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Journal of Glaciology , Vol. 39, No. 132, 1993 

Two-ditnensional similarity solutions for finite-tnass 
granular avalanches with Coulotnb- and vis cous-type 

frictional resistance 

KOLUMBAN HUTTER AND RALF GREVE 
Institutfiir Mechanik, Technische Hochschule Darmstadt, D-W-6JOO Darmstadt, Germany 

ABSTRACT. This paper is concerned with the motion of an unconfined finite 
mass of granular material down an inclined plane when released from a rest position 
in the shape of a circular or elliptical paraboloid. The granular mass is treated as a 
frictional Coulomb-like continuum with a constant angle of internal friction. The 
basal friction force is assumed to be composed of a Coulomb-type component with a 
bed-friction angle that is position-dependent and a viscous Voellmy-type resistive 
stress that is proportional to the velocity squared . The model equations are those of 
Hutter and others (in press b ) and form a spatially two-dimensional set for the 
evolution of the avalanche height and the depth averaged in-plane velocity 
components; they hold for a motion of a granular mass along a plane surface. 

Similarity solutions, i.e. solutions which preserve the shape and the structure of the 
velocity field, are constructed by decomposing the motion into that of the centre of 
mass and the deformation relative to it. This decomposition is possible provided the 
effect of the Voellmy drag on the deformation is ignored. With it, the depth and 
velocities relative to those of the centre of mass of the moving pile can be determined 
analytically. It is shown that the pile has a parabolic cap shape and contour lines are 
elliptical. The semi-axes and the position and velocity of the centre of mass are 
calculated numerically. We explicitly show that 

(i) For two-dimensional spreading, a rigid-body motion does not exist, no matter 
what be the values of the bed-friction angle and the coefficient of viscous drag. 

(ii) A steady final velocity of the centre of the mass cannot be assumed, but the 
motion of the centre of mass depends strongly on the value of the Voellmy 
coefficient. 

(iii) The geometry of the moving pile depends on the variation of the bed-friction 
angle with position, as well as on the value of the coefficient of viscous drag. 

1. INTRODUCTION 

This paper- the second in a sequence of the study of the 
behaviour of the motion of a finite mass of granular mass 
subject to Coulomb and Voellmy-type resistive drag - is 
thought to be a further contribution to the understanding 
of the dynamics of flow avalanches, which have a 
negligible air-borne powder-snow contribution. It is 
intended to extend the work of Hutter and Savage and 
co-workers and, in particular, that of Hutter and 
Nohguchi (1990) and aims at an improved description 
of the classical Voellmy (1955) , Salm (1968) and Perla 
and others (1980) models. 

Martinelli (1979), Norem and others ( 1987,1988), Perla 
and Martinelli (1978) , Perla and others (1980), Salm 
(1966, 1968), Savage and Hutter (1989, 1991 ), Savage 
and Nohguchi (1988), Scheiwiller (1986) , Scheiwiller and 
Hutter (1982), Scheiwiller and others (1987), Tochon
Danguy (1977), Tochon-Danguy and Hopfinger (1975) , 
Vi1a (1987), Voellmy ( 1955), and others. All these works 
deal in one way or another with the mathematical 
formulation of the model equations of such catastrophic 
motions, their integration and, if possible, their verific
ation against laboratory and field observations. 

Recent years have witnessed an increased impetus in 
the study of landslides, rockfalls and snow and ice 
avalanches, viz. Alean (1984, 1985), Beghin and others 
(1981 ), Hermann and Hutter (1991 ), Greve and Hutter 
(1993), Gubler (1987, 1989, unpublished), Gubler and 
Hiller (1984), Hopfinger (1983), Hopfinger and Beghin 
(1980), Hsu (1975, 1978), Hutter (1992), Hutter and 
Koch (1991 ), Hutter and Savage (1988a, b), Hutter and 
others (in press), Lang and others (1989), Lang and 

I t is obvious that the direct observation of the 
dynamics of rockfalls or avalanches is extremely difficult 
and is probably only possible by remote-sensing tech
niques. Gubler (1987, unpublished ) measured velocities 
and depths of flow avalanches that were artificially 
released in central Switzerland using radar-Doppler 
techniques, while Norem and others ( 1986, 1988) and 
Norem and Kristensen ( 1988) measured avalanche speeds 
and forces in the Ryggfonn Project of the Norwegian 
Geotechnical Institute when real avalanches were traced 
in three consecutive winters. The existing field data, 
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against which theoretical models can be tested, are still 
very limited but it is known that the classical theoretical 
formulations (Voellmy, 1955; Salm, 1966, 1968; Perla 
and Martinelli, 1978) were known to be oversimplified. 
Run-out distances and deposition areas cannot be 
sufficiently accurately predicted by these models . Rea
sons for these inadequacies must probably be sought in (i) 
the difficulties of parameter identification and in (ii) an 
insufficient resolution of the physics (rheological proper
ties, sliding conditions), and of the geometry of the 
moving avalanche. 

In this paper, our aim is not so much in a 
demonstration that our model will do better than the 
classical ones when compared with observations. For 
chute flows this has been demonstrated by Hutter and
Koch (1991 ), Greve and Hutter (1993) and Hutter and 
others (in press) . Here we take our new model, which is 
the first to our knowledge that describes the two
dimensional motion of the moving surface, and construct 
particular solutions in semi-analytical form. These 
solutions have diagnostic value insofar as they permit 
parameter studies and thereby inform us about the 
performance of the model; this provides physical insight. 

We use the governing equations of Hutter and others 
(in press). These were derived from the three-dimensional 
balance laws of mass and momentum of an incompressible 
continuum obeying a Coulomb-friction law. The equat
ions emerged from depth-averaging of three-dimensional 
equations and incorporate a bed-friction law that is 
composed of a Coulomb-type and a Voellmy-type viscous 
contribution. V\'e assume the angle of internal friction is 
constant but allows the bed-friction angle to vary with 
position. It is at this point where our model provides the 
necessary flexibility sought by the avalanche practi
tioners . 

Conceptually, it may be of advantage if the equations 
governing the motion of the moving mass are decomposed 
into those governing the motion of the centre of mass and 
those describing the deformation. For the equations of 
Hutter and others (in press b), this decomposition is not 
possible in general, but when the effect of the Voellmy 
drag on the deformation of the moving pile is ignored, 
then this decomposition describes the complete motion 
very accurately. The decomposition is the basis for the 
construction of similarity solutions. Such solutions have 
previously been constructed for the one-dimensional 
chute-flow situation (Savage and Nohguchi, 1988; 
Nohguchi and others, 1989; Savage and Hutter, 1989; 
Hutter and Nohguchi, 1990); they have the property of 
permanent shape. In the spatially two-dimensional situation 
of unconfined flow, a similarity solution means that the 
(mathematical) structure of the shape is preserved but its 
aspect ratio may still change. 

We show that a finite mass of gravel that starts from 
rest in the form of a circular or elliptical parabola will 
maintain its elliptical- paraboloidal shape. We derive the 
governing equations for the position and velocity of its 
centre of mass and the evolution of the semi-axis of the 
ellipse. These are non-linear ordinary differential equat
ions which must be solved numerically. 

In general, the motion of the centre of mass and the 
evolution of the deformation of the pile are coupled and 
separate only in special cases. We construct numerical 
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solutions with the Runge-Kutta technique and analyze 
the performance of the model when the inclination angle 
of the plane, the initial depth to length ratio, the bed
friction angle and the Voellmy drag coefficient are varied. 
Solutions are discussed in detail. 

