
<td>70</td>
<td>44 (5s)</td>
<td>98 (+)</td>
</tr>
</tbody>
</table>
A mixture of arylimine (0.5 mmol), 3 (1.0 mmol), Rh(acac)(coe)₂ (3 mol%)/(R, R)-N-Me-BIPAM (3.3 mol%) in toluene (4 mL) was stirred for 16 h.

Scheme 2.

For direct synthesis of arylglycines, then we tried to asymmetric addition of arylboronic acids to iminoesters. We investigated the reaction of ethyl N-tosyliminoacetate with phenylboronic acid in the presence of Rh(acac)(C₂H₄)₂ (3 mol%) and (R, R)-N-Me-BIPAM (3.3 mol%) in DME at 50 °C for 16 h; the addition product was obtained in only 19% yield. PMP-protected iminoester could be synthesized in one step and in high yield from ethyl glyoxylate. The resulting products could be deprotected under mild conditions using CAN. Moreover, the PMP-protected iminoester are more stable than their corresponding imines such as tosylimine. When ethyl N-p-methoxyphenyliminoester was used, the yield increased to 51%. Finally, the reaction took place smoothly in dioxane at 50 °C in the presence of 3.0 equivalent of phenylboronic acid with 74% yield and 96% ee (entry 4). High enantioselectivities were achieved in most arylboronic acids having donating or withdrawing substituents at the para or meta carbons. In addition, functional groups such as hydroxyl and amino group were tolerated (entries 10-12).

Table 4. Arylation of iminoesters

<table>
<thead>
<tr>
<th>Entry</th>
<th>PG</th>
<th>Ar = (eq.)</th>
<th>Solvent</th>
<th>Yield [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ts</td>
<td>C₆H₅ (3a) (1.5)</td>
<td>DME</td>
<td>19B (7c)</td>
<td>68 (S)</td>
</tr>
<tr>
<td>2</td>
<td>PMP</td>
<td>C₆H₅ (3a) (1.5)</td>
<td>DME</td>
<td>51B (7c)</td>
<td>98 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PMP</td>
<td>C₆H₅ (3a) (1.5)</td>
<td>dioxane</td>
<td>60%B (7c)</td>
<td>96 (S)</td>
</tr>
<tr>
<td>4</td>
<td>PMP</td>
<td>C₆H₅ (3a) (3.0)</td>
<td>dioxane</td>
<td>74 (7c)</td>
<td>96 (S)</td>
</tr>
<tr>
<td>5</td>
<td>PMP</td>
<td>4-MeC₆H₄ (3b) (3.0)</td>
<td>dioxane</td>
<td>84 (7d)</td>
<td>97 (+)</td>
</tr>
<tr>
<td>6</td>
<td>PMP</td>
<td>4-MeOC₆H₄ (3c) (3.0)</td>
<td>dioxane</td>
<td>73 (7e)</td>
<td>97 (+)</td>
</tr>
<tr>
<td>7</td>
<td>PMP</td>
<td>3-MeOC₆H₄ (3d) (3.0)</td>
<td>dioxane</td>
<td>67 (7f)</td>
<td>96 (+)</td>
</tr>
<tr>
<td>8</td>
<td>PMP</td>
<td>4-ClC₆H₄ (3k) (3.0)</td>
<td>dioxane</td>
<td>47 (7g)</td>
<td>98 (+)</td>
</tr>
<tr>
<td>9</td>
<td>PMP</td>
<td>3,4-(CH₂O₂)C₆H₃ (3i) (3.0)</td>
<td>dioxane</td>
<td>77 (7h)</td>
<td>96 (+)</td>
</tr>
<tr>
<td>10</td>
<td>PMP</td>
<td>4-HOC₆H₄ (3l) (3.0)</td>
<td>dioxane</td>
<td>57 (7i)</td>
<td>90 (+)</td>
</tr>
<tr>
<td>11</td>
<td>PMP</td>
<td>3-HOC₆H₄ (3m) (3.0)</td>
<td>dioxane</td>
<td>61 (7j)</td>
<td>99.7 (+)</td>
</tr>
<tr>
<td>12</td>
<td>PMP</td>
<td>3-BocHNC₆H₄ (3n) (3.0)</td>
<td>dioxane</td>
<td>54 (7k)</td>
<td>99 (+)</td>
</tr>
</tbody>
</table>

^A mixture of iminoester (0.5 mmol), ArB(OH)₂, Rh(acac)(C₂H₄)₂ (3 mol%)/(R, R)-N-Me-BIPAM (3.3 mol%) in DME (2 mL) was stirred at 80 °C for 22 h. ^A for 16 h.

