Title
Human amniotic membrane and vitamin E/selenium for control of postoperative adhesion in dogs

Author(s)
El-Daharawy, Mohamed; Helal, Ibrahim

Citation
Japanese Journal of Veterinary Research, 59(4), 165-171

Issue Date
2011-11

DOI
10.14943/jjvr.59.4.165

Doc URL
http://hdl.handle.net/2115/47729

Type
bulletin (article)
Human amniotic membrane and vitamin E/selenium for control of postoperative adhesion in dogs

Mohamed El-Daharawy¹ and Ibrahim Helal¹

¹Dept. of Surgery, Anesthesiology & Radiology -Fac. of Vet Med., Suez Canal Univ., Ismilia, Egypt. Postal code: 41522

Received for publication, May 23, 2011; accepted, October 6, 2011

Abstract
This study was undertaken to compare between the human amniotic membrane (HAM) and intraperitoneal vitamin E (Vit E) and selenium in prevention of postoperative adhesions in dogs. A total of 18 apparently healthy adult Mongrel dogs were divided into three equal groups and the group (I) was treated with a sterile solution of 0.9% sodium chloride intraperitoneally as a control. Group II was treated with the HAM at jejunal enterotomy while group III was treated with Vit E and selenium administered intraperitonally. Dogs were euthanized 30 days postoperatively for histopathological examination. The results showed that both HAM and Vit E and selenium were effective in reduction of the postoperative adhesion in comparison with the group I. In terms of extent of adhesions, there was no significant difference between the HAM group and the Vit E and selenium group.

Key words: Amniotic membrane, antiadhesive, dogs, vitamin E.

Introduction

The most common cause of intra-abdominal adhesions is a history of previous abdominal surgery. Postsurgical adhesions severely affect the quality of life, causing small-bowel obstruction, difficult reoperative surgery, chronic abdominal and pelvic pain. Several treatment strategies have been evaluated to prevent or minimize the occurrence of adhesions. These include improving surgical techniques, using pharmacologic interventions targeted at the inflammatory response and fibrin deposition, and using agents that provide a physical barrier to adhesion formation.

Amniotic membrane has been used in prevention of postoperative adhesions. Studies indicate that this membrane possesses antibacterial properties and low immunogenicity, can promote epithelization and wound healing, inhibit inflammation and scarring, and regulate angiogenesis.

Vit E theoretically has interesting biological properties. In vitro studies have shown that Vit E has antioxidant, antiinflammatory, anticoagulant and antifibroblastic effects and decreases collagen

*Corresponding author: Dr. Ibrahim Elsyed Helal, Dept. of Surgery, Anesthesiology & Radiology -Fac. of Vet Med., Suez Canal Univ., Ismilia, Egypt Phone: +0020100493837. Fax: +0020643207052. E-mail: ibrahim_surg@yahoo.com
production14. These properties have led to the investigation of Vit E in various studies for the prevention of adhesions4,17.

This study aimed to compare between the effect of HAM and intraperitoneal Vit E and selenium in prevention of induced peritoneal adhesions in dogs.

Materials and methods

This study was performed at the Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Egypt and was approved by the Institutional Ethical Committee.

Animals: A total of 18 apparently healthy adult Mongrel dogs with a mean \pm SD (20.9 \pm 2.27) month old from both sexes and weighing 12–15 kg were used in this study. Dogs were divided into three groups each one consists of 6 individuals.

Anesthesia and preoperative technique: Dogs were fasted for 12 hs before the surgical procedure. Each dog was premedicated with intramuscular injection of chlorpromazine hydrochloride in a dose rate of 1 mg/kg, 15 min prior to the induction of general anesthesia7. The surgical site was then clipped, shaved and disinfected with povidone iodine solution (Betadine: Povidone-Iodine U.S.P. 10%, El Nile-Co.). General anesthesia was conducted by intravenous injection of thiopental sodium 2.5% until the main reflexes were abolished. The whole animal, except the sites of operation, was draped with sterile towel. Balanced electrolyte (0.9% Sodium chloride) solution was administered (10 ml/kg/hr) during surgery.