2. GOVERNING EQUATIONS 

Consider free surface flow of a granular material down a 
slowly varying topography. Identify the mean plane 
surface of this topography with a plane that is parallel to 
the xy-plane of a three-dimensional Cartesian coordinate 
system. Let the x-coordinate follow the direction of 
steepest descent, the y-coordinate the horizontal lines and 
let the z-coordinate be perpendicular to these (see Fig. 1) . 
Thus, the z-axis will be inclined with respect to the 
vertical by the angle (. The bottom and free surface of the 
moving mass will be defined by z = b(x, y) and 
z = f(x, y, t), respectively; the margin curve is therefore 
given by the condition f - b = O. The space within 
o ~ z - b ::; f - b = h is filled with a granular material, 
which is assumed to be treatable as a fluid-like 
continuum. This supposes that the thickness, h = f - b, 
of the sliding and deforming body extends over several 
particle diameters. We accept the fact that this condition 
cannot be satisfied close to the margin. 

The granular continuum is regarded as incompres
sible, an assumption one may debate about, but this 
condition is sufficiently satisfied in the entire space filled 
by the granular material except in a very thin fluidized 
layer close to the bottom. This layer will be absorbed into 
a sliding condition. 

Balance laws of mass and momentum are 

'\1 . u = 0, 
OU 1 
at + (u ·'\1)u = - p '\1.p + g , (2.1) 

in which u, p, p, g are the velocity vector, constant 
density, pressure tensor and gravity vector. In the 
coordinates of Figure I we have 

g = g(sin (, 0, - cos (). (2.2) 

Boundary conditions have to be formulated at the free 
surface and the base, and comprise kinematic and 

Fig. 1. Definition of configuration and coordinate system 
(physical coordinates). 
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dynamic statements. At the free surface, Fs = 
f(x, y, t) - z == 0, we have 

aFs 
-+V'Fs'u at 

pn = 

0, } 

0, 

at Fs(x, t) = 0, (2.3) 

where n is the unit-normal vector. At the base the 
tangency condition for the velocity must be fulfilled . With 
FB = b - z == 0 this reads 

V'FB'U=O, (u·n=O). (2.4) 

We regard the material as a cohesionless granular body 
obeying a Mohr- Coulomb yield criterion with a constant 
internal friction angle. This states that yielding will occur 
on a plane element when 

IISII = IINII tancj> (2.5) 

where Sand N are, respectively, the shear and normal 
stress acting on the element. By contrast, at the basal 
surface, the friction law is assumed to consist of two 
components 

S = Se + Sy. (2.6) 

The first is a Coulomb-type dry-friction law, where Sand 
N are now related by 

u 
Se = -IINII tan8M , (2.7) 

in which 8 is the bed-friction angle (which is generally 
smaller than cj» . The second is a viscous drag, very much 
like the classical Voellmy drag in the early avalanche 
models and has the form 

Sy = pq(llull, IINll)llullu, (2.8) 

in which q is the dimensionless drag coefficient that may 
depend on the modulus of the velocity vector and the 
stress-normal to the basal surface. For a q independent of 
Ilull, Equation (2.8) corresponds to a quadratic depen
dence of Sy on the velocity, but, clearly, any other 
dependence is also possible. Furthermore, avalanche 
dynamicists who are used to working with the Voellmy 
model usually define Sy in the form 

pg 
Sy =~llullu (2.9) 

where € is a "viscosi ty" having the dimension of 
acceleration and 

q=r (2.10) 

Hutter and others (in press b) have motivated a reduction 
of the initial boundary-value problem outlined above. It 
is not our goal here to repeat this derivation; in short, the 
intention is not to determine the three-dimensional 
distribution of the velocity field, but only depth averages 
of this vector field. As a result, the spatially three
dimensional problem is reduced by one spatial dimension 
and therefore becomes much simpler. 

In the derivation of the simplified equations Hutter 
and others (in press b) introduced the Cartesian coord
inates of Figure I and wrote the previous equations in 
dimensionless form by introducing the following scales: 

(x, y, z) = ([Lx]x*, [LyJy*, [H]z*), 

U(x, y, t), b(x, y)) = [H]U*(x*, y*, to), b*(x*, y*)), 

(u, v, w) = ([U]u*, [V]v', [W]w*) , 
(2.11) 

t = [T]t*, 

Quantities in brackets are typical scales for the physical 
quantities under consideration, the only exceptions being 
the shear stresses, for which .A1 and .A2 account for their 
smallness. Variables carrying an asterisk are dimension
less. Hutter and others (in press b) further supposed that 
the following order relations hold: 

[Lx] [LyJ [H] 2 wr = [V] = [W] = [T] , [U] = g[Lx] , 

[H] [H] [LyJ 
tx = [Lx] , ty = [LyJ ' t xy = [Lx] , (2.12) 

}.1 « 1 , .A2 « 1 

tx « 1 , f.y « 1 , f.xy ::; 1 . 

In other words, the ratio of the velocity scales equals the 
corresponding length scale ratio and, the time-scale 
equals any of the length scales divided by the correspond
ing velocity scale. Moreover, we have set the character
istic longitudinal velocity square proportional to the 
product of the gravity constant with the longitudinal 
characteristic length. The ratios f.x, f.y, f.xy are simply 
definitions but the last three of Equations (2.12 ) suppose 
that the moving masses are long, wide and also shallow. 
Different ordering symbols are used to indicate that the 
moving piles may possess a large range of aspect ratios, 
but always such that Exy < 1. (A convenient choice would 
be f.y = E~, 0.5::; et ::; 1, sot hat Exy = f.~-a, 0 ::; 
(1 - et) ::; 0.5; if et = 1 then tx = f.y and Exy = 1, a very 
common case we shall adopt here. ) Furthermore, in 
presenting the reduced equations below we shall suppose 
that Ex, ty are sufficiently small so that terms of order 
f.; and E; can be ignored. 

The dimensionless equations that emerge from this 
procedure involve the longitudinal and transverse (side
wise) pressure P;x,P';; which through the Mohr- Coulomb 
yield criterion are expressed in terms of the overburden 
pressure p;z. We shall distinguish between active and 
passive stress states by writing 

* kX * Pxx = actpass Pzz , 

(2.13) 
* - kY * Pyy - actpass p zz · 

In view of the dominant downward motion, we expect 
one principal axis of strain rate to be very nearly the xz
plane. The stress P;x can then easily be related to P;z with 
the aid of the Mohr- Coulomb yield circle (see Fig. 2), so 
that 
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(2.14) 

~ass = co:24> ( 1 + J1 -(1 + tan2 8) cos2 4» - 1, 

i 

8u 
for 8x < O. 

L "I 
I 

I 
I / 

Ipzz.T) pa ssiv e / 
"- 1/ "-

"- IT, / '-.. R / '-
/ 

/ 
/ 

Ip ••. r) 

Fig. 2. Moh,'s circle representation of the active and 
passive stress states. 

P 

It is common to assume that, if the material is at the point 
of yielding, the stress in the other direction (p~) 

corresponds either to the major or minor principal stress 
0"1 or 0"2 . Again, with reference to Figure 2, we may thus 
deduce 

~t = ~(P'act + 1 - J(I~;.ct - 1)2+ 4tan2 8) , 
8v 

for 8y> 0, 

ktass = ~ (k't,888 + 1 + J (~88B - 1) 2 + 4tan2 8) , 
8v 

for 8y < O. 

