Four-body resonances of 7B using the complex scaling method

Takayuki Myo,1,2,* Yuma Kikuchi,2,† and Kiyoshi Kato3,‡

1General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
2Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
3Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received 4 November 2011; published 6 December 2011)

We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He + p + p + p cluster model. Many-body resonances are treated under the correct boundary condition as Gamow states using the complex scaling method. We predict five resonances of 7B and evaluate the spectroscopic factors of the 6Be-p components. The importance of the 6Be(2^+)-p component is shown in several states of 7B; this is a common feature of 7He, a mirror nucleus of 7B. For only the ground state of 7B, the mixing of the 6Be(2^+) state is larger than that of 6He(2^+) in 7He, which indicates a breaking of mirror symmetry. This is caused by the small energy difference between 7B and the excited 6Be(2^+) state, the origin of which is Coulomb repulsion.

DOI: 10.1103/PhysRevC.84.064306 PACS number(s): 21.60.Gx, 21.10.Dr, 21.10.Pc, 27.20.+n

I. INTRODUCTION

Radioactive beam experiments have provided us with much information on unstable nuclei far from stability. In particular, light nuclei near the drip line exhibit new phenomena of nuclear structures, such as the neutron halo structure found in 6He, 11Li, and 11Be [1]. Unstable nuclei can often be in unbound states beyond particle thresholds due to their weak binding nature. Resonance spectroscopy of unbound states beyond the drip line has also been developed experimentally. In addition to energies and decay widths, configuration properties are important for understanding the structures of the resonances. Spectroscopic factors (S factors) give useful information regarding the configurations of extra nucleons in resonances as well as in weakly bound states. It is also interesting to compare the structures of resonances and weakly bound states between proton-rich and neutron-rich cases. This comparison is related to mirror symmetry in unstable nuclei. Recently, an experiment on 7B was reported [2], adding to prior observations [3]. The 7B nucleus is known as an unbound system beyond the proton drip line, and its ground state is naively considered to be the $3/2^-$ resonance. The ground state of 7B is observed at 2 MeV above the 6He + p threshold energy, and excited states have not yet been observed. 7B states can decay not only to two-body 6Be + p channels, but also to many-body channels of 5Li + $2p$ and 4He + $3p$. This multiparticle decay condition makes it difficult to identify the states of 7B experimentally. The mirror nucleus of 7B is 7He, which is also an unbound system with respect to one-neutron emission. Recent experiments on 7He [4–11] confirm that its ground state shows a $3/2^-$ resonance. The S factor of the 7He-n component was reported for the ground state of 7He [10]. The excited states of 7He can decay into the 4He + $3n$ channel, which is also difficult to observe experimentally. There still remain contradictions in the observed energy levels of 7He.

From the viewpoint of the 4He plus three protons and/or neutrons” system, information on 7B and 7He is important to understand structures outside the drip lines as four-body pictures. It is also interesting to examine the effect of Coulomb interaction and mirror symmetry in the resonances of two nuclei. Structures of resonances generally depend on the existence of open channels as the thresholds of particle emissions. In this sense, the mirror symmetry of resonances can be related to the behavior of coupling to open channels. It is interesting to compare the effects of couplings to open channels for the resonances of 7B and 7He.

On the theoretical side, to treat unbound states explicitly several methods have been developed, such as the microscopic cluster model [12,13], the continuum shell model [14] and the Gamow shell model [15,16]. It is, however, difficult to satisfy multiparticle decay conditions correctly for all open channels. For 7B, it is necessary to describe 4He + $3p$ four-body resonances in theory. So far, no theory describes the 7B nucleus as four-body resonances. It is also important to reproduce the threshold energies of subsystems for particle decays; specifically, the positions of open channels. Emphasizing these theoretical conditions, in this study we employ the cluster orbital shell model (COSM) [17–20] of the 4He + $3p$ four-body system. In COSM, the effects of all open channels are taken into account explicitly [19] so that we can treat the many-body decay phenomena. In our previous work on neutron-rich systems [19–21], we successfully described He isotopes with the 4He + $4n$ model up to the five-body resonances of 8He, including full couplings with $^5,^6,^7$He. We described many-body resonances using the complex scaling method (CSM) [22–24] under correct boundary conditions for all decay channels. In COSM, the resonant wave functions are directly obtained by diagonalization of the complex-scaled Hamiltonian using L^2 basis functions. Results for light nuclei using CSM have been obtained successfully for energies, decay widths, and spectroscopic factors, and also for breakup strengths induced by Coulomb excitations [25,26], monopole transition [21] and one-neutron removal [20]. Recently, CSM has been developed to include nuclear reaction methods such as scattering amplitude calculation [27], the Lippmann-Schwinger equation.
and the continuum-discretized coupled-channel (CDCC) method [29].

In this study, we proceed with our study of resonance spectroscopy of the proton-rich nucleus ^7B. We examine how our model describes ^7B as four-body resonances. We predict the resonances of ^7B and investigate their configuration properties. We extract the S factors of the $^6\text{Be}-p$ components for every ^7B resonance. The S factors are useful for understanding the coupling behavior between ^7B and the last proton. For the mirror nucleus ^7He we have performed the same analysis of the S factors of the $^6\text{Be}-p$ components [20], in which a large mixing of the $^6\text{He}(2^+)$ state is confirmed. From the viewpoint of mirror symmetry, we compare the structures of ^7B with those of ^7He and discuss the effect of the Coulomb interaction.