Surgical procedures: Ten cm ventral midline incision was made and the abdominal explorations were performed to examine the viscera. The jejunum was exteriorized and 2 cm in length enterotomy incision was performed. The enterotomy incisions were closed using a Lembert’s pattern in the seromuscular layer using 3–0 polyglactin 910 (Vicryl: Manufactured Johnson & Johnson Jutl). In group I, dogs were treated with a sterile solution of 0.9% sodium chloride intraperitoneally as a control. In group II, the human amniotic membrane (Biomembrane: Sterile human amnion membrane for ophthalmic use; Jensitie, A brand of Matrix Health Care S. A.E.) was applied to jejunal enterotomy incision and stabilized with three sutures 6/0 polyglactin 910 using interrupted Lembert’s pattern with the basal membrane facing the surface of the jejunal serosa (Fig. 1a). In group III, Vit E and selenium (Hipravit-Se: Vitamine E and Selenium; Laboratorios Hipra, S.A.-AVDA. LA SELVA, 135 17170 AMER (Girona spain) were administrated in a dose (0.1 ml of Hipravit-se/kg b.w. (equivalent to 0.007 mg of selenium and 5 mg of vitamine E/kg b.w.)) intraperitonally. The laporatomy incisions were closed using polyglactin 910 No. 0 in a simple continuous pattern. Skin edges were sutured using silk No. 0 in a simple interrupted pattern.

Postoperative care: Each animal was injected postoperatively with 1 g of amoxicillin intramuscularly (I.M.) (E.Mox: Egyptian International Pharm. Industries Company, A. R. E) and dipyrone (Analgin 50%: El-Nasr Pharmaceutical Chemicals co., Egypt.) in a dose of 10 mg/kg I.M. for 3 days. After recovery, dogs were allowed for water free choice, continued to receive intravenous fluids for 48 hours after surgery, and were gradually returned to full feed over the next 48 hours. Each dog was observed till the end of the experiment.

Histopathological examination: Dogs were euthanized 30 days postoperatively using an overdose of thiopental sodium solution. The abdominal incision, peritoneal cavity, and all abdominal viscera were evaluated for adhesions and any other post surgical changes. The adhesion assessments were evaluated as the following: 0, no adhesions; 1, minimal adhesions, mainly between the omentum and the injured operating sites; 2, moderate adhesions, i.e., between the injured operating sites and a loop of the small bowel or the abdominal wall; and 3,
severe and extensive adhesions, i.e., between the injured operating sites and several loops of small bowel and the abdominal wall. Tissue specimens were collected and fixed in 10% neutral buffered formalin, embedded in paraffin, and stained with haematoxylin and eosin and Masson trichrome for histopathologic examination. Inflammation, vascularization and fibrosis were graded in all samples according to previous description. The accumulation of polymorphonuclear cells and mononuclear cells reflecting inflammation was assessed. Normal cell count was graded 0, slight increase in cells 1, marked infiltration 2, and massive infiltration 3. Neovascularization was investigated by scanning of capillary vessel proliferation with prominent endothelium. In every middle power field the number of vessels was evaluated as 0 points if neovascularization was absent, 1 point for 1-2 vessels, 2 points for 3-9 vessels and 3 points for 10 or more vessels. In the assessment of fibrosis the quantitative increase of young fibroblasts and the presence of collagen were evaluated together. The scores were between 0 and 3: 0 points if fibrosis was absent, 1 point for slight, 2 point for moderate and 3 point for dense fibrosis and hyalinization.

Statistical Analysis: Comparison among the three groups was done using ANOVA by non-parametric method “Kruskal-Wallis test” followed by pair comparisons using Mann-Whitney test.

Results

Our surgical procedures were well tolerated by all animals. All laparotomy sites were intact except in two cases, one in group II and another in group III that were observed 10 days postoperatively. These dogs were excluded from analysis.

In macromorphologic evaluation, the distribution of animals according to adhesions and mean adhesion scores of the groups were presented in Table 1, respectively. The mean adhesion scores of groups II and III were significantly lower than that in group I ($p < 0.05$). In group I at 30 days postoperatively, severe adhesion was observed in one case among enterotomy site, adjacent loop of small intestine and peritoneum (Fig. 1b). Two cases showed mild adhesion between enterotomy site and mesentry while three cases in this group showed moderate adhesions between the enterotomy site and peritoneum. No adhesions were observed in two cases in group II and three cases in group III (Fig. 1c) while other cases in both groups showed mild adhesion between enterotomy site and mesentry (Fig. 1d).

The results of histopathological analysis are summarized in Table 2. With respect to inflammation, neovascularization and fibrosis, the difference between group II and III was not significant. Result of group I, was significantly different from results of both group II and III ($P < 0.05$). In group I at 30 days postoperatively, severe adhesion was observed in one case among enterotomy site, adjacent loop of small intestine and peritoneum (Fig. 1b). Two cases showed mild adhesion between enterotomy site and mesentry while three cases in this group showed moderate adhesions between the enterotomy site and peritoneum. No adhesions were observed in two cases in group II and three cases in group III (Fig. 1c) while other cases in both groups showed mild adhesion between enterotomy site and mesentry (Fig. 1d).