(2.15) 

Relations (2.13 )- (2.15) are reasonable at the bed and 
again at the free surface, where pzz = 0 implies 
Pxx = Pyy = O. So, by way of continuity, the postulates 
(2.13)-(2.15) are logical assumptions. They are common 
in the soil literature. For motions along the plane-inclined 
surface, we have b = 0 and the depth-averaged field 
equations take the form 

8h 8(hU) 8(hv) _ 0 
fJt+~+8Y- , 

8(hu) + 8(hU2) + 8(hUv) = Ah _ B8(h2/2) 
8t 8x 8y 8x 

u 
- Csgn(u)h - Sllull, 

8(hv) + 8(huv) + 8(hv2) = _D8(h2/2) 
fJt 8x 8y 8y 

v v 
- Ch Ilull- S Ilull, 

(2.16) 
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with 

A = sine 

B = fx cos (k~tp88B , 

C = cos ( tan 8 , 
f 

D = -.lL cos (k~ctPllSs , 
fxy 

Ilull = V~u-2 +-(~-yV-2 ~ U 

~ f fe ==-=-
q 9 

(2.17) 

(see Hutter and others, in pressb, equations (3.1) and 
(3.2)) . Here -Ne have ~:ept f;yV 2 in the expression for Ilull, 
because this term is not negligible at the initial stage of 
the motion from a state at rest. At later times - in reality 
immediately after the motion has set in - this higher
order term may be dropped, We shall omit this term at all 
times and accept the inconsistency in the procedure at 
early times. In Equations (2.16) and (2.17) h is the depth, 
u and v are the depth-averaged dimensionless velocity 
components 

hU = fah u(x, y, z, t) dz, 

hv = fah v(x, y, z, t) dz, 

and all quantities are dimensionless (asterisks have been 
dropped for simplicity) . Equation (2.16)1 is the mass 
balance in depth-integrated form, and Equations (2.16)23 
represent the in-plane longitudinal and transver;e 
momentum balances. Equations (2.16) are solved subject 
to the boundary conditions 

(2.18) 

and prescribed initial conditions, usually 

h(x, y, 0) = hr(x, y) , 

u(x, y, 0) = v(x, y, 0) = O. 
(2.19) 

Equation (2 .18) describes the margin and Equation 
(2.19)1 the initial mass distribution. Integration of 
Equations (2.16)-(2.19) is likely only numerically 
possible. 

3. EQUATIONS GOVERNING THE CENTRE OF 
MASS MOTION AND THE DEFORMATION 

3.1. SYInbolic forDl of the field equations 

Equations (2.16) are now separated into two sets of 
equations, one governing the motion of the centre of mass, 
the other describing the deformation or the deviation 
from the rigid-body motion. To this end, we write them as 
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ah . _ 
8t + dlV(hv) = 0 , 

a(hv) . (h2) 
~ + dlV t = Ahe - B grad "2 (3 .1) 

hv 1 
- Cllvll-31Ivllv. 

Here, the vector and tensor quantities and the corres
ponding operators are two-dimensional. In particular, 

( 
hu2 hUV) ( B 0) 

t = huv h& ' B = 0 D ' (3.2) 

and v = (u, v) , while e is the unit vector 

e = (I,Ol, (3.3) 

in which T denotes transposition. 

3.2. Equations describing the centre of !nass 
!notion 

Let A(t) be the domain in the (x , y) space that is, at time 
t, covered by the avalanching mass; let, further, aA(t) be 
its boundary (margin). Then integrate Equation (3 .1)1 
over A, so that 

11 : da + 11 div(hv) da = o. (3.4) 

By using Gauss's theorem in the second term and 
Reynolds' transport theorem in the first, 

11 div(hv) da = iA hv· nds, 

(3.5) 

fl ah 
da = i. fl h da - 1 hv · n ds , 

A 8t dt A laA 

where n is the exterior unit vector normal to aA, 
Equation (3.4) becomes 

:t11 hda=O. (3.6) 

In other words, the total volume of the avalanche is 
conserved. Because of incompressibility, this is tan
tamount to the conservation of mass. In much the same 
way, the momentum Equation (3.1)2 may be trans
formed. The computations are straight-forward and the 
results are 

:t11 hvda = e 11 Ahda + 11 (divB) ~2 da 

(3.7) 

In the derivation of Equation (3.7 ), the divergence 
theorem has been employed at various places, and the 
boundary condition that h vanishes along aA has been 
invoked. Furthermore, Reynolds' transport theorem has 
been employed. Equation (3.7 ) is the expression of global 
momentum balance. 

We now define averaged field quantities as follows 

(3.8) 

fi is the depth averaged over the pile volume, Vc the 
velocity of the centre of mass. The averages of the other 
quantities are formal means which will further be reduced 
below. Note, however, that owing to definition (3.2h, B 
is a vector with the components 

- 2 {flOBh2 flaDh2 }T 
B = ii2 A A ox "2 da , A ay "2 da (3.9) 

where Band D are defined in Equation (2.17). With the 
definitions (3.8), Equation (3.7) takes the form 

dvc = A ~Bii _ C V _ vllvll 
dt e+ 2 Ilvll Eh' 

(3.10) 

We next assume geometric and dynamic symmetry of the 
avalanche with respect to the x-axis of Figure I that is in 
the direction of steepest descent, 

h(x, y, t) = h(x, -y, t) , 

u(x, y, t) = u(x, -y, t) , 

v(x, y, t) = -v(x, -y, t) . 

(3.11) 

Then Equation (3.8h implies Vc == 0 for all times, and the 
second component of Equation (3.10) is satisfied if, for 
instance 

C(x, y) = C(x, -y) , 

E(x, y) = E(x , -y) , 

By = O. 

(3.12a) 

In view of Equation (3.9), the last of these requires D to 
be symmetric, 

D(x, y) = D(x, -y) . (3 .12b) 

Going back to the original definitions (2.17) of the 
coefficients C, D and E, it is seen that the requirements 
(3.12) presuppose the friction angles 4J, 8 and the Voellmy 
coefficient E to be symmetrically distributed. This is what 
we shall assume. In the above Equation (3.10), Vc is the 
centre of mass velocity whose position, Xc, is given by 

(3.13) 

It can be determined by integrating the equation of 
motion 

dX c _ 
-=vc · 
dt 

(3.14) 
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It is not difficult to show that Equation (3.14) IS In 

conformity with Equation (3.8)2 ' Indeed, 

d- 1 d J" r ~ = hAdt lA hxda 

= h~Jl (hV+ :x+ (gradh·v)x 

+ hX diVV) da 

= h~Jl (hV + [~~ + diV(hV)]x ) da 

q.e.d. ; 

in the second to last step use has been made of Equation 
(3.4). Clearly, because of the symmetry assumptions 
Equations (3.11 ) and (3.12) , only one component of 
Equation (3.14) is non-trivial, namely 

dXe _ 
cit=ue (3.15) 

while dYc/dt = 0, since Vc == O. 

3.3. D eforntation equations 

Having defined the centre of mass motion through 
Equations (3.10) and (3.14), we now proceed to the 
derivation of the deformation equation. To this end, it is 
convenient to define the new independent variables 

~ = x - Xc , 1] = y, T = t 
from which one obtains 

0000000 
ox = o~ , oy = OT) , at = OT - Uc o~ . 

Introducing the difference velocity 

u = U - ue , V = Vc , 

or 

V=V - Ve , 

(3 .16) 

(3.17) 

(3.18) 

and the transformation rules (3. 16) and (3.17) into the 
governing Equations (3.1 ) , we may, on account of 
Equations (3.10), derive the following diformation equations 

oh 
OT + div€,1)(hv) = 0, (3.19) 

av () - ( ) 1--OT + grad€1)v v=e(A-A)-B grad€,1)h -2 Bh 

-{C~-C v }_{VIIVII_VIIVII} 
Ilvll Ilvll Eh Eh . 