We use COSM for $^4\text{He}+N_v p$ systems, where N_v is the valence proton number around ^4He, namely $N_v = 3$ for ^7B. The Hamiltonian form is the same as that used in Refs. [19,20]:

$$H = \sum_{i=1}^{N_v+1} t_i - T_C + \sum_{i=1}^{N_v} V_{ii}^{pp} + \sum_{i<j}^{N_v} V_{ij}^{pp} + \sum_{i<j}^{N_v} \left(\frac{\vec{p}_i \cdot \vec{p}_j}{4m} + V_{ij}^{pp} \right)$$

where t_i and T_C are the kinetic energies of each particle (p and ^4He) and of the center of mass of the total system, respectively. The vector \vec{p}_i is the relative momentum between particle i and ^4He. The reduced mass μ is $4m/5$ using a nucleon mass m. The $^4\text{He}-p$ interaction V^{pp} is given by the microscopic KNN potential [24,30] for the nuclear part, in which the tensor correlation of ^4He is renormalized on the basis of the resonating group method in $^4\text{He}+N$ scattering. For the Coulomb part, we use the folded Coulomb potential using the density of ^4He with a $(0s)^3$ configuration. We use the Minnesota potential [31] as the nuclear part of V^{pp} in addition to the Coulomb interaction. These interactions reproduce the low-energy scattering of the $^4\text{He}-N$ and $N-N$ systems, respectively.

For the wave function, ^4He is treated as a $(0s)^3$ configuration of a harmonic-oscillator wave function, whose length parameter is 1.4 fm to fit the charge radius of ^4He of 1.68 fm. The motion of valence protons around ^4He is solved variationally using the few-body technique. We expand the relative wave functions of the $^4\text{He}+N_v p$ system using the COSM basis states [17–20]. In COSM, the total wave function Ψ' with spin J is represented by the superposition of the configuration Ψ'_c as

$$\Psi' = \sum_c C'_c \Psi'_c,$$

where the vacuum $|0\rangle$ is given by the ^4He ground state. The creation operator a^\dagger_{ij} is for the single-particle state of a valence proton above ^4He with quantum number $\alpha = \{n, \ell, j\}$ in a jj coupling scheme. Here, the index n represents the different radial components. The coefficient C'_c represents the amplitude of the configuration and its index c represents the set of α_n as $c = \{\alpha_1, \ldots, \alpha_{N_v}\}$. We take a summation over the available configurations in Eq. (3), which gives a total spin J.

The coordinate representation of the single-particle state corresponding to a^\dagger_{ij} is given by $\psi_{\alpha}(r)$ as a function of the relative coordinate r between the center of mass of ^4He and a valence proton [17], as shown in Fig. 1. Considering the angular momentum coupling, the explicit wave functions of the COSM configuration Ψ'_c in Eq. (4) are expressed as

$$\Psi'_c = A'\{\Phi(4\text{He}), \chi'_c(N_v p)\}^{\dagger},$$

$\chi'_c(2p) = A\{\psi_{\alpha_1}(r), \psi_{\alpha_2}(r)\},$

$\chi'_c(3p) = A\{\psi_{\alpha_1}(r), \psi_{\alpha_2}(r), \psi_{\alpha_3}(r)\}.$

Here, $\Phi(4\text{He})$ is the ^4He wave function with spin 0^+. The function $\chi'_c(N_v p)$ expresses the COSM wave functions for the valence protons. The spin j_2 is the coupled angular momentum of the first and second valence protons. The antisymmetrizers between valence protons and between a valence proton and nucleons in ^4He are expressed as the symbols A and A', respectively. The effect of A' is treated in the orthogonality condition model [20,24], in which ψ_{α} is imposed to be orthogonal to the $0s$ state occupied by ^4He. We employ a sufficient number of radial bases of ψ_{α} to describe the spatial extension of valence protons in resonances where ψ_{α} is normalized. In this model, the radial part of ψ_{α} is expanded with Gaussian basis functions for each orbit as

$$\psi_{\alpha} = \sum_{k=1}^{N_{\alpha}} d_{\alpha k} \phi_{\ell j}^k(r, b_{\ell j}^k),$$

$$\phi_{\ell j}^k(r, b_{\ell j}^k) = N^\ell r^\ell e^{-\left(r/b_{\ell j}^k\right)^2/2} [Y_{\ell j}(\vec{r}), \chi_{\gamma/2}^\ell]_j.$$
The index \(k \) is for the Gaussian basis with length parameter \(b_{\ell j}^k \). A normalization factor of the basis and a basis number are given by \(N \ell j \) and \(N_{\ell j} \), respectively.

In COSM, using Gaussian expansion, the total wave function \(\Psi^J \) contains two kinds of expansion coefficients: \(\{ C_j^\ell \} \) in Eq. (3) for configuration and \(\{ d_k^\ell \} \) in Eq. (9) for each valence proton. We determine them using the following procedure. First, we solve the eigenvalue problem of the norm matrix of the Gaussian basis set in Eq. (10), which is nonorthogonal with dimension \(N_{\ell j} \). The coefficients \(\{ d_k^\ell \} \) are determined to construct the orthonormalized single-particle basis set \(\{ \psi_{\alpha} \} \) having different radial components with number \(N_{\ell j} \). Second, Hamiltonian matrix elements are constructed using \(\{ \psi_{\alpha} \} \) and are diagonalized to determine \(\{ C_j^\ell \} \) from the variational principle. The relation \(\sum_c (C_j^\ell)^2 = 1 \) is satisfied due to the normalization of the total wave function. The same method of determining the expansion coefficients using Gaussian bases is used in the tensor-optimized shell model [32].