Conclusion

In summary, we developed an efficient and highly enantioselective synthesis of arylglycines by using asymmetric addition of arylboronic acids to N-tosyl 2-furylimines or ethyl PMP-iminoester. Furthermore, asymmetric addition of lithium 5-methyl-2-furyltrisolvate to N-tosyl aryl imines has been achieved with high enantioselectivities. We have demonstrated high efficiency of (R, R)-N-Me-BIPAM and lithium 2-furyltrisolvate for enantioselective 1,2-addition to imines. With this catalyst system, a broad range of enantiopure arylglycines were easily prepared.

Experimental

Arylation of N-tosyl-2-furylimine

A flask was charged with Rh(acac)((R, R)-N-Me-bipam) (0.015 mmol, 3 mol%), N-tosyl-2-furylimine (0.5 mmol) and arylboronic acid (0.75 mmol) under a nitrogen atmosphere. DME (2.0 mL) was added to the flask and the mixture was then stirred at 50 °C for 16 h, at which time the crude reaction mixture extracted using ethyl acetate, washed with saturated NH₄Cl and brine, and dried over MgSO₄. Chromatography of the crude reaction mixture on silica gel gave (S)-N-(2-(quinolyl)(phenyl)methyl)-4-methylbenzenesulfonamide (5a)[14,16,18,19,30] in 97% yield and 96% ee. [α]D²⁴ -10.66 (c 0.83, CHCl₃) [lit.14 for (S)-5a: [α]D²⁰ -21.6 (c 1.03, CHCl₃) (99% ee); lit.16 for (R)-5a: [α]D²⁰ +4.6 (c 0.50, CHCl₃) (85% ee); lit.18 for (S)-5a: [α]D²⁰ -14.9 (c 0.98, CHCl₃) (99% ee); lit.19 for (S)-5a: [α]D²⁰ -9.6 (c 0.76, CHCl₃) (81% ee); lit.30: [α]D²⁵ -10.8 (c 0.37, CHCl₃) (75% ee)]; N-(2-(quinolyl)(p-tolyl)methyl)-4-methylbenzenesulfonamide (5b): [α]D²⁴ -1.43 (c 1.31, CHCl₃), 93% ee (HPLC analysis: Chiralcel AS-H, hexane/2-propanol = 4/1, flow = 0.5 mL/min, wavelength = 230
nm, t_R = 48.6 min and 56.1 min). δ_H (CDCl3, 400 MHz) 2.29 (s, 3H), 2.37 (s, 3H), 5.39 (d, J 7.7, 1H), 5.56 (d, J 7.7, 1H), 5.99 (d, J 3.2, 1H), 6.17 (dd, J = 1.8, 3.2 Hz, 1H), 7.02-7.06 (m, 4H), 7.14 (d, J 8.2, 2H), 7.20 (d, J 1.4, 1H), 7.57 (d, J 8.2, 2H). δ_C (CDCl3, 100 MHz) 21.2, 55.4. m/z (HR-ESI) calcd. for C_{19}H_{19}NO_{3}SNa: 364.0983 [M+Na]^{+}. Found: 364.0977.

N-[[2-(Furanyl)(4-methoxyphenyl)methyl]-4-methylbenzenesulfonamide (5c): [α]_{D}^{24} +2.54 (c 0.65, CHCl3), 88% ee, |lit.30: [α]_{D}^{22} +2.79 (c 0.45, CHCl3) (99% ee)|

N-[[2-(Furanyl)(3-methoxyphenyl)methyl]-4-methylbenzenesulfonamide (5d): [α]_{D}^{24} -5.88 (c 0.26, CHCl3), 89% ee {lit.30: [α]_{D}^{24} -150.71 (c 0.32, CHCl3) (95% ee)}

N-[[2-(Furanyl)(4-trifluoromethylphenyl)methyl]-4-methylbenzenesulfonamide (5e): [α]_{D}^{24} -10.24 (c 0.57, CHCl3), 95% ee {lit.30: [α]_{D}^{24} -10.95 (c 0.56, CHCl3) (98% ee)}

N-[[2-(Furanyl)(3-trifluoromethylphenyl)methyl]-4-methylbenzenesulfonamide (5f): [α]_{D}^{24} -5.80 (c 0.85, CHCl3), 98% ee (HPLC analysis: Chiralcel AS-H, hexane/2-propanol = 4/1, flow = 0.5 mL/min, wavelength = 230 nm, t_R = 38.3 min and 53.8 min).