The derivation of these equations is somewhat long but 
not difficult. We have also indicated that the differentiat
ions in the operators are with respect to the coordinates ~ 
and 1]. On an inclined plane with constant internal and 
bed-friction angles A, B, C and D are constant, implying 
A - A = 0, B = O. Furthermore, if it is assumed that the 
difference velocities U, v are small in comparison to ue , so 
that quadratic and higher-order terms can be ignored, 
then 
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(3.20) 

VIIVII C>i Iuel(ve + v + (u/ue)vc ) 

Eh Eh 

vllvll ,...., Iuelve 
Eh = Eh . 

In expressions (3 .20)34 we have also replaced h by h, the 
mean depth, to avoid formation of singularities at the 
margin. In compensation, E has been replaced by E , a 
suitable average over the avalanche. While the above 
relations correspond to additional ad hoc assumptions, 
they are needed if the separation into field variables 
describing the centre of mass motion and those describing 
the deformation is meaningful at alL On the other hand, 
the expressions (3.20) are also physically reasonable 
because, with the exception of the onset of the motion, 
the dispersive velocity is small in comparison to the centre 
of mass velocity. Moreover, singularities at the margins of 
the Voellmy resistive force are physically very unlikely 
and variations of the drag coefficient E within the 
avalanche are difficult to determine. 

With expressions (3.20), Equations (3. 10), (3.15) and 
(3.19) reduce to the form 

dXe _ 

dt = U e , 

du 1 
dt

e 
= sin ( - Csgn(ue) - EhUeluel, 

oh o(hu) o(hv) _ 0 
OT + ----ar- + ary- - , 
oil ou _ ou _ _ B oh 21uclil 
OT + o~ U + OT) v - - o~ - Eh' 

OV + ov U + ov v = -C ~ _ D oh _ l~eJ v . 
OT o~ OT) Iuel 01] Eh 

(3 .21) 

The first two equations correspond to the classical 
Voellmy model in which the resistive force on a moving 
mass of snow is composed of a dry Coulomb drag and a 
viscous drag that is proportional to the squared velocity. 
These two equations are equivalent to Equations (3.10) 
and (3.14) and thus give the Voellmy model (and its 
equivalents due to Salm, McClung and others) a clear 
interpretation. However, Equations (3.21) go beyond this 
simple modeL The remaining Equations (3.21 ) describe 
for a restricted class of pile geometry also the deformation of 
the avalanche. The two sets of the equations are coupled; 
consequently they cannot, in general, be integrated 
independently. 

Several effects influence the spreading of the 
avalanche pile. In the downhill direction B(oh/ox) 
contributes to a dilatation as oh/ox> 0 « 0) in front 
of (behind) the centre of gravity. The drag forces, on the 
other hand, contribute to a contraction; interestingly, 
only the viscous drag, but not the Coulomb friction force 
contributes to this contraction. Sidewise spreading is 
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enhanced by the term D(8hj8TJ) and is reduced by the 
friction forces; here both viscous and Coulomb-type 
friction contribute. 

4. SIMILARITY SOLUTIONS 

4.1. Theoretical considerations 

We follow a procedure much the same as in Hutter and 
others (in press b ) and will now establish the governing 
equations for the longitudinal and sidewise spreading 
rates. More explicitly, we will derive similarity solutions 
for a granular pile with elliptical shape in plan view and 
parabolic distribution of the height. Strictly speaking, 
such similarity solutions do not exist for the model 
considered here; however, the reduced Equations (3.21 ) 
with the particular assumptions that were invoked to 
obtain them do permit existence of such similarity 
solutions. 

Similarity solutions were previously constructed, for 
chute flows along a plane bed by Savage and Hutter 
(1989) and for chute flows along curved beds by Savage 
and N ohguchi (1988) . The effect of variable friction and 
of a Voellmy resistive drag were then analyzed by 
Nohguchi and others (1989) and Hutter and Nohguchi 
(1990). The first analysis of an unconfined flow along an 
inclined bed by Hutter and others (in press b) contained a 
study of similarity solutions in which the Coulomb friction 
angles 1J and {j were both kept constant and the Voellmy 
term was ignored. Here we generalize their solution. 

We anticipate a solution in which the shape and 
difference velocity distributions are preserved, and the 
profiles are merely stretched or compressed in the 
streamwise and lateral directions . In view of this, we 
choose new similarity variables that are normalized by 
the half length of the pile (see Fig. 3), viz. 

~ TJ 
v= g(T)' p,= f(T) , t=T 

from which we may deduce 

188 
9 8v ' 87) 

1 8 
j8p, , 

8 8 g' 8 f' 8 
-=---v---p,- . 
8T &t 9 8v f 8p, 

( 4.1) 

(4.2) 

Primes denote univariate differentation. Substituting the 
expressions (4.2) into the last three of Equations (3.21 ) 
and seeking a solution for the difference velocity in the 
form 

- 9' - f' u= v,v= p" (4.3) 

shows that expressions (4.2) will reduce to the following 
equation set 

0) 

b) 

y 

c) 

f(l) t(t) fi x ed domain 

Fig. 3. Top view of the granular pile in the transformed 
dimension less coordinates shown in its initial position (a) , 
in a general position ( b ), and after a fixed-domain 
transformation (c), explaining the similarity solution and 
the related coordinate systems. 

or after replacement of u and ii by Equations (4.3) 

8h __ ~ {" 21itcl '} 
8v - B g 9 + sFi g , (4.5) 

8h = _.!!.- f{1" + (? + l~cJ)f'}. 
8j1. D lucl.=h 

(4.6) 

Notice that both equations appear in separable form: 
their righthand sides are each a product of a function of v 
(and f../" respectively) and a function of time, t. To solve 
these equations, assume that the granular mass starts 
initially from a circular paraboloidal shape that in the 
course of motion deforms into an ellipsoid with parabolic 
distribution of its height. More specifically, 9 and fare 
interpreted as the principal semi-axes of the ellipse so that 
the transformation of the ellipsoidal hump into the (v, p,)
plane by the transformation (4.1 ) maps the elliptical 
domain into the interior of a fixed circle with unit radius 
(see Fig. 3). Assuming, therefore, 

(4.7) 

yields 

Ho(t) = 2~ [9" + 2 ~~g'] , (4.8) 

= L [I" + (? + l~cJ) 1'] . (4.9) 
2D lucl.=h 

If Ho(t) were to be known, then these equations would 
form two second-order ordinary differential equations for 
get) and f(t), respectively. From the conservation of mass 
or volume, we can obtain this missing piece of inform
ation. Indeed, the total volume V is preserved: 

363 



Journal of Glaciology 

v = 11 hdedry 

= Ho 11 (1 - v 2 - J.L2)gfdvdJ.L 

= 27rHogf 11 r(l - r2) dr 

7rHogf 
2 

(4.10) 

With the initial volume V being prescribed, we thus have 

2V ( 2 2) - V h=-l-v -J.L ,h=-. 
7rgf 7rgf 

(4.11) 

The temporal evolution of the height is thus known, once 
f and 9 are determined. The differential equations for 
these follow from Equations (4.8) and (4.9), when Ho, as 
determined from Equations (4.10) and h are employed: 

,1' 2lUel7rlg, 4BV 
y + SV 9 = 7rg2 f ' 

(4.12) 

There remains the corroboration that with the represen
tations (4.3) the local mass balance in Equation (4.4)1 is 
identically satisfied. This demonstration is routine and 
will be left to the reader. In summary, we must solve 
Equations (3.21)12 for the motion of the centre of mass 
together with Eq~ations (4.12) for the longitudinal and 
transverse spreading rates. The integration of these 
equations must be performed with initial conditions 

iLc(t = 0) = u~ , 

(4.13) 

get = 0) = go , g'(t = 0) = g~ , 

f(t = 0) = fo , f'(t = 0) = fb, 

corresponding to a granular mass with initial length 
2go[L%] and initial width 2/0 [LII]' 