The numbers of radial bases \(N_{\ell j} \) of \(\psi_{\alpha} \) are determined to converge the physical solutions \(\Psi^J \). The length parameters \(b_{\ell j}^k \) are chosen in geometric progression [20,24]. We use at most 17 Gaussian basis functions by setting \(b_{\ell j}^k \) from 0.2 fm to around 40 fm with the geometric ratio of 1.4 as a typical one. Due to the expansion of the radial wave function using a finite number of bases states, all the energy eigenvalues are discretized for bound, resonant, and continuum states. For reference, in the Gamow shell-model calculation [15,16], the single particle states \(\psi_{\alpha} \) consist of resonant and discretized continuum states obtained with the single-particle potential \(V^{np} \) in Eq. (2).

For \(^7\)B, all the channels of \(^6\)Be + \(p \), \(^5\)Li + \(2p \), and \(^4\)He + \(3p \) are automatically included in the total COSM wave function \(\Psi^J \). These components are coupled to each other via interactions and antisymmetrization. The couplings depend on the relative distances between \(^4\)He and a valence proton and between valence protons. We explain the coupling behavior between \(^4\)He and valence protons in COSM. This is related to the boundary condition of the proton emission in \(^7\)B, which is important when the resonant and continuum states are treated [19,26,33]. As an example, we consider the coupling between \(^7\)B and the \(^8\)Be + \(p \) configurations. Asymptotically, when the last proton is located far away from \(^6\)Be, namely, \(r_3 \rightarrow \infty \) as in Fig. 1, any coupling between \(^6\)Be and a last proton disappears, and \(^8\)Be is described by an isolated eigenstate of the Hamiltonian in Eq. (2) with \(N_v = 2 \):

\[
\Psi^J (7B) = \sum_c C_c^J A_c \left\{ [\Phi(4He), \chi_c^J (3p)]^J \right\} \quad (11)
\]

\[
\Psi^J (6Be) = \sum_c C_c^J A_c \left\{ [\Phi(4He), \chi_{c,v}^J (2p)]^J \right\}, \quad (13)
\]

where the spins \(J \) and \(J' \) are for \(^7\)B and \(^6\)Be, respectively, and the index \(v \) indicates the eigenstate of \(^4\)He. The mixing coefficients \(\{ C_c^J \} \) and the wave function \(\chi_{c,v}^J (2p) \) in Eq. (13) are those of the \(^6\)Be eigenstates. Hence, the wave function \(\chi_c^J (3p) \) in Eq. (11) satisfies the following asymptotic form:

\[
\sum_c C_c^J \chi_c^J (3p) \rightarrow_{r_3 \rightarrow \infty} \sum_c C_c^J \chi_{c,v}^J (2p) \quad \psi_{\alpha}. \quad (14)
\]

This relation implies that the wave function of the three valence protons of \(^7\)B is asymptotically decomposed into \(^6\)Be and a last proton. Equations (11)–(14) determine the boundary condition of COSM. In contrast, when a last proton comes close to \(^6\)Be, the last proton dynamically couples to the \(^6\)Be eigenstates \(\psi_{\alpha} \). This coupling depends on the relative distance between \(^4\)He and a last proton, and changes the \(^6\)Be configurations from isolated eigenstates of \(^6\)Be. In COSM, the structure change of \(^6\)Be inside \(^7\)B is determined variationally to optimize the \(^7\)B eigenstates. The same method is applied to the asymptotic conditions for the \(^5\)Li + \(2p \) and \(^4\)He + \(3p \) configurations. Hence proton emissions can be handled with correct boundary conditions in COSM.

We now explain the parameters of the model space of COSM and the Hamiltonian, which are determined in the previous analyses of He isotopes [19,20]. For single-particle states, we use angular momentum \(\ell \leq 2 \) to keep the accuracy of the converged energy within 0.3 MeV for \(^6\)He with the \(^4\)He + \(n + n \) model, in comparison with the full-space calculation [24]. In this model, we adjust the two-neutron separation energy of \(^4\)He(0\(^\ast\)) to the experimental result of 0.975 MeV by using the 173.7-MeV value of the repulsive strength from the Minnesota potential instead of the original value of 200 MeV. The adjustment of the \(NN \) interaction originates from the pairing correlation between valence protons with higher angular momentum \(\ell > 2 \) [24]. Hence, the present model reproduces the observed energies of \(^4\)He and is applied to the proton-rich nuclei in this analysis.

B. Complex scaling method (CSM)

Here we explain CSM, which describes resonances and nonresonant continuum states [22–24]. Hereafter, we refer to the nonresonant continuum states as simply the continuum states. In CSM, we transform the relative coordinates of the \(^4\)He + \(N_v p \) system as \(r_1 \rightarrow r_1 e^{i\theta} \) for \(i = 1, \ldots, N_v \), where \(\theta \) is a scaling angle. The Hamiltonian in Eq. (2) is transformed into the complex-scaled Hamiltonian \(H_0 \), and the corresponding complex-scaled Schrödinger equation is given as

\[
H_0 \Psi_0^J = E \Psi_0^J. \quad (15)
\]

