Title

Synthesis and efficient circularly polarized light emission of an optically active hyperbranched poly(fluorenevinylene) derivative

Author(s)

Yu, Juin-Meng; Sakamoto, Takeshi; Watanabe, Kento; Furumi, Seiichi; Tamaoki, Nobuyuki; Chen, Yun; Nakano, Tamaki

Citation

Chemical Communications, 47(13): 3799-3801

Issue Date

2011-04-07

Doc URL

http://hdl.handle.net/2115/47985

Rights

Chem. Commun., 2011, 47, 3799-3801 - Reproduced by permission of The Royal Society of Chemistry (RSC)

Type

article (author version)

File Information

CC47-13_3799-3801.pdf
Synthesis and efficient circularly polarized light emission of an optically active hyperbranched poly(fluorenevinylene) derivative

Juin-Meng Yu, a,b Takeshi Sakamoto, a Kento Watanabe, a Seiichi Furumi, c Nobuyuki Tamaoki, d Yun Chen b and Tamaki Nakano a,*

Received 14th December 2010, Accepted 17th January 2011 DOI: 10.1039/c0cc05564f

An optically active, hyperbranched poly(fluorenevinylene) derivative was synthesized by polymerization of (-)-2,4,7-tris(bromomethyl)-9-neomenthyl-9-pentylfluorene. A spin-coated film sample of the polymer exhibited efficient circularly polarized light (CPL) emission in the visible range of 400-700 nm on photo excitation even without annealing processes leading to chain ordering.

Luminescent organic polymers are important as materials for organic light-emitting diodes (OLEDs) due to their tunable emission properties through molecular design and their inherent flexible nature and readiness in fabrication.1 The most widely-studied luminescent polymers such as poly(p-phenylenevinylene),2 polyfluorene,1b and their derivatives3 have linear conjugated structures. However, for these polymers, interchain interactions are known to result in a low-energy emission and low emission efficiency due to excimer formation.4 In order to circumvent this drawback, three-dimensional, dendritic and hyperbranched conjugated polymers have been devised.5-7

Herein, we present the synthesis and properties of a novel, chiral hyperbranched poly(fluorenevinylene) derivative. Chirality was readily introduced to the polymer chain by polymerizing optically active (-)-2,4,7-tris(bromomethyl)-9-neomenthyl-9-pentylfluorene (monomer) (a mixture of two diastereomers, [α]D25 -58° (CHCl3, 1 g/dL, 0.1-dm cell)) having a chiral group attached to the 9-position of fluorene moiety (Scheme 1). The chiral polymer was designed after the achiral, parent polymer 7a (DB 0.45~0.70). Bulkiness of neomenthyl group at the 9-position of the fluorene ring seems to effectively prevent cross-linking in polymerization and also interchain interaction to result in high solubility of the hyperbranched polymer. The product was purified by reprecipitation in methanol (Mn 29800, Mw/Mn 8.37 (vs. polystyrene)). Further, lower-molecular-weight fractions were removed from the product by fractionation using acetone. The acetone-insoluble part (58 wt%) had higher molecular weight (Mn 74300, Mw/Mn 4.77, [α]D25 -64° (CHCl3, 1 g/dL, 0.1-dm cell)). Hereafter, structure and properties of the acetone-insoluble polymer are discussed.

The polymers is considered to consist of dendritic or branching (D), linear (L), and terminal (T) units.10,11 The ratio of these units was estimated from 1H NMR spectrum of the polymer following the method of literature7a and was used for the calculation of degree of branching (DB) which is defined as DB = ((D]+[T])/(D]+[L]+[T])10,11 (ESI). D/L/T was 0.23/0.23/0.54, and DB was 0.77. The DB of the chiral hyperbranched polymer was higher than that of the achiral, parent polymer7a (DB 0.45-0.70). Bulkiness of neomenthyl group might reduce propagation giving linear units.