4.2. NUD1erical integration 

To complete the solution, the above initial value problem 
must be solved numerically. To this end, we transform the 
system of Equations (3.21)12 and (4.12) to standard form 
and use t instead of T : ' 

dXe _ 

dt = Ue , 

dUe . ( c (-) iLcluel7rlg 
-=Sll - sgnu -
dt e av' 
dg , 
dt =g , 

dg' _ 4BV _ 2lUel7rfg , 
dt - 7rg2 f SV g, 

( 4.14) 

df 
dt =/, 

df' = 4DV _ (~+ IUeJ7rf9)!,. 
dt 7rgj2 Iuel av 
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In writing down these equations, we have also used the 
relation V = h7r fg. Furthermore, the coefficients B, C 
and D are defined in Equations (2.17) . We note the 
following properties of the system (4.14): 

(i) Without the viscous sliding term (S -+ 00), the 
motion of the centre of mass of the pile decouples 

from that of the deformation. 
(ii) There can never be a rigid-body motion (for which 

9 and f are constant) even for finite S. This follows 
from Equations (4.14)4,6' A rigid-body motion 
would require g' = f' = dg' /dt = df' /dt = 0, but 
the statements df' /dt = 0 and dg' /dt = 0 are not 
possible with f' = 0 since the righthand sides of 
Equations (4.14)46 are positive when I' = 0, 
g' =0. ' 

(iii)J.:.he centre of mass motion is never steady unless 
a --+ 00. 

(iv) When the bed-friction angle, 8, varies linearly 
between the avalanche front and trailing edge, 
then Equation (4.14)4 has on its righthand side an 
additional term -.1C /2. Without a similar term 
also arising in Equation (4.14)6' rigid-body and 
steady motions still cannot exist. 

We thus have proved that within the context of similarity 
solutions, our model equations that incorporate Coulomb-type and 
Voellmy-type resistive drag cannot exhibit rigid-body motion. 
Likewise, the centre of mass cannot reach a finite steady speed. 
Alternative?;>, when the Voellmy drag is ignored, rigid-body 
motions are still not possible, but a steady, finite velocity can be 
reached in this case. These results contrast with earlier 
results of Hutter and Nohguchi (1990), who demon
strated for chute flows existence of rigid-body motions 
and finite steady speeds. The reason for the difference in 
behaviour is the influence of the sidewise spreading. 
Equations (4.14) contain the coefficients B, C and D, 
which depend on the Earth pressure coefficients k~paB8 
that are given by 

{ 

Jc%act, for g' > 0, 

K"actpass = 

Jc%pass' for g' < 0, 
(4.15) 

for f' > 0, 

for f' < O. 

Therefore, depending upon whether the flow is extending 
or compressing, these coefficients take different values. 
Equations (4.14) must be solved subject to the initial 
conditions (4.13). A straight-forward integration, how
ever, is not possible when ue 

0 = 0, because the system is 
singular at such early times. For those early times, a 
power-series solution must be sought when Uc 

0 = O. This 
solution reads 

9 

f 

t 2 t 4 

Xc 
0 + U1 2 + U3 24 + ... , 

t3 

U 1t+U3 6'+" " 
t2 t3 

go + gO't + g2 2 + g3 '6 + ... , 
t2 

fo+h 2 + .. · , 

ast-+O 

( 4.16) 
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in which 

UI = sin ( - C, 

U3 = -2 ;V (sin ( - C)29010, 

4BV 
92=--

7r90210 ' 
8BV 27r , 

93 = -----aT - ";:;'v 90/090 UI , 
7r90 JO .:; 

12= 4DV . 
7r90102(l + (C/UI)) 

(4.17) 

Notice that this early time solution starts with a centre of 
mass velocity at rest and with I'(t = 0) = 16 = O. This 
latter condition is necessary for consistency; usual initial 
conditions require 16 = 0 and 90' = O. Notice also that the 
short-time solution in Equations (4.16) breaks down 
when E --+ 00. This case is physically unrealistic anyhow 
and will not be considered. 

5. RESULTS 

In the construction of similarity solutions, it was assumed 
that fi ~ 0 everywhere within the moving pile. At early 
times, in a motion starting from rest (fic = 0 : no centre of 
mass velocity, 10' = 0, 90' = 0: neither sidewise nor 
longitudinal initial spreading), this condition could be 
violated unless 9' < fie . In view of Equations (4.16) and 
(4.17), this condition reads 

. (9') 4BV (') lim- = <1 , 90=0 
t-+O fie 7r 1090 2 (sin ( - C) 

(5.1) 

or when invoking Equations (2 .17) and (4.10) 

3.0 r---- - ----------- ---, 

0.5 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

g' 

2.5 ,.------

2.0 

1.5 

1.0 

= 10 
Bm; n = 25' 
Ii",,, = 35' 
~ = 40' 
E')' = 1 

0.5 ~-.-~~-- , ~-.~ -.~-
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

(' 

1 90 
E%~ lC u (tan(-tanD) . (5.2) 

2 actpaBB.u 0 

Ho und 90 are the initial values of the dimensionless depth 
and longitudinal semi-span, both of which are usually 
chosen as 1. In a motion along a plane-inclined surface, 
the flow cannot be compressing; so only k!:t, applies. 
Values for k!:t, that depend on 15 and </> are between 0.3 
and 2.0 for 0 ~ 15 ~ 35° and 0 ~ </> ~ 35°. Generally, k~ 
decreases with increasing </>. More generally, the right
hand side of inequality (5.2) grows with increasing </> and 
( . 

Values of E% that do conform with inequality (5 .2) are 
conservative because they imply that the condition U > 0 
is nowhere violated. One may relax this condition a bit and 
tolerate, at very early times and close to the upper 
margin, a violation. For ( > 40° and 15 < 30°, condition 
(5.2) is almost always satisfied when E% < 0.5. We shall 
present results only for values of E% for which inequality 
(5.2) is obeyed. 

Usual pile geometries have [LI/] ~ [L%]. We express 
this by the following orderings: 

a I-a ~ = ",2a-1 €v = E% , EXI/ = E%, .. 
E%I/ % 

with 0 ~ et' ~ 1; et' = 1 means that [L%] = [Ly], and 
et' > 0.5 is requested for the approximation to be valid. 
Most ensuing computations will be performed for et' = l. 
Physically, it is not important what values are chosen for 
the parameters once the approximations have been carried 
through. However, if these parameters are chosen at will, 
then it is only meaningful to compare quantities with 
physical dimensions, for the non-dimensionalized quan
tities do then not stay in the proportions the physical 

g 
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2.5 Ex' 0.5 -

2.0 

1.5 
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(' 

Fig. 4. Phase diagrams 9 versus 9' or I versus I' plotted for an angle of internal friction </> = 35 ° and the physical 
parameters as shown in the insets and for the indicated values of the aspect ratios E%, E%y . The left panels show 9(9') 
( toP) and 1(1') ( bottom) for Exy =1 and hence Ey = Ex> the panels on the right show the samefor Exy = 0.5, The 
inclination angle is ( = 40°, 
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Fig, 5, Same as Figure 4 but now for an inclination angle ( = 60°, 

quantities will. We shall make clear which choices are 
taken. 