Table 1. The number of dogs within the groups according to the adhesion score and mean adhesion scores (Mean ± SE).

<table>
<thead>
<tr>
<th>Adhesion score</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Mean ± SE $1.83 ± 0.31$ $0.60^* ± 0.24$ $0.40^* ± 0.24$

* Significantly different ($P < 0.05$).
Prevention of postoperative adhesion in dogs

168

The present study indicated that HAM was slippery and could not cover the whole lesions till complete healing of the peritoneum. Therefore, unstability of HAM might cause the increase in extent of adhesion in three cases in this group.

The slippery of the amniotic membrane was controlled in all animals with three 6/0 polyglactin sutures placed near the mesenteric aspect. Their use should be kept as few as possible, since the excessive use of sutures can trigger adhesion formation. Similarly some studies reported that the amniotic membrane had a slippery structure and recommended fixing the membrane on the injured surface with

Discussion

The amniotic membrane has many characteristics which make it potentially suitable in the prevention of peritoneal adhesions. Physical barriers have been used in an attempt to prevent adhesion formation by limiting tissue opposition during the critical period of peritoneal healing. The ideal barrier should be non-reactive, absorbable and easy to use, and it should remain in the lesion site during critical stages of healing.

The persistence of the amniotic membrane on the damaged serosal surface without changing location played an important role in the significantly superior results. The present study indicated that HAM was slippery and could not cover the whole lesions till complete healing of the peritoneum. Therefore, unstability of HAM might cause the increase in extent of adhesion in three cases in this group.

The slippery of the amniotic membrane was controlled in all animals with three 6/0 polyglactin sutures placed near the mesenteric aspect. Their use should be kept as few as possible, since the excessive use of sutures can trigger adhesion formation. Similarly some studies reported that the amniotic membrane had a slippery structure and recommended fixing the membrane on the injured surface with

Table 2. Histopathological findings in all groups (mean ± SE).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Inflammation</th>
<th>Neovascularization</th>
<th>Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>2.50 ± 0.22</td>
<td>2.50 ± 0.34</td>
<td>2.67 ± 0.21</td>
</tr>
<tr>
<td>Group II</td>
<td>1.20* ± 0.20</td>
<td>1.80 ± 0.37</td>
<td>0.55* ± 0.24</td>
</tr>
<tr>
<td>Group III</td>
<td>1.40* ± 0.24</td>
<td>1.60 ± 0.24</td>
<td>0.45* ± 0.20</td>
</tr>
</tbody>
</table>

* Significantly different ($P < 0.05$).
multiple 7/0 polyglactin sutures.26,27

The results of the present study showed that both HAM and Vit E and selenium were effective in decrease of postoperative adhesion in dogs. Regarding the extent of adhesions, there was no significant difference between the group II and III.

The mean adhesion score decreased significantly in the group treated with HAM as in group I indicating that the use of HAM decreased adhesion formation in jejunal enterotomy. Similar results were obtained in previous work indicating that HAM had an important supportive mechanical role in integrity of the anastomotic peritoneum as a biologic bandage by sticking to the serosal face, especially at the early phases of the anastomosis, in addition to its contribution to the wound healing processes.23 On the other hand, HAM failed in prevention of adhesion in a rabbit uterine horn model.21 The membrane used by these investigators was stored for 4–10 weeks, which might have decreased the preventive effect of the membrane on adhesion formation.

Histopathological examination of adhesions in animals which underwent HAM application revealed that, inflammation and fibrosis were significantly lower than that of the group I. These findings propose that in addition to its properties as a physical barrier, the amniotic membrane prevents adhesions by inhibition of inflammation and regulation of angiogenesis. The exact mechanism by which HAM reduced the quantity of inflammatory cells seen in the present study was blurred. This result went hand to hand with another studies.22,23

Various mechanisms of action have been proposed to explain anti-inflammatory effects of the HAM such as inducing apoptosis and decreasing lipid peroxidation. Another possible
The present study revealed a significant decrease in postoperative adhesion formation after using of both amniotic membrane and intraperitoneal administration of Vit E and selenium. Stabilization of HAM showed some difficulty in application procedures. On the other hand, easy administration of Vit E and selenium with an equal effect is made it preferable.

Acknowledgment

We wish to thank Dr. Abdelazim Ibrahim lecturer of Pathology for his finishing point of the histopathological studies in this work.

References