The eigenstates \(\Psi_0^J \) are obtained by solving the eigenvalue problem of \(H_0 \) in Eq. (15). In CSM, we obtain all the energy eigenvalues \(E \) of bound and unbound states on the complex energy plane, governed by the ABC theorem [34]. In this theorem, it is proved that the boundary condition of resonances is transformed to one of damping behavior in the asymptotic region. This condition makes it possible to use the same method to obtain bound states and resonances. For a finite value of \(\theta \), every Riemann branch cut starting from the different thresholds is commonly rotated down by \(2\theta \). Hence, continuum states such as the \(^6\)Be + \(p \) and \(^5\)Li + \(2p \) channels...
in 7B are obtained on the branch cuts rotated by -2θ from the corresponding thresholds [19,20]. In contrast, bound states and resonances are obtainable independent of θ. We can identify resonance poles with complex eigenvalues: $E = E_r - i\Gamma/2$, where E_r and Γ are the resonance energies and the decay widths, respectively. In the wave function, the θ dependence is included in the expansion coefficients in Eqs. (3) and (9) as $(C^J_{\nu}(\theta))$ and $(d^\nu_\alpha(\theta))$, respectively. The value of the angle θ is determined to search for the stationary point of each resonance in the complex energy plane [22–24].

The resonant state generally has a divergent behavior at asymptotic distance, and then its norm is defined by a singular integral using, for example, the convergent-factor method [24,35,36]. In CSM on the other hand, resonances are precisely described as eigenstates expanded in terms of basis functions. The amplitudes of the resonances are finite and are normalized as $\sum(C^J_{\nu}(\theta))^2 = 1$. The Hermitian product is not applied due to the bi-orthogonal relation [22,23,37]. The matrix elements of resonances are calculated using the amplitudes obtained in CSM.

In this study, we discretize the continuum states in terms of the basis expansion, as shown in the figures in energy eigenvalue distributions in Refs. [20,24,25]. The reliability of the continuum discretization in CSM has already been shown using continuum level density [38] and phase-shift analysis [27].

C. Spectroscopic factor of 7B

We now explain the S factors of the 6Be-p components for 7B. As was explained in the previous study [20], since the resonant states generally give complex matrix elements, the S factors of resonant states are not necessarily positive definite. The S factors are defined by the squared matrix elements using the bi-orthogonal property [37] as

$$ S^J_{J',\nu} = \sum_\alpha S^J_{J',\nu,\alpha}, \quad (16) $$

$$ S^J_{J',\nu,\alpha} = \frac{1}{2J+1} \langle \Phi^J_{\nu} | a_\alpha | \Psi^J_{\nu} \rangle^2, \quad (17) $$

where the annihilation operator a_α is for a single valence proton with state α. The spins J and J' are for 7B and 6Be, respectively. The index ν (ν') indicates the eigenstate of 7B (6Be). The wave function Φ^J_{ν} is for 6Be. In this expression, the values of $S^J_{J',\nu}$ are allowed to be complex. In general, the imaginary parts of the S factors often become large relative to the real parts for a resonance having a large decay width. Recently, the Gamow shell-model calculation was also used to discuss the S factors of resonances [39].

The sum-rule value of the S factors, which includes resonance contributions of the final states, can now be considered [19]. When we count all the S factors, not only of resonances but also of the continuum states in the final states, the summed value of the S factors is equal to the associated particle number, which is a real value and does not contain any imaginary part, similarly to the transition-strength calculation [25,40].

For the 7B into 6Be-p decomposition, the summed value of the S factors $S^J_{J',\nu}$ in Eq. (17), taking all the 6Be states, is obtained on the branch cuts rotated by -2θ from the corresponding thresholds [19,20]. In contrast, bound states and resonances are obtainable independent of θ. We can identify resonance poles with complex eigenvalues: $E = E_r - i\Gamma/2$, where E_r and Γ are the resonance energies and the decay widths, respectively. In the wave function, the θ dependence is included in the expansion coefficients in Eqs. (3) and (9) as $(C^J_{\nu}(\theta))$ and $(d^\nu_\alpha(\theta))$, respectively. The value of the angle θ is determined to search for the stationary point of each resonance in the complex energy plane [22–24].

The resonant state generally has a divergent behavior at asymptotic distance, and then its norm is defined by a singular integral using, for example, the convergent-factor method [24,35,36]. In CSM on the other hand, resonances are precisely described as eigenstates expanded in terms of basis functions. The amplitudes of the resonances are finite and are normalized as $\sum(C^J_{\nu}(\theta))^2 = 1$. The Hermitian product is not applied due to the bi-orthogonal relation [22,23,37]. The matrix elements of resonances are calculated using the amplitudes obtained in CSM.

In this study, we discretize the continuum states in terms of the basis expansion, as shown in the figures in energy eigenvalue distributions in Refs. [20,24,25]. The reliability of the continuum discretization in CSM has already been shown using continuum level density [38] and phase-shift analysis [27].

C. Spectroscopic factor of 7B

We now explain the S factors of the 6Be-p components for 7B. As was explained in the previous study [20], since the resonant states generally give complex matrix elements, the S factors of resonant states are not necessarily positive definite. The S factors are defined by the squared matrix elements using the bi-orthogonal property [37] as

$$ S^J_{J',\nu} = \sum_\alpha S^J_{J',\nu,\alpha}, \quad (16) $$

$$ S^J_{J',\nu,\alpha} = \frac{1}{2J+1} \langle \Phi^J_{\nu} | a_\alpha | \Psi^J_{\nu} \rangle^2, \quad (17) $$

where the annihilation operator a_α is for a single valence proton with state α. The spins J and J' are for 7B and 6Be, respectively. The index ν (ν') indicates the eigenstate of 7B (6Be). The wave function Φ^J_{ν} is for 6Be. In this expression, the values of $S^J_{J',\nu}$ are allowed to be complex. In general, the imaginary parts of the S factors often become large relative to the real parts for a resonance having a large decay width. Recently, the Gamow shell-model calculation was also used to discuss the S factors of resonances [39].