In the graphical representation of the results, two 
types of figures are presented, The first type is a kind of 
phase diagram in which 9 is plotted against g' and I 
against I' for various values of the parameters, In the 
second type of figure, the spreads 9 or I or the velocity fie 
and position Xc of the centre of mass are plotted as 
functions of dimensionless time, again for various values of 
the parameters involved. 

In all following computations, the angle of internal 
friction was ifJ = 35°. Figure 4 shows phase-plane 
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trajectories for 9 and I, respectively, for a slope angle 
(= 40°, £XII = 1 (left panels) and EXI/ = 0.5 (right panels), 
a Voellmy coefficient E = 10 and bed-friction angles 
t5rront = 35°, t5rear = 25°, and the aspect ratio Ex as 
indicated. All phase-space trajectories start at 90 = 
10 = 1 and gO' = 10' = 0, Figure 5 shows the same for a 
slope angle , = 60°. 

It can be seen that both the longitudinal and the 
sidewise spreading depend strongly upon the variation of 
the geometry parameters Ex (and EXII )' The general 
tendency is the same as was observed when S = 0 and 
Llt5 = Ofront - t5rear = 0 (see Hutter and others (in press b) 
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Fig, 6, Temporal evolutions (dimensionlm) of the semi-spreads g( t) (solid) and f (t) ( dashed) calculated for ifJ = 3S 
and the physical parameters as shown in the insets, Panels on the left are for ( = 60° J those on the right faT' = 40°; top 
panels are for Exy = 1 J those on the bottom for Exy = 0,5, 
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Fig, 7. Same as Figure 4,for 4J = 35' and the physical parameters shown in the insets; however, now the aspect ratios 
Ex, Exy are heldfixed and the slope angle (is varied as indicated. The left panels show the resultfor Exy =1, those on the 
right for Exy = 0.5. Ex = 0.2. 

for comparison); longitudinal spreadings are bigger than 
sidewise spreadings and their rates are larger when Ex is 
increased. Only for Exy = 0.5 and steep slopes (( = 60°; 
Figure 5, right panels) sidewise spreading is bigger than 
longitudinal spreading. Thus, even though the condition 
Exy = O( I) must be fulfilled in order that the model 
equations are valid, the values of the initial aspect ratios 
are important for the geometry of the evolving masses. 
Granular masses which develop from relatively compact 
geometries spread faster than shallow masses do, and this 
spreading is generally larger in the longitudinal than in 
the transverse direction (exception again (= 60°, 
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Fig. 8. Same as Figure 7 but now for Ex = 0.5. 

Exy = 0.5) . Figure 6, which shows temporal evolutions of 
g(t) and f(t) for ( = 60° (left panels) and ( = 40° (right 
panels) indicates this very clearly. Depending on the 
value of the slope angle ( and the aspect ratios Ex, Exy , a 
granular pile developing from a circular shape will 
develop into an ellipse whose major semi-axis is either 
in the longitudinal (regular case) or transverse 
(( = 60°, Exy = 0.5) direction. 

One distinctive feature of the phase diagrams not 
exhibited when ..18 = 0 and := = 0 is the fact that the 
trajectories g(g') and 1(1') " bend towards the ordinate". 
Thus, g' and!, reach an absolute maximum whose value 
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Fig. 9. Same as Figure 6, but now the inclination angle ( is varied. Parameters as shown in the insets. Left panels are for 
Ex = 0.2, those on the right for Ex = 0.5. 

depends on Ex and Ext/. Figures 4 and 5 indicate that the g
and I-trajectories bend and approach the ordinate and 
do this faster, the smaller Ex is. If both trajectories reach 
the ordinate simultaneously, then the motion is of rigid
body type: the granular avalanche would then move like 
a rigid body. Figures 4, 5 and 6 show that such a rigid
body motion is approached but not reached. Deform
ations are, however, smaller the smaller Ex is. Thus, flat 
and shallow piles deform less than do compact piles. 
Interesting to observe, and physically obvious, is the fact 
that sidewise spreading is significant only when 
Ell = Ex/Ext/ is relatively large. For Ell = 1 (Ex = 0.5, 

g 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 
0.0 0.1 0.2 0.3 

g' 

2.5 ,---- -----

2.0 66 = 
20' 
10' 

1.5 5' 
0' 

1.0 

- - 10 
(6,run + 6", .. )/2 = 30' 

C = SOL 

"" - 0.5 
Exy-I 

0.4 0.5 0.6 0.7 

10 
(6min + 6", .. )/2 = 30' 
~ 50' 
t x = O.S 
txy = I 

0.5 ~-~--~~-~-' 

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

I' 

EXIl = 0.5), the spreading is primarily in the transverse 
direction and actual ratios quickly reach small values. So, 
whereas in these instances the prerequisites of the model 
equations are not satisfied initially, the evolution is such 
that they are more and more fulfilled in the course of 
motion. 

Similar qualitative behaviour is also seen in Figures 7 
and 8 where phase diagrams g(g') and 1(/') are shown 
for Ext/ = 1 (left panels) and Exy = 0.5 (right panels) and 
two different values of Ex (Ex = 0.2, Fig. 7; Ex = 0.5, Fig. 
8) parameterized for slope angles (= 40°,50° and 60°. 
According to the figures, the steeper the slope is the 
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Fig. 10. Phase diagrams 9 versus g' and I versus I' plottedfor an internal friction angle <p =35" and the physical 
parameters as shown in the insets. In the left panels .18 = 8front - 8rear is varied, while E = 10 is held fixed. In right 
panels .18 = 10° while E is varied. Calculations are Jor Ex = Ell = 0.5. 
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smaller (larger) will the longitudinal (transverse) spread
ing become. Moreover, the aspect ratios have again a 
significant influence on the spreading rates. When 
Exy = 1, longitudinal spreading is clearly larger than 
sidewise spreading; when Exy = 0.5, this is not necessarily 
so as can be clearly inferred from the lower two panels in 
Figure 9. Not surprising is also the fact that the spreading 
generally decreases with increasing slope angle. 

Of particular interest is the quantitative analysis of the 
similarity solution to the granular-avalanche problem 
when, first the bed-friction angle is varied from the front 
to the rear end of the moving pile or, secondly, the 
Voellmy drag coefficient is changed. Figures 10 and 11 
collect results in this regard. In the left panels of Figure 10 
the 9 and f trajectories are shown where the Voellmy 
coefficient 5 is held constant (-= = 10), but Ll8 = 
8front - 8rear is varied between 0° and 20°. It is seen that 
both longitudinal and sidewise spreadings are somewhat 
affected, but that the qualitative behaviour is unchanged. 
The trajectories bend over towards the ordinate axis. 
Generally, the smaller Ll8 is the less will the longitudinal 
spreading be inhibited. The sidewise behaviour is 
opposite but less pronounced. 

Quite contrary to this behaviour of the moving and 
deforming granular pile is its response to variations in the 
Voellmy parameter E (right panels in Figure 10). Both, 
the longitudinal and the transverse spreadings are 
affected by the amount of viscous-type friction; how
ever, the influence to the sidewise spreading is less 
dramatic. The computations for the graphs in Figure 10 
have been done for Ex = 0.5 and Exy = 1. For smaller 
values of Ex (but Exy = 1) , these effects are less 
pronounced, but for larger values they are enhanced. 
Similarly, a decrease of EX1J enhances these effects. This 
can be seen, in parts in Figure 11, which shows the 
temporal evolutions of the semi-spreads for several values 
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tom). An increase in ,,18, which corresponds to a more 
efficient ploughing, hinders a spreading though not 
dramatically. 