δ_H (CDCl3, 400 MHz) 2.35 (s, 3H), 5.66 (d, J 7.7, 1H), 5.74 (d, J 7.7, 1H), 5.99 (d, J 3.2, 1H), 6.18-6.20 (m, 1H), 7.12 (d, J 8.2, 2H), 7.24 (t, J 0.9, 1H), 7.33-7.47 (m, 4H), 7.55 (d, J 8.6, 2H). δ_C (CDCl3, 100 MHz) 21.5, 55.2, 108.8, 110.5, 124.1, 124.2, 124.9 (2C), 127.1, 129.2, 129.5, 130.9, 139.7, 143.1, 143.7, 151.4. m/z (HR-ESI) calcd. for C_{19}H_{16}F_{3}NO_{3}SNa: 418.0701 [M+Na]^{+}. Found: 418.0695.

N-[[3-Chlorophenyl](2-furanyl)methyl]-4-methylbenzenesulfonamide (5g): [α]_{D}^{24} -2.81 (c 0.51, CHCl3), 95% ee (HPLC analysis: Chiralcel AS-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, t_R = 38.3 min and 53.8 min). δ_H (CDCl3, 400 MHz) 2.37 (s, 3H), 5.56 (d, J 8.2, 1H), 5.61 (d, J 8.2, 1H), 6.00 (d, J 3.2, 1H), 6.18 (dd, J 1.8, 3.2, 1H), 7.09-7.22 (m, 7H), 7.56 (d, J 8.6, 2H). δ_C (CDCl3, 100 MHz) 21.6, 55.1, 108.7, 110.4, 125.6, 127.1, 127.6, 128.2, 129.5, 129.9, 134.5, 137.1, 140.2, 142.9, 143.6, 151.5. m/z (HR-ESI) calcd. for C_{17}H_{16}ClNO_{3}SNa: 384.0437 [M+Na]^{+}. Found: 384.0432.

N-[[3-Bromophenyl](2-furanyl)methyl]-4-methylbenzenesulfonamide (5h): [α]_{D}^{24} +0.93 (c 0.67, CHCl3), 99% ee (HPLC analysis: Chiralcel AS-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, t_R = 51.2 min and 62.0 min). δ_H (CDCl3, 400 MHz) 2.39 (s, 3H), 5.19 (d, J 7.3 Hz, 1H), 5.58 (d, J = 7.3 Hz, 1H), 6.00 (d, J = 3.2 Hz, 1H), 6.21 (dd, J 1.8, 3.2, 1H), 7.10-7.18 (m, 4H), 7.25 (d, J 9.1, 2H), 7.34-7.36 (m, 1H), 7.56 (d, J 8.6, 2H). δ_C (CDCl3, 100 MHz) 21.6, 55.0, 108.8, 110.4, 122.7, 126.1, 127.2, 129.5, 130.2, 130.4, 131.2, 137.1, 140.3, 143.0, 143.6, 151.4. m/z (HR-ESI) calcd. for C_{17}H_{16}BrNO_{3}SNa: 427.9932 [M+Na]^{+}. Found: 427.9926.

N-[[5-Benzof[1,3]dioxolyl](2-furanyl)methyl]-4-methylbenzenesulfonamide (5i): [α]_{D}^{24} +13.61 (c 0.56, CHCl3), 90% ee (HPLC analysis: Chiralcel OD-H, hexane/2-propanol = 95/5, flow = 0.5 mL/min, wavelength = 230 nm, t_R = 90.0 min and 97.5 min). δ_H (CDCl3, 400 MHz) 2.45 (d, J 7.7, 1H), 5.45 (d, J 7.7, 1H), 5.89 (dd, J 1.4, 5.9, 2H), 6.00 (d, J 3.2, 1H), 6.18 (dd, J 1.8,
3.2, 1H), 6.63-6.67 (m, 3H), 7.16 (d, J 8.2, 2H), 7.21 (d, J 1.4, 1H), 7.58 (d, J 8.2, 2H). δC (CDCl3, 100 MHz) 21.6, 55.4, 101.3, 107.9, 108.2, 108.3, 110.3, 121.0, 127.2, 129.4, 132.2, 137.4, 142.6, 143.3, 147.4, 147.8, 152.3. m/z (HR-ESI) calcd. for C19H17NO5SNa: 394.0725 [M+Na]+. Found: 394.0721.