The sum-rule value of the S factors, which includes resonance contributions of the final states, can now be considered [19]. When we count all the S factors, not only of resonances but also of the continuum states in the final states, the summed value of the S factors is equal to the associated particle number, which is a real value and does not contain any imaginary part, similarly to the transition-strength calculation [25,40]. For the 7B into 6Be-p decomposition, the summed value of the S factors $S^J_{J',\nu}$ in Eq. (17), taking all the 6Be states, is

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Width (MeV)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.73</td>
<td>1.05</td>
<td>$p_1/2$</td>
</tr>
<tr>
<td>2.90</td>
<td>1.05</td>
<td>$p_1/2$</td>
</tr>
<tr>
<td>5.95</td>
<td>11.21</td>
<td>$p_1/2$</td>
</tr>
<tr>
<td>3.42</td>
<td>3.93</td>
<td>$p_1/2$</td>
</tr>
<tr>
<td>2.75</td>
<td>5.67</td>
<td>$p_1/2$</td>
</tr>
<tr>
<td>1.21</td>
<td>0.041</td>
<td>$p_1/2$</td>
</tr>
</tbody>
</table>
Table II: Components of the ground states of 6Be and 6He.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>6Be(0+)</th>
<th>6He(0+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(p_{1/2})^2$</td>
<td>0.918 $-$ i0.006</td>
<td>0.917</td>
</tr>
<tr>
<td>$(p_{1/2})^2$</td>
<td>0.041 + i0.000</td>
<td>0.043</td>
</tr>
<tr>
<td>$(1s_{1/2})^2$</td>
<td>0.010 + i0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>$(d_{5/2})^2$</td>
<td>0.024 + i0.000</td>
<td>0.024</td>
</tr>
<tr>
<td>$(d_{3/2})^2$</td>
<td>0.007 + i0.000</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Table III: Dominant components of the 2^+ states of 6Be and 6He.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>6Be(2+)</th>
<th>6He(2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(p_{1/2})^2$</td>
<td>0.891 + i0.030</td>
<td>0.898 + i0.013</td>
</tr>
<tr>
<td>$(p_{1/2})(p_{1/2})$</td>
<td>0.097 $-$ i0.024</td>
<td>0.089 $-$ i0.013</td>
</tr>
</tbody>
</table>

using the complex-scaled wave function of 6He. It was shown that the 6He(2+) resonance generates a sharp peak at around the resonance energy in the distribution.

In the numerical calculation, we express the radial part of the operator a_ν in Eq. (17) using a complete set of a valence proton expanded by 40 Gaussian basis functions with a maximum range of 100 fm for each orbit. This treatment is sufficient to converge the S-factor results.

III. RESULTS

A. Energy spectra of 5Li, 6Be, and 7B

We show the systematic behavior of level structures of 5Li, 6Be and 7B in Fig. 2. It is found that the present calculations agree with observed energy levels. We furthermore predict many resonances for 6Be and 7B. We first discuss the structures of 6Be, which are useful for understanding of 7B structures. The 6Be states together with a last proton compose the 6He(0+) and 6He(2+) resonance generates a sharp peak at around the resonance energy in the distribution.

The resonance energies and the decay widths of 6Be are listed in Table I with dominant configurations. The components of each configuration for the 6Be and 6He ground states are listed in Table II, which are the squared values of the amplitudes $|C_{j_\nu}|$ defined in Eq. (3). We show the summation of the components belonging to the same configurations with different radial components of the valence proton. It is noted that the amplitude of the resonant wave function becomes a complex number and its real part can have a physical meaning when the imaginary part has a relatively small value. It is confirmed that the two ground states show a similar trend of configuration, which is dominated by the p shell. The configurations of the 2^+ states of 6Be and 6He are also shown in Table III, where the energy and decay width of 6He(2+) are obtained as $(E_r, \Gamma) = (0.879, 0.132)$ in MeV, measured from the 4He + $n + n$ threshold. A good correspondence is seen for the two dominant configurations of the 2^+ states. These results indicate that mirror symmetry of configurations is well kept between 6Be and 6He. Recently, Gamow shell-model calculations were used to discuss p-shell contributions in the $A = 6$ system [39].

The radial properties of 6Be are of interest when discussing the effect of Coulomb repulsion in comparison with 6He, which has a halo structure, although the radius of 6Be can be a complex number because of the resonance. The results of the 6Be ground state are shown in Table IV for matter (R_m), proton (R_p), neutron (R_n), and charge (R_c) parts, for the relative distances between valence nucleons (r_{NN}) and between the 4He core and the center of mass of two valence nucleons (r_{c-2N}), and for the opening angle between two nucleons (θ_{NN}) at the center of mass of the 4He core. It is found that the values for 6Be are almost real, so that the real parts can be considered to represent the radius properties of 6Be. The distances between valence protons and between the core and $2p$ in 6Be are wider than those of 6He by 26% and 22%, respectively. This result comes from Coulomb repulsion between the three constituents of 4He + $p + p$ in 6Be. Coulomb repulsion makes the energy of 6Be shift up to become a resonance in comparison with 6He, and it also increases the relative distances between each constituent from the halo state of 6He.