Chirality of the monomer and the polymer was examined by circular dichroism (CD) spectra (Fig. 1). The monomer indicated a Cotton effect with a negative signal corresponding to UV absorptions in a THF solution in the range of 210-230 nm. The CD spectrum of the chiral polymer indicated a Cotton effect with a negative signal corresponding to UV absorptions in a THF solution. The CD spectrum of the chiral polymer was found to be sensitive to the solvent and temperature. The chiral polymer exhibited circularly polarized light (CPL) emission in the visible range of 400-700 nm on photo excitation even without annealing processes leading to chain ordering.

Scheme 1. Synthesis of an optically active, hyperbranched polymer.
wavelength shorter than 350 nm, indicating that the π-electrons in fluorene unit of the monomer are in a chiral environment under the effect of the neomenthyl group (Fig. 1A). Kuhn's dissymmetry factor (g = \(\Delta \varepsilon / \varepsilon \)) was -0.63 x 10^{-4} at 300 nm. The polymer also showed an intense CD spectrum in a THF solution (Fig. 1B). The UV spectrum of the polymer indicated a strong band peaked around 375 nm that was not seen in the monomer spectrum. This band may be based on the fluorenevinylene conjugation system. That the polymer indicated CD absorptions in the entire wavelength range where the polymer absorbs suggests that the entire conjugation system is under the chiral effect of the neomenthyl group. The g factor at 300 nm was -0.99 x 10^{-4}.

The polymer also indicated a CD spectrum in a spin-coated film form. The spectral shape was similar to that in solution with g factor at 300 nm of -1.44 x 10^{-4}, suggesting that the chiral structure of the polymer does not largely change by film fabrication.

Fig. 2 shows the fluorescence spectra of the polymer in solution and in film on irradiation at 378 nm. Both in solution and in film, the polymer exhibited a broad emission band in the range of 400-700 nm. The film emission was as intense as the solution emission and was slightly red shifted.

CPL emission of the polymer was measured by irradiating the film at 375-nm pulsed laser light. The CPL-fluorescent spectra are shown in Fig. 3A. A significant difference in intensity between right-handed (R-) and left-handed (L-) CPL emission was confirmed. The photo luminescent dissymmetry factor (g_{PL}) was calculated according to g_{PL} = 2(IL-IR)/(IL+IR), where IL and IR are the intensities of L- and and R-CPL emission, respectively, and its dependence on wavelength is shown in Fig. 3B. g_{PL} value was highest (-0.45) at 430 nm and was -0.16 at 490 nm (emission peak maximum). These g_{PL} values are ca. 10^3 times greater than the g values for CD absorption of the polymer and the monomer.

The g_{PL} values observed here of the order of 10^{-1} are comparable to those reported for polymers with highly-ordered intra- and intermolecular structures and those for crystalline or liquid crystalline low-molecular-weight compound systems. This is noteworthy because the hyperbranched polymer studied in this work was not annealed to attain ordered structures. In addition, hyperbranched polymers generally do not have close chain packing. Lack of highly-ordered structures in the polymer was supported by the following examinations. Differential
scanning calorimetric (DSC) analyses of the polymer indicated no clear exo- or endothermic transitions from room temperature to 195°C at which the polymer starts to decompose (ESI). In addition, polarized microscopic observations of the film sample used for the CPL experiments did not show any textures suggesting ordered structures.

Furthermore, difference in light transmittance between L- and R-CPL in the wavelength range of 400-700 nm, where the polymer emits light and does not absorb light, was too small to explain the g_{PL} values; g values for transmission were of the order of 10^{-2} (ESI). In addition, L-CPL was found to more readily transmit the film than R-CPL while R-CPL was more efficient compared with the acetone-insoluble, higher-molecular-weight polymer discussed so far (ESI). This work has shown for the first time that effective CPL emission can be attained without the aid of molecular ordering and that an amorphous state may even enhance CPL emission ability.

We thank Prof. M. Fujiki (NAIST, Japan) for CPL emission measurements of 9-neomenthyl-9-pentylfluorene and Dr. H. Higashimura, Dr. K. Kobayashi, and Dr. H. Hayasaka (Sumitomo Chemical) for helpful advises. This study was supported in part by the MEXT through Grants-in-Aid No. 21655037 and No. 22350047, and through the Global COE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) and in part by the Asahi Glass Foundation.

Notes and references