N-[(4-Bromo-3-fluorophenyl)(2-furanyl)methyl]-4-methylbenzenesulfonamide (5j): [α]D 24° -4.35 (c 0.59, CHCl3), 96% ee (HPLC analysis: Chiralcel AS-H, hexane/2-propanol = 4/1, flow = 0.5 mL/min, wavelength = 230 nm, tR = 43.1 min and 48.2 min). δH (CDCl3, 400 MHz) 2.39 (s, 3H), 5.55 (d, J 7.7, 1H), 5.67 (d, J 7.7, 1H), 5.98 (d, J 3.2, 1H), 6.19 (dd, J 1.8, 3.2, 1H), 6.89 (dd, J 1.8, 8.2, 1H), 7.16 (d, J 8.6, 2H), 7.23 (d, J 1.8, 1H), 7.39 (dd, J 7.3, 8.2, 1H), 7.56 (d, J 8.2, 2H). δC (CDCl3, 100 MHz) 21.6, 54.7, 108.8, 110.5, 115.5, 115.8, 124.3, 127.1, 129.5, 133.6, 137.0, 140.0, 143.1, 143.8, 151.0, 158.9. m/z (HR-ESI) calcd. for C18H15BrFNO3SNa: 445.9838 [M+Na]+. Found: 445.9838 [M+Na]+.

Addition of lithium 5-methyl-2-furyltripolborate to arylimines

A flask was charged with Rh(acac)(coe)2 (0.015 mmol, 3 mol%) and (R, R)-N-Me-BIPAM (0.0165 mmol, 3.3 mol%) under a nitrogen atmosphere. Toluene (4.0 mL) was added to the flask and the mixture was then stirred at room temperature for 1 h to prepare the catalyst. arylimine (2a, 0.5 mmol), lithium 5-methyl-2-furyltropolborate (4c, 1.0 mmol) were then added to this catalyst solution. The reaction mixture was stirred at 100 °C for 16 h, at which time the crude reaction mixture extracted using ethyl acetate, washed with saturated NH4Cl and brine, and dried over MgSO4. Chromatography of the crude reaction mixture on silica gel gave 4-Methyl-N-[(5-methyl-2-furanyl)(phenyl)methyl]-benzenesulfonamide[42] (5 k) in 65% yield and 93% ee. [α]D 24° +37.25 (c 0.15, CHCl3).

4-Methyl-N-[(5-methyl-2-furanyl)(p-tolyl)methyl]-benzenesulfonamide (5l): [α]D 24° +14.62 (c 0.63, CHCl3), 89% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 1.0 mL/min, wavelength = 230 nm, tR = 7.1 min and 9.7 min). δH (CDCl3, 400 MHz) 2.09 (s, 3H), 2.30 (s, 3H), 2.38 (s, 3H), 5.11 (d, J 7.7 Hz, 1H), 5.51 (d, J 7.3, 1H), 5.73 (dd, J 0.9, 3.1 Hz, 1H), 5.84 (d, J 3.2, 1H), 7.01-7.10 (m, 4H), 7.15 (d, J 8.2, 2H), 7.58 (d, J 8.2, 2H); δC (CDCl3, 100 MHz) 13.5, 21.2, 21.6, 55.4, 106.1, 109.3, 127.2, 129.2, 129.3, 135.5, 137.8, 143.1, 150.4, 152.3. m/z (HR-ESI) calcd. for C20H21NO3SNa: 378.1140 [M+Na]+. Found: 378.1134.