We now discuss the structures of 7B. The energy eigenvalues are listed in Table V, measured from the 4He + $3p$ threshold. We obtained five resonances, which are all located above the 6He(0+) + p threshold as shown in Fig. 2, as well as four-body resonances. In Fig. 3 we display the energy eigenvalues of the 7B resonances together with the many-body continuum cuts in the complex energy plane, which is useful for understanding at a glance the positions of poles and the various relative thresholds. The 6Be resonances together with 7B resonances are listed in Table V.

Table IV: Radial properties of the ground states of 6Be and 6He in units of fm, in comparison with the experiments of 6He; labels a–d denote Refs. [43–46], respectively.

<table>
<thead>
<tr>
<th></th>
<th>6Be</th>
<th>6He</th>
<th>6He (expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_m</td>
<td>2.80 + i0.17</td>
<td>2.37</td>
<td>2.33(4) (a), 2.30(7) (b), 2.37(5) (c)</td>
</tr>
<tr>
<td>R_p</td>
<td>3.13 + i0.20</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>R_n</td>
<td>1.96 + i0.08</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>R_c</td>
<td>3.25 + i0.21</td>
<td>2.01</td>
<td>2.068(11) (d)</td>
</tr>
<tr>
<td>r_{NN}</td>
<td>6.06 + i0.35</td>
<td>4.82</td>
<td></td>
</tr>
<tr>
<td>r_{c-2N}</td>
<td>3.85 + i0.37</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>θ_{NN}</td>
<td>75.3</td>
<td>74.6</td>
<td></td>
</tr>
</tbody>
</table>

Table V: Energy eigenvalues of the 7B resonances measured from the 4He + $3p$ threshold. The values in square brackets are the experimental ones [2]. Dominant configurations are listed.

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Width (MeV)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2+</td>
<td>3.35</td>
<td>0.49</td>
</tr>
<tr>
<td>3/2+</td>
<td>6.92</td>
<td>5.422</td>
</tr>
<tr>
<td>3/2+</td>
<td>8.39</td>
<td>9.86</td>
</tr>
<tr>
<td>1/2+</td>
<td>5.93</td>
<td>4.73</td>
</tr>
<tr>
<td>5/2+</td>
<td>4.63</td>
<td>3.91</td>
</tr>
</tbody>
</table>
a last proton compose the thresholds of \(^7\)B, whose positions are located at the starting points of the \(-2\theta\)-rotated cuts in CSM. The energy of the \(^7\)B ground state is obtained as \(E_r = 3.35\) MeV, which agrees with the recent experiment result of \(E_r = 3.38(3)\) MeV \[2\]. The decay width is 0.49 MeV, which is good but slightly smaller than the experimental value of 0.80(2) MeV. In the experiment, the decay width was determined from \(R\)-matrix theory with the assumption of decay into the \(^6\)Be\((0^+)_1\) + \(p\) channel. On the other hand, our analysis shows that the \(^6\)Be\((0^+)_1\)-\(p\) component is important in the \(^7\)B ground state, which is found from the \(S\) factors of this channel and is suggested from the conventional shell-model calculation \[2\]. There is no experimental evidence for the excited states of \(^7\)B so far, and further experimental data are anticipated.

We now discuss the configuration properties of the first resonance of \(^7\)B in detail. In Table VI, we list the main configurations with their squared amplitudes \((C_i^2)\) from Eq. (3) for each \(^7\)B resonance. In general, the squared amplitude of a resonant state can be a complex number, while the total of the squared amplitudes is normalized to unity. The interpretation of the imaginary part in the physical quantity of resonances is still an open problem \[36\]. In the results for \(^7\)B, the amplitudes of the dominant components are almost real values. It is, hence, reasonable to discuss the physical meaning of the dominant components of the resonance in the same way that we discuss the bound state. It is furthermore found that the imaginary parts of the configurations cancel each other for every resonance, and their summations have much smaller imaginary parts. When we consider all the available configurations, the summations conserve unity due to the normalization of the states.

For the \(3/2^-\) ground state, the result indicates that the \((p_{3/2})^3\) configuration is dominant with a small mixing of the \(p_{1/2}\) component. For the excited \(3/2^+\) state, one proton occupies the \(p_{1/2}\) orbit and the residual two protons in \(p_{3/2}\) form a spin of \(2^+\), which corresponds to the \(^6\)Be\((2^+_1)\) configuration as shown in Table III. The \(^6\)Be\((2^+_1)\)-\(p\) component in the \(3/2^+\) state of \(^7\)B is important from the viewpoint of the \(S\) factors. It is also found that two-particle excitation into the \((p_{3/2})^2\) configuration is mixed by about 20\%. The \(3/2^-\) state is dominated by the \((p_{3/2})(p_{1/2})^2\) configuration, in which the \((p_{1/2})^2\) part has the same configuration as \(^6\)Be\((0^+_2)\).

The \(1/2^-\) state of \(^7\)B corresponds to one-particle excitation from the ground state. Its decay width of 4.73 MeV is large, and is comparable to the resonance energy of 5.93 MeV among the five resonances of \(^7\)Be. This is confirmed in Fig. 3 by the large ratio of the imaginary part to the real one in the complex energy plane. The large decay width is similar to that of the \(^5\)Li(1/2^-) state in the \(^4\)He + \(p\) system. In comparison with \(^5\)Li, whose resonance energy is 2.93 MeV with a decay width of 6.49 MeV, the \(^7\)B(1/2^-) state has a smaller decay width. This difference comes from the residual two protons occupying the \(p_{3/2}\) orbit in \(^7\)B. The attractive contribution between the \(p_{1/2}\) proton and other two protons makes the decay width of the \(1/2^-\) state smaller. In the \(5/2^-\) state, the \(2^+\) component of \((p_{3/2})^2\) plus \(p_{1/2}\) is dominant. This coupling scheme is similar to the \(3/2^-\) case. In relation to the configuration properties of \(^7\)B, it is interesting to examine the \(^6\)Be-\(p\) components in each \(^7\)B state, which is done using \(S\) factors.