A variation of 5 (by several powers) affects the 
spreading, both longitudinally and transversely, in a 
considerable manner. This behaviour is understandable, 
if one considers the governing differential Equations 
(4.14). The Voellmy term affects the spreadings in 
Equations (4,14h46 and its influence becomes vanish
ingly small when S' ...... 00. In Figure 11 (right panels) the 
role played by the Voellmy drag on the evolution of the 
spreadings g(t) and f(t) is very clearly seen. 

As can be surmized from the dependence of the 
equations of motion on E, there must also be a strong 
dependence of the centre of mass motion on the Voellmy 
coefficient. Figure 12 provides evidence for this. In the top 
two panels, the centre of mass position, Xc, in the lower 
panels the centre of mass velocity, uc, (both dimension
less) are plotted against dimensionless time, t, for various 
values of the parameter E. For very large 5 values 
(5) 1000), the centre of mass velocity is essentially 
linear in time and its position grows quadratically. These 
results are an important corroboration of our earlier 
calculations which were performed without the Voellmy 
term. With growing viscosity (decreasing -= values), the 
growth of the centre of mass velocity is more and more 
reduced. The velocity can even go through an absolute 
maximum and decrease afterwards, so that a decelerating 
motion of the centre of mass is possible, in principle. The 
fact that the graphs for EX1J = 1 and EXll = 0.5 hardly differ 
is an indication that the centre of mass motion is only 
little affected by the amount of spreading. On the other 
hand, that the amount of spreading crucially depends on 
both the dry and viscous drag behaviours, demonstrates 
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the supenonty of the present model over the classical 
avalanche models due to Voellmy, Salm and others. 

6. CLOSING REMARKS 

In this paper, we have been concerned with the motion of 
a finite mass of a granular material down an inclined 
plane that is released from rest and may freely spread in 
the longitudinal and transverse directions as it moves 
down its track. The granular mass was treated as a 
cohesionless Coulomb-like continuum with a basal 
friction law in which the shear traction is additively 
composed of a Coulomb-like drag and a viscous drag 
proportional to the squared velocity. We believe that such 
a model is a valid one for the study of the dynamics of 
flow avalanches for the following reasons: the common 
mass point or hydraulic models that are used incorporate 
physically essentially the same complexity as this one, 
except that this one allows for the variation of the 
frictional drag within the avalanche. Mathematically or 
geometrically, this model has greater flexibility, as it 
permits a longitudinal and a sidewise spreading, both of 
which are not present in the Voellmy, Salm, PerIa, etc. 
models. Thus, this model is more general than the former, 
yet incorporates essentially the same physics. 

We used the depth-averaged equations of Hutter and 
others (in press b). These equations are scaled, and 
dimensionless spatially two-dimensional evolution equa
tions are derived for the distribution of the avalanche 
depth and depth averages of the velocity field of which 
analytical solutions are not likely to be found. In an 
approximate treatment, however, at least semi-analytical 
solutions were determined. To find these solutions, the 
motion was split into the motion of the centre of gravity of 
the pile plus a deformation from it. Such a decomposition 
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cannot be achieved without additional ad hoc assump
tions. The semi-analytical solutions are the so-called 
similarity solutions, and they enjoy the property of 
preserving the shape. For their existence, the granular 
avalanche must start from an initial shape in the form of 
an elliptical or circular paraboloid, and this shape will be 
preserved during the motion, and only its aspect ratio will 
change. For the existence of such similarity solutions, 
however, additional mild assumptions are needed: the 
earth-pressure coefficient must be assumed to be constant 
and the sidewise variation of the bed-friction angle must 
be ignored. Moreover, the construction of the similarity 
solutions is based on the formal separation of the 
evolution equations into one set governing the motion of 
the centre of mass and another governing the deform
ation. In general, this separation is not possible; however, 
with the approximations incorporated, two equation sets 
are obtained which are integrable. We explicitly listed the 
restrictions to make the reader aware about the 
limitations of these solutions. 

The physical parameters that govern the model are 
the slope angle (, the initial depth to length ratio of the 
pile, fx, the ratio of the width to the length, fxy, 

necessarily of order unity, the internal angle of friction 
rP, the basal-friction angle 6 and the drag coefficient of the 
viscous sliding law E, called the Voellmy parameter. The 
effect of these parameters on the spreading rate of the 
granular pile that develops from a circular paraboloid led 
to resul~ which may be summarized as follows: 

(i) For the two-dimensional spreading, there exists no 
rigid-body motion, i.e. the length and width of the 
elliptical pile will always vary in time, no matter 
what the values of the bed-friction angle and the 
coefficient of viscous drag are. 

(ii) As an immediate consequence of the above 
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statement, there can be no steady motion of the 
centre of mass of the granular pile. However, for 
values of the dimensionless viscous-drag coeffic-ient 
S < 103 the centre of mass motion is greatly 
affected by the value of S. The motion can be 
accelerating or decelerating, or oscillate between 
the two. 

(iii) The geometry of the pile depends on both the 
variation of the bed-friction angle with position 
(linear variations of tan 8 in the long direction 
were studied) as well as on the value of the viscous
drag coefficient. However, the aspect ratio of the 
moving pile is influenced more by the latter than 
by the former. 

In which way are these solutions useful to the 
avalanche dynamicist? First, they are capable of provid
ing physical insight into the behaviour of a deforming 
finite mass of snow, in a way previous models did not. For 
small aspect ratios /Ox and €Y' the model indicates small 
deformation. Under such conditions, a rigid-body 
assumption for the motion of a finite mass of snow does 
not seem to be too drastic a simplification. On the other 
hand, viscous sliding affects the deformation (spreading) 
considerably while ploughing does less. These inferences 
are qualitative and provide physical insight. 

Secondly, this model could be used in actual 
computations along curved avalanche paths to predict 
deposition and its areal extent. While such a procedure 
will certainly be useful, we do not believe it to be 
accurate. In fact, laboratory experiments on the motion of 
a finite mass of a cohesionless granular material down an 
inclined plane show that similarity solutions are not 
reproduced. Plan views of moving granular avalanches 
that develop from a circular geometry rather develop into 
tear-drop shapes and along curved beds the shapes are 
even more complicated. One may therefore think that our 
solutions are of little use. We do not think so, as our 
solutions provide physical insight into the basic mechanisms 
of the motion and spreading of a gran ular pile; the model 
does have diagnostic value. For a prognostic use of the 
governing equations, however, integration from more 
general initial configurations are needed. Such studies are 
under way. 

REFERENCES 

Alean, J. 1984. Untersuchungen uber Entstehungsbedin
gungen und Reichweiten von Eislawinen. Eid. Tech. 
Hochschule, ~/irich. Versuchsanst. Wasserbau, Hydrol. 
Glaziol. Mitt. 74. 

Alean, J. 1985. Ice avalanche activity and mass balance 
of a high altitude hanging glacier in the Swiss Alps. 
Ann. Glacio!., 6, 248-249. 

Beghin, P., E.J. Hopfinger and R . E. Britter. 1981. 
Gravitational convection from instantaneous sources 
on inclined boundaries. J. Fluid Mech., 107,407--422 . 

Greve, R. and K. Hutter. 1993. Motion of a granular 
avalanche in a convex and concave curved chute: 
experiments and theoretical predictions. Phil. Trans . R. 
Soc. Lond., Ser. A , 342, 573- 600. 

Gubler, H. 1987. Measurements and modelling of snow 

avalanche speeds. International Association of Hydrological 
Sciences Publication 162 (Symposium at Davos 1986 -
Avalanche Formation, Movement and Effects ), 405--420. 

Gubler, H . 1989. Comparison of three models of 
avalanche dynamics. Ann. Glaciol., 13, 82- 89. 