N-[(4-Methoxyphenyl)(5-methyl-2-furanyl)methyl]-4-methylbenzenesulfonamide (5m): [α]D 24° +13.73 (c 0.12, CHCl3), 99% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 9/1, flow = 1.0 mL/min, wavelength = 230 nm, tR = 12.9 min and 14.7 min). δH (CDCl3, 400 MHz) 2.09 (s, 3H), 2.38 (s, 3H), 3.77 (s, 3H), 5.14 (d, J = 7.3 Hz, 1H), 5.50 (d, J = 7.7 Hz, 1H), 5.74 (dd, J = 0.9, 3.2 Hz, 1H), 5.83 (d, J = 3.2 Hz, 1H), 6.76 (d, J = 8.6, 2H), 7.11 (d, J = 8.6, 2H), 7.16 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 8.6, 2H). δC (CDCl3, 100 MHz) 13.5, 21.6, 55.2, 55.3, 106.1, 109.3, 113.9, 127.2, 128.6, 129.3, 130.6, 137.5, 143.1, 150.5, 152.3, 159.3; m/z (HR-ESI) calcd. for C20H21NO4SNa: 394.1089 [M+Na]+. Found: 394.1089 [M+Na]+.
Found: 394.1086.

N-[(3-Methoxyphenyl)(5-methyl-2-furanyl)methyl]-4-methylbenzenesulfonamide (5n): $[\alpha]_D^{24} +0.60$
(c 0.05, CHCl$_3$), 96% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, $t_R = 20.0$ min and 21.0 min). δ_{H} (CDCl$_3$, 400 MHz) 2.10 (s, 3H), 2.38 (s, 3H), 3.71 (s, 3H), 5.18 (d, $J = 7.7$, 1H), 5.53 (d, $J = 7.3$, 1H), 5.74 (d, $J = 2.3$, 1H), 5.85 (d, $J = 3.2$, 1H), 6.72-6.80 (m, 3H), 7.14-7.18 (m, 1H), 7.58 (d, $J = 8.2$, 2H). δ_{C} (CDCl$_3$, 100 MHz) 13.5, 21.6, 55.3, 55.6, 106.2, 109.5, 112.9, 113.6, 119.7, 127.2, 129.3, 129.6, 137.5, 139.9, 143.1, 150.1, 152.4, 159.7; m/z (HR-ESI) calcd. for C$_{20}$H$_{21}$NO$_4$SNa: 394.1089 [M+Na]$^+$. Found: 394.1084.

N-[(2-Methoxyphenyl)(5-methyl-2-furanyl)methyl]-4-methylbenzenesulfonamide (5o): $[\alpha]_D^{23} +11.86$
(c 0.23, CHCl$_3$), 96% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 1.0 mL/min, wavelength = 230 nm, $t_R = 8.9$ min and 10.2 min). δ_{H} (CDCl$_3$, 400 MHz) 2.12 (s, 3H), 2.34 (s, 3H), 3.69 (s, 3H), 5.66 (d, $J = 9.1$, 1H), 5.74 (d, $J = 9.5$, 2H), 5.80 (d, $J = 7.2$, 1H), 6.71 (d, $J = 8.2$, 1H), 6.81 (ddd, $J = 0.9$, 7.7, 15.0, 1H), 7.09 (d, $J = 7.7$, 3H), 7.15-7.19 (m, 1H), 7.56 (d, $J = 8.2$, 2H). δ_{C} (CDCl$_3$, 100 MHz) 13.6, 21.5, 52.9, 55.4, 106.2, 108.3, 111.0, 120.8, 126.2, 127.1, 129.1, 129.2(2C), 137.7, 142.8, 150.8, 151.9, 156.6. m/z (HR-ESI) calcd. for C$_{20}$H$_{21}$NO$_4$SNa: 394.1089 [M+Na]$^+$. Found: 394.1083.

4-Methyl-N-[(5-methyl-2-furanyl)(4-trifluoromethylphenyl)methyl]-benzenesulfonamide (5p): $[\alpha]_D^{24} +7.45$
(c 0.25, CHCl$_3$), 66% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 1.0 mL/min, wavelength = 230 nm, $t_R = 11.9$ min and 14.5 min). δ_{H} (CDCl$_3$, 400 MHz) 2.12 (s, 3H), 2.37 (s, 3H), 5.37 (d, $J = 7.3$ Hz, 1H), 5.60 (d, $J = 7.3$ Hz, 1H), 5.75 (dd, $J = 0.9$, 3.2, 1H), 5.82 (d, $J = 3.2$, 1H), 7.13 (d, $J = 8.2$, 2H), 7.33 (d, $J = 8.2$, 2H), 7.46 (d, $J = 8.6$, 2H). δ_{C} (CDCl$_3$, 100 MHz) 13.5, 21.5, 55.0, 106.3, 109.8, 125.4, 125.5(2C), 127.2, 127.9, 129.4, 137.2, 142.2, 143.5, 149.3, 153.0. m/z (HR-ESI) calcd. for C$_{20}$H$_{18}$F$_3$NO$_3$SNa: 432.0857 [M+Na]$^+$. Found: 432.0853.