It is interesting to discuss the mirror symmetry between \(^7\)B and \(^7\)He consisting of \(^4\)He and three valence protons or neutrons. To do this, we show the energy spectra of \(He\) isotopes with COSM in Fig. 4, using the Hamiltonian in Eq. (2) without the Coulomb term. The experimental data of \(^He(1/2^-)\) are not fixed \[6–11\], so we do not include the data in the figure. From Figs. 2 and 4, it is found that the order of energy levels is the same for proton-rich and neutron-rich cases. In the proton-rich case, whole spectra are shifted up, due to Coulomb repulsion, in comparison with those of the neutron-rich case. The displacement energies are about 2.5 MeV for \(^6\)Be from \(^4\)He and about 4 MeV for \(^7\)B from \(^7\)He. In Fig. 5, we compare the excitation energy spectra of proton-rich and neutron-rich cases. It is found that good symmetry is confirmed between the corresponding nuclei. The differences of excitation energies for individual levels are less than 1 MeV. The properties of the

TABLE VI. Dominant configurations of three valence protons in \(^7\)B resonances with their squared amplitudes \((C_i^2)\).

<table>
<thead>
<tr>
<th></th>
<th>(3/2^+)</th>
<th>(3/2^-)</th>
<th>(5/2^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((p_{3/2})^3)</td>
<td>0.923 + i0.002</td>
<td>0.795 + i0.032</td>
<td>0.770 + i0.053</td>
</tr>
<tr>
<td>((p_{3/2})(p_{1/2})^2)</td>
<td>0.020 + i0.004</td>
<td>0.195 – i0.035</td>
<td>0.182 – i0.050</td>
</tr>
<tr>
<td>((p_{3/2})^2(p_{1/2}))</td>
<td>0.021 – i0.007</td>
<td>0.006 + i0.001</td>
<td>0.003 – i0.002</td>
</tr>
<tr>
<td>(1/2^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((p_{1/2})^2(p_{1/2}))</td>
<td>0.969 – i0.000</td>
<td></td>
<td>0.957 + i0.006</td>
</tr>
<tr>
<td>((d_{5/2})^2(p_{1/2}))</td>
<td>0.018 – i0.002</td>
<td></td>
<td>0.015 – i0.003</td>
</tr>
<tr>
<td>((1s_{1/2})^2(p_{1/2}))</td>
<td>0.005 + i0.002</td>
<td></td>
<td>0.008 – i0.001</td>
</tr>
</tbody>
</table>
in this state. A similar trend can be seen in ^7He in Table VIII, where the real part of the $^6\text{He}(0^+)-n$ component agrees with the observation of 0.64(9) [10], as shown in Fig. 6. For the $3/2^-$ state, the $^6\text{Be}(2^+_1)-p$ component is selectively mixed from the dominant amplitude of $(p3/2)_2^- \otimes (p1/2)_2^+$. For the $3/2^+_2$ state, the 0^+_1 and 2^+_1 states of ^6Be are hardly included because of the $(p3/2) \otimes (p1/2)^2$ configuration. Instead of the above two ^6Be states—the $^6\text{Be}(0^+_1)$ state with $(p1/2)^2$ configuration and the $^6\text{Be}(2^+_1)$ state with $(p3/2)(p1/2)$ configuration—one may give large contributions for the $3/2^+_2$ state. For the $1/2^-$ state, the S factor of the $^6\text{Be}(0^+_1)-p$ resonance is close to unity, with a small imaginary part, and the $^6\text{Be}(2^+_1)-p$ component is small. Hence, the $^6\text{Be}(0^+_1)-p$ component is dominant in the $1/2^-$ state. The large mixing of the 0^+ state for $A = 6$ nuclei is also confirmed in the $^7\text{He}(1/2^-)$ state, as shown in Table VIII. In $^7\text{He}(1/2^-)$, we have suggested a weak coupling nature of the $p1/2$ orbital neutron around ^6He, which retains a two-neutron halo structure [20]. For the $5/2^-$ state of ^7B, the $^6\text{Be}(2^+_1)-p$ component is included, similar to $3/2^+_2$ as explained. These two states have a similar structure of configurations of valence protons. From the S-factor analysis, most of the ^7B states are not considered to be purely single-particle states coupled with the ^6Be ground state, except for the $1/2^-$ state. The component of $^6\text{Be}(2^+_1)$ is important in several states. This conclusion is the same as that for ^7He.