Gubler, H. Unpublished . Messungen an F1iess1awinen. 
Eidgenossisches Institut fur Schnee- und Lawinen
forschung (EISLF), Weissfluhjoch /Davos, Switzerland. 
Interner Bericht 600, 1981. 

Gubler, H. and M. Hiller. 1984. The use of microwave 
FMCW radar in snow and avalanche research. Cold 
Reg. Sci. Technol. , 9 (2) , 109- 119. 

Hermann, F. and K. Hutter. 1991. Laboratory exper
iments on the dynamics of powder-snow avalanches in 
the run-out zone. J. Glacio!., 37(126), 281 - 295. 

Hopfinger, E.]. 1983. Snow avalanche motion and 
related phenomena. Annu. Rev. Fluid Mech ., 15, 47- 76. 

Hopfinger, E.J. and P. Beghin. 1980. Buoyant clouds 
appreciably heavier than the ambient fluid on sloping 
boundaries. In IAHR. International Association for 
Hydraulic Research. Second International Symposium on 
Stratified Flows, Trondheim , 495- 504. 

Hsu, K. 1975. On sturzstroms - catastrophic debris 
streams generated by rockfalls. Geol. Soc. Am. Bull. , 86, 
129- 140. 

HSii , K. 1978. A1bert Heim: Observations on landslides 
and relevance to modern interpretations. In Voight, B., 
ed. Rockslides and avalanches, 1. Natural phenomena. 
Amsterdam, etc., Elsevier, 69- 93 . 

Hutter, K. 1992. Lawinendynamik, eine Ubersicht. 
Schweizer Ingenieur und Architekt, 13, 259- 269. 

Hutter, K. and T. Koch. 1991. Motion of a granular 
avalanche in an exponentially curved chute: exper
iments and theoretical predictions. Philos. Trans. R. Soc . 
London, Ser. A, 334,93- 138. 

Hutter, K. and Y. Nohguchi . 1990. Similarity solutions 
for a Voellmy model of snow avalanches with finite 
mass. Acta Mech., 82,99-127. 

Hutter, K. and S. B. Savage. 1988a. Avalanche dynamics : 
the motion of a finite mass of gravel down a mountain 
side. Proceedings of the 5th International Symposium on 
Landslides, July 10-15, 1989, Lausanne, Switzerland. In 
Bonnard, C., ed., 691-697 . 

Hutter, K. and S. B. Savage. 1988b. Granular aval
anches. Theory and laboratory experiments. A review 
of new developments. Internationale Symposium, Interprae
vent 1988, Gra;::. Tagungs-publikation, Vol.3, 251-266. 

Hutter, K., T. Koch, C. PlUss and S. B. Savage. In 
press a. Dynamics of avalanches of granular materials 
from initiation to runout. Part II. Laboratory 
experiments. Acta Mech. 

Hutter, K., N. Siegel, S. B. Savage and Y. Nohguchi. In 
press b. Two dimensional spreading of a granular 
avalanche down an inclined plane. Part I. Theory. 
Acta Mech. 

Lang, T. E. and M. Martinelli, Jr. 1979. Application of 
numerical transient fluid dynamics to snow avalanche 
flow. Part 11. Avalanche modeling and parameter 
error evaluation. J. Glaciol., 22 (86), 117-126. 

Lang, R . M., B. R . Leo and K. Hutter. 1989. Flow 
characteristics of an unconstrained, non-cohesive, 
granular medium down an inclined curved surface. 
Ann. Glaciol., 13, 146-153. 

371 



Journal of Glaciology 

Nohguchi, Y., K. Hutter and S. B. Savage. 1989. 
Similarity solutions for granular avalanches of finite 
mass with variable bed friction and rigid body motion. 
Continuum Mechanics and Thermodynamics, 1, 239-265. 

Norem, H. and K. Kristensen. 1988. The Ryggfonn project. 
Avalanche data from the winter 1987/88. Oslo, Norwegian 
Geotechnical Institute. (Report 58120-12.) 

Norem, H., K. Kristensen and K. Tronstad. 1986. The 
Ryggfonn project. Avalanche data from the winter 1984/85. 
Oslo, Norwegian Geotechnical Institute. (Report 
58120-8.) 

Norem, H., K. Kristensen and K. Tronstad. 1988. The 
Ryggfonn project. Avalanche data from the winter 1986/87. 
Oslo, Norwegian Geotechnical Institute. (Report 
58120-10. ) 

Per1a, R.1. and M . Martinelli, Jr. 1978. Avalanche 
handbook. U.S. Dep. Agric. For. Serv. Agric. Handb. 489. 

PerIa, R.1., T. T. Cheng and D. M. McC1ung. 1980. A 
two-parameter model of snow avalanche motion. J. 
Glaciol., 26(94), 197-207. 

Sa1m, B. 1966. Contribution to avalanche dynamics. 
International Association of Scientific Hydrology Publication 
69 (Symposium at Davos 1969 - Scientifu: Aspects of 
Snow and Ice Avalanches), 199-214. 

Sa1m, B. 1968. On nonuniform, steady flow of avalanch
ing snow. International Association of Scientific Hydrology 
Publication 79 (General Assembry of Bern 1967 - Snow and 
Ice), 19-29. 

Savage, S. B. and K. Hutter. 1989. The motion ofa finite 
mass of granular material down a rough incline. J. 
Fluid Meeh ., 199, 177-21S. 

Savage, S. B. and K. Hutter. 1991. Dynamics of 
avalanches of granular materials from initiation to 

runout. Part 1. Analysis. Acta Meeh., 86, 201-223. 
Savage, S. B. and Y. Nohguchi. 1988. Similarity solutions 

for avalanches of granular materials down curved beds. 
Acta Mech ., 75, 153- 174. 

Scheiwiller, T . 1986. Dynamics of powder snow 
avalanches. (Ph.D. thesis, Eidgenossische Technische 
Hochschu1e, Zurich. ) 

Scheiwiller, T. and K. Hutter. 1982. Lawinendynamik. 
Ubersicht uber Experimente und theoretische Modelle 
von Fliess- und Staublawinen. Eid. Tech. Hochschule, 
Zurich. Versuchsanst. Wasserbau, Hydro!. Glaziol. Mitt. 58. 

Scheiwiller, T ., K. Hutter and F. Hermann. 1987. 
Dynamics of powder snow avalanches. Annales Geo
physicae, 5B(6), 569- 588. 

Tochon-Danguy, J -C. 1977. Etude des courants de 
gravitee sur forte pente avec application aux aval
anches poudreuses. (These, Universite de Grenoble.) 

Tochon-Danguy, J-C. and E.J . Hopfinger. 1975. 
Simulation of the dynamics of powder avalanches. 
International Association of Hydrological Sciences Publication 
114 (Symposium at Grindelwald 1974 - Snow 
Mechanics ), 369-380. 

Vila, J . P. 1987. La prevision des vagues prod ui tes par la 
chute d'une avalanche dans une retenue. International 
Association of Hydrological Sciences 162 (Symposium at 
Davos 1986 - Avalanche Formation, Movement and 
Effects), S09-S18. 

Voellmy, A. 19S5. Uber die Zerstorungskraft von 
Lawinen. Schweiz. Bauztg, 73, lS9-162, 212-217, 246-
249, 280- 28S. 

The accuracy of references in the text and in this list is the 
responsibility of the authors, to whom queries should be addressed. 

MS received 13 April 1989 and in revised form 6 Jury 1992 

372 


	Vol 39 Issue 132 page 357-372 - Two-dimensional similarity solutions for finite-mass granular avalanches with Coulomb- and viscous-type frictional resistance - Kolumban Hutter and Ralf Greve