N-[(4-Bromophenyl)(5-methyl-2-furanyl)-methyl]-4-methylbenzenesulfonamide (5q): $[\alpha]_D^{24} -5.43$
(c 0.07, CHCl$_3$), 96% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 1.0 mL/min, wavelength = 230 nm, $t_R = 8.1$ min and 11.4 min). δ_{H} (CDCl$_3$, 400 MHz) 2.09 (s, 3H), 2.37 (s, 3H), 5.46 (d, $J = 7.7$ Hz, 1H), 5.49 (d, $J = 7.7$ Hz, 1H), 5.74 (d, $J = 2.3$ Hz, 1H), 5.81 (d, $J = 3.2$ Hz, 1H), 7.08 (d, $J = 8.6$ Hz, 2H), 7.15 (d, $J = 8.6$ Hz, 2H), 7.33 (d, $J = 8.6$ Hz, 2H). δ_{C} (CDCl$_3$, 100 MHz) 13.4, 21.5, 55.0, 106.1, 109.5, 121.9, 127.1, 129.0, 129.3, 131.5, 137.1, 137.3, 143.3, 149.5, 152.6. m/z (HR-ESI) calcd. for C$_{19}$H$_{18}$BrNO$_3$SNa: 442.0088 [M+Na]$^+$. Found: 442.0087.

N-[(3-Chlorophenyl)(5-methyl-2-furanyl)methyl]-4-methylbenzenesulfonamide (5r): $[\alpha]_D^{24} +91.35$
(c 0.21, CHCl$_3$), 94% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, $t_R = 17.1$ min and 18.9 min). δ_{H} (CDCl$_3$, 400 MHz) 2.10 (s, 3H), 2.38 (s, 3H), 5.44 (d, $J = 7.7$, 1H), 5.52 (d, $J = 7.7$, 1H), 5.74 (d, $J = 2.3$, 1H), 5.83 (d, $J = 3.2$, 1H), 7.11-7.18 (m, 6H), 7.56 (d, $J = 8.2$, 2H). δ_{C} (CDCl$_3$, 100 MHz) 13.5, 21.6, 55.2, 106.3, 109.6, 125.7, 127.2, 127.6, 128.1, 129.4, 129.8, 134.4, 137.2, 140.4, 143.4, 149.5, 152.8. m/z (HR-ESI) calcd. for C$_{19}$H$_{18}$ClNO$_3$SNa:

N-(2-Chlorophenyl)-(5-methyl-2-furanyl)methyl-4-methylbenzenesulfonamide (5x): [α]D²⁴ +4.45 (c 0.20, CHCl₃), 98% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, tR = 16.0 min and 17.0 min). δH (CDCl₃, 400 MHz) 2.11 (s, 3H), 2.37 (s, 3H), 5.47 (d, J = 7.3 Hz, 1H), 5.75 (d, J = 2.7 Hz, 1H), 5.77 (d, J = 3.2 Hz, 1H), 5.96 (d, J = 7.3 Hz, 1H), 7.14-7.17 (m, 4H), 7.24-7.27 (m, 1H), 7.34-7.37 (m, 1H), 7.63 (d, J = 8.2 Hz, 2H).

δC (CDCl₃, 100 MHz) 13.5, 21.6, 52.8, 106.4, 109.5, 127.0, 127.3, 129.1, 129.2, 129.4, 129.7, 132.9, 135.9, 137.1, 143.3, 149.2, 152.7. m/z (HR-ESI) calcd. for C₁₉H₁₈ClNO₃SNa: 398.0588 [M+Na]^+. Found: 398.0592.