We now consider the structure differences between ^7B and ^7He from the S factors and discuss mirror symmetry. From Fig. 7, a sizable difference between the components including the $A = 6$ states is seen in the ground states of ^7B and ^7He. The $^6\text{Be}(2^+_1)-p$ component in ^7B (obtained as 2.35) is larger than the $^6\text{He}(2^+_1)-n$ component in ^7He (obtained as 1.60) by 47% for the real part. The other four excited states show similar values between the two nuclei in Figs. 6 and 7. In those excited states, either of the components 0^+ or 2^+ of $A = 6$ nuclei is selectively mixed. These results indicate that the breaking of

<table>
<thead>
<tr>
<th>$^6\text{Be}(0^+_1)-p$</th>
<th>$^6\text{Be}(2^+_1)-p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^+_1$</td>
<td>0.51 \pm 0.02</td>
</tr>
<tr>
<td>$3/2^+_2$</td>
<td>0.02 \pm 0.01</td>
</tr>
<tr>
<td>$3/2^+_3$</td>
<td>0.00 \pm 0.01</td>
</tr>
<tr>
<td>$1/2^-$</td>
<td>0.93 \pm 0.02</td>
</tr>
<tr>
<td>$5/2^-$</td>
<td>0.00 \pm 0.00</td>
</tr>
</tbody>
</table>

in Table VIII, S factors of the ^6Be components in ^7B. Details are described in the text.

<table>
<thead>
<tr>
<th>$^6\text{He}(0^+_1)-n$</th>
<th>$^6\text{He}(2^+_1)-n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^+_1$</td>
<td>0.63 \pm 0.08</td>
</tr>
<tr>
<td>$3/2^+_2$</td>
<td>0.00 \pm 0.01</td>
</tr>
<tr>
<td>$3/2^+_3$</td>
<td>0.01 \pm 0.00</td>
</tr>
<tr>
<td>$1/2^-$</td>
<td>0.95 \pm 0.03</td>
</tr>
<tr>
<td>$5/2^-$</td>
<td>0.00 \pm 0.00</td>
</tr>
</tbody>
</table>

in Table VIII, S factors of the ^6He components in ^7He. Details are described in the text.
mirror symmetry occurs only in their ground states. The reason for the difference in the 2^+ coupling is that the ^7B ground state is located close to the $^6\text{Be}(2^+_1)$ state—with a 0.45 MeV for the resonance energy—as shown in Fig. 2, where the decay widths of the two states are rather small in comparison with other resonances. This situation does not occur in ^7He, as shown in Fig. 4, where the energy difference between $^7\text{He}(3/2^-)$ and $^6\text{He}(2^+_1)$ is 1.46 MeV. The small energy difference between ^7B and $^6\text{Be}(2^+_1)$ enhances the $^6\text{Be}(2^+_1)$-p component in ^7B due to the coupling to the open channel of the $^6\text{Be}(2^+_1) + p$ threshold. On the other hand, the $^6\text{Be}(0^+_1)-p$ component in ^7B becomes smaller than that of ^7He by 24%, as shown in Fig. 6, because the energy difference between the ground states of ^7B and ^6Be is 1.97 MeV larger than 0.40 MeV in the case of ^7He. The origin of the difference of the S factors in ^7B and ^7He is Coulomb repulsion, which acts to shift upward the energies of the ^7B states. The well-known effect of the Coulomb interaction to break mirror symmetry is the Thomas-Erhman shift, in which the s-wave dominant states suffer a different effect of Coulomb repulsion from states having mainly other partial waves. On the other hand, the present result found for the ^7B ground state is caused by the existence of the several open channels, including the excitations of subsystems, and is different from the Thomas-Erhman shift.

In conclusion, mirror symmetry is broken only in the ground states of ^7B and ^7He, while the excited states of the two nuclei retain symmetry. This result is associated with the energies of the $A = 6$ subsystem for the open channels of one-nucleon emission. We wish to observe experimentally the 2^+ components of $A = 6$ nuclei in ^7B and ^7He and examine their mirror symmetry. In the present analysis, the S factors represent the contributions of only the resonances of ^7B and ^6Be. By considering the additional contributions of the remaining continuum states of the two nuclei, it is possible to obtain the strength functions of one-proton removal from ^7B into ^6Be and also into $^4\text{He} + p + p$ final states, which are observable. It is interesting to obtain these strengths and compare them with the one-neutron removal strength from ^7He into ^6He [20].

\section*{IV. SUMMARY}

We have investigated the resonance structures of ^7B with the $^4\text{He} + 3p$ four-body cluster model. The boundary condition for many-body resonances is accurately treated using the complex scaling method. The decay thresholds concerned with subsystems are described consistently. We have found five resonances of ^7B, which are dominantly described by p-shell configurations. The energy and the decay width of the ground state agree with a recent experiment. We also predict four excited resonances of ^7B, which we hope to see confirmed experimentally.

We further investigated the spectroscopic factors of the ^6Be-p components in ^7B to examine the coupling behavior between ^6Be and a last proton. It is found that the $^6\text{Be}(2^+_1)$ state contributes significantly in the ground state and in several excited states of ^7B. In comparison with ^7He, the mirror nucleus of ^7B, the $^6\text{Be}(2^+_1)-p$ component in the ^7B ground state is larger than the $^6\text{He}(2^+_1)\text{-}n$ component in the ^7He ground state. This difference comes from the fact that the ^7B ground state is close to the $^6\text{Be}(2^+_1)$ state in energy, due to Coulomb repulsion. This situation enhances the $^6\text{Be}(2^+_1)$-p component in ^7B as channel coupling. The different couplings of $A = 6$ nuclei in ^7B and ^7He occurred only in their ground states, indicating a breaking of mirror symmetry. We wish to observe the difference of the couplings in ^7B and ^7He experimentally.

\section*{ACKNOWLEDGMENTS}

We thank Professor Kiyomi Ikeda for fruitful discussions. This work was supported by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (No. 21740194).

\begin{thebibliography}{99}
\end{thebibliography}
FOUR-BODY RESONANCES OF 7B USING THE . . .

PHYSICAL REVIEW C 84, 064306 (2011)