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Abstract: Direct and inverse problems of a fracture mechanics based RC beam model are 

solved. Solution of the direct problem that maps crack bridging stresses into Crack 

Opening Displacements (COD) is straightforward, but the inverse problem is ill-posed, 

and better solved by the theory of inverse problems. This paper exploits the Tikhonov 

regularization method to solve the inverse problem, and estimates the force and location 

of rebar in buried concrete from CODs. Bending tests are carried out on model RC beams 

in the laboratory to demonstrate the applicability of the method. During the tests, a 

microscopic camera snaps high resolution digital pictures of cracked concrete surface. 

The images are analyzed by a software to measure surface CODs that are input into the 

mailto:islammn@presidency.edu.bd
mailto:matsumoto@civil.t.u-tokyo.ac.jp


inverse problem. The practical CODs inevitably include noise due to experimental error, 

which makes the inverse problem ill-posed, and necessitates regularization. In the current 

inverse analysis by the Tikhonov Regularization method, bridging stress profiles, i.e. 

variation of the crack bridging stress along the crack length, has been figured out. Results 

are compared with those from other theoretical methods of analysis as well as with the 

readings from strain gauges. The method is a suitable non-destructive means for existing 

structures in cases where the section information is inadequate, or damages/repairs have 

altered the designed cross-section.  

 

Keywords: Crack opening displacements, image analysis, inverse problem, 

regularization, rebar force.  

 

Introduction 

Evaluation of physical and mechanical states of buried rebars is of keen interest for 

Structural Health Monitoring (SHM) and maintenance of RC structures. Recent 

constructions embed sensors (piezoelectric, fiber optics, etc.) at key locations for these 

purposes, without which aging infrastructure systems exhibit little information about their 

intrinsic deterioration, unless a Non-Destructive Test (NDT) is adopted where the 

response data due to an incited excitation are collected and processed (see ACI 

Committee report on NDT methods, 1998 and Chong et al., 2003 for recent SHM 

techniques). Without instrumental excitation and sensing, the only evidence of the 

internal stress states are numerous surface cracks. Dimensions, distributions, and profiles 



of structural cracks depend on the geometry of a structure (external and cross-sectional), 

applied loading, and crack bridging mechanisms, along with stress states and material 

properties.   

 

Fracture mechanics based integral transforms relate CODs with active and reactive 

stresses in closed forms (e.g. Cox and Marshall, 1991a), the inverse problems of which 

are capable of estimating the magnitude and distribution of crack bridging stress from 

CODs. A fracture mechanics based transformation between rebar stress and COD has 

been derived by Nazmul and Matsumoto (2003) for cracked RC beams, and a numerical 

method for the solution of the ill-posed inverse problem by the Tikhonov regularization 

method has been explained in Nazmul and Matsumoto (2004). This paper proposes a 

method based on image analysis to measure CODs on concrete surface