Arylation of iminoesters

A flask was charged with Rh(acac)(C₂H₄)₂ (0.015 mmol, 3 mol%) and (R, R)-N-Me-BIPAM (0.0165 mmol, 3.3 mol%) under a nitrogen atmosphere. Dioxane (2.0 mL) was added to the flask and the mixture was then stirred at room temperature for 1 h to prepare the catalyst. PMP iminoester (6, 0.5 mmol), phenylboronic acid (3a, 1.5 mmol) were then added to this catalyst solution. The reaction mixture was stirred at 80 °C for 22 h, at which time the crude reaction mixture extracted using ethyl acetate, washed with saturated NH₄Cl and brine, and dried over MgSO₄. Chromatography of the crude reaction mixture on silica gel gave (S)-(4-Methoxyphenylamino)phenylacetic acid ethyl ester [43,44] (7c) in 74% yield and 96% ee. [α]D²⁴ +69.33 (c 0.31, CHCl₃) {lit.[43] for (R)-7c: [α]D²⁰ -107.8 (c 0.68, CHCl₃) (96% ee); lit.[44] for (R)-7c: [α]D²⁰ -77.0 (c 0.4, CHCl₃) (92% ee)}.

(4-Methoxyphenylamino)(p-tolyl)acetic acid ethyl ester [43,44] (7d): [α]D²⁴ +90.20 (c 0.31, CHCl₃), 97% ee, {lit.[43]: [α]D²⁰ -74.5 (c 0.92, CHCl₃) (96% ee); lit.[44]: [α]D²⁰ -86.4 (c 0.4, CHCl₃) (93% ee)}.

(4-Methoxyphenyl)(4-methoxyphenylamino)acetic acid ethyl ester [43,44] (7e): [α]D²⁴ +86.05 (c 0.2, CHCl₃), 97% ee, {lit.[43]: [α]D²⁰ -64.4 (c 0.46, CHCl₃) (94% ee); lit.[44]: [α]D²⁰ -82.0 (c 0.2, CHCl₃) (91% ee)}.

(3-Methoxyphenyl)(4-methoxyphenylamino)acetic acid ethyl ester (7f): [α]D²⁴ +71.71 (c 0.30, CHCl₃), 96% ee, (HPLC analysis: Chiralcel AD-H, hexane/2-propanol = 4/1, flow = 1.0 mL/min, wavelength = 230 nm, tR = 12.8 min and 15.1 min). δH (CDCl₃, 400 MHz) 1.21 (t, J 7.3, 3H), 3.78 (s, 3H), 4.08-4.26 (m, 2H), 4.63 (bs, 1H), 4.96 (s, 1H), 6.51-6.55 (m, 2H), 6.70-6.74 (m, 2H), 6.83 (ddd, J 0.9, 1.8, 8.2, 1H), 7.03-7.04 (m, 1H), 7.08 (d, J 7.7, 1H), 7.24-7.28 (m, 1H). δC (CDCl₃, 100 MHz) 14.2, 55.3, 55.8, 61.8, 61.9, 112.8, 113.8, 114.8, 114.9, 119.7, 129.9, 139.6, 140.3, 152.5, 160.0, 172.0. m/z (HR-ESI) calcd. for C₁₈H₂₁NO₄Na: 338.1363 [M+Na]^+. Found: 338.1366.

(4-Chlorophenyl)(4-methoxyphenylamino)acetic acid ethyl ester [43,44] (7g): [α]D²⁴ +79.03 (c 0.11, CHCl₃), 98% ee, {lit.[43]: [α]D²⁰ -70.9 (c 1.19, CHCl₃) (98% ee); lit.[44]: [α]D²⁰ -86.9 (c 0.4, CHCl₃) (86% ee)}.

5-Benzox[1,3]dioxolyl(4-methoxyphenylamino)acetic acid ethyl ester (7h): [α]D²⁴ +89.39 (c 0.10, CHCl₃), 96% ee (HPLC analysis: Chiralcel AD-H, hexane/2-propanol = 4/1, flow = 1.0 mL/min,
wavelength = 230 nm, tR = 17.9 min and 22.3 min). δH (CDCl3, 400 MHz) 1.21 (t, J 7.3, 3H), 3.70 (s, 3H), 4.08-4.26 (m, 2H), 4.90 (s, 1H), 5.92-5.93 (m, 2H), 6.52 (d, J 7.7, 2H), 6.71-6.77 (m, 3H), 6.95-6.97 (m, 2H). δC (CDCl3, 100 MHz) 14.2, 55.8, 61.3, 61.9, 101.3, 107.6, 108.5, 114.8, 114.9, 120.9, 131.9, 140.2, 147.6, 148.1, 152.5, 172.1. m/z (HR-ESI) calcd. for C18H19NO5Na: 352.1155 [M+Na]+. Found: 352.1156

(4-Hydroxyphenyl)(4-methoxyphenylamino)acetic acid ethyl ester (7i): [α]D24 +78.80 (c 0.46, CHCl3), 90% ee (HPLC analysis: Chiralcel OD-H, hexane/EtOH = 10/1, flow = 0.5 mL/min, wavelength = 230 nm, tR = 29.7 min and 32.6 min). δH (CDCl3, 400 MHz) 1.20 (t, J 7.3, 3H), 3.71 (s, 3H), 4.08-4.26 (m, 2H), 4.93 (s, 1H), 6.53 (d, J 9.1, 2H), 6.71-6.78 (m, 4H), 7.32 (d, J 8.6, 2H). δC (CDCl3, 100 MHz) 14.2, 55.8, 61.2, 61.8, 114.9, 115.8, 128.7, 129.8, 140.3, 152.5, 155.7, 172.6. m/z (HR-ESI) calcd. for C17H19NO4Na: 324.1206 [M+Na]+. Found: 324.1212.

(3-Hydroxyphenyl)(4-methoxyphenylamino)acetic acid ethyl ester (7j): [α]D24 +7.38 (c 1.10, CHCl3), 99.7% ee (HPLC analysis: Chiralcel As-H, hexane/2-propanol = 4/1, flow = 0.5 mL/min, wavelength = 230 nm, tR = 24.1 min and 30.8 min). δH (CDCl3, 400 MHz) 1.22 (t, J 7.3, 3H), 3.72 (s, 3H), 4.15-4.31 (m, 2H), 4.73 (bs, 1H), 5.00 (s, 1H), 6.73-6.75 (m, 4H), 6.85-6.92 (m, 2H), 7.20-7.26 (m, 2H). δC (CDCl3, 100 MHz) 14.1, 55.7, 62.5, 62.9, 114.8, 117.6, 117.9, 120.3, 121.2, 129.4, 129.9, 139.1, 154.6, 156.8, 171.4. m/z (HR-ESI) calcd. for C17H19NO4Na: 324.1206 [M+Na]+. Found: 324.1212.

(3-tert-Butoxycarbonylamino)phenyl)(4-methoxyphenylamino)acetic acid ethyl ester (7k): [α]D24 +61.73 (c 0.08, CHCl3), 99% ee (HPLC analysis: Chiralcel AD-H, hexane/2-propanol = 4/1, flow = 1.0 mL/min, wavelength = 230 nm, tR = 13.3 min and 18.1 min). δH (CDCl3, 400 MHz) 1.50 (s, 9H), 3.69 (s, 3H), 4.07-4.26 (m, 2H), 4.67 (bs, 1H), 4.95 (s, 1H), 6.51 (d, J 9.1, 2H), 6.69-6.73 (m, 2H), 7.15 (d, J 7.7, 1H), 7.24-7.28 (m, 1H), 7.39-7.41 (m, 2H). δC (CDCl3, 100 MHz) 14.2, 28.4, 55.8, 61.6, 61.9, 80.7, 114.8, 114.9, 116.9, 118.3, 121.9, 129.5, 139.0 (2C), 140.3, 152.5, 152.7, 172.0. m/z (HR-ESI) calcd. for C22H28N2O5Na: 423.1890 [M+Na]+. Found: 423.1892.

Acknowledgments
This work was supported in part by the Global COE Program (Project No. B01, Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

Enantioselective Synthesis of Arylglycine Derivatives by Asymmetric Addition of Arylboronic Acids to Imines

Yasunori Yamamoto, A,B Yoshinori Takahashi, A Kazunori Kurihara A and Norio Miyaura A

The asymmetric arylation of imines with arylboronic acids was realized by using rhodium/chiral bidentate phosphoramidite ligand ((R, R)-N-Me-BIPAM). This method affords a direct access to chiral α-amino acids in good yield with high enantioselectivities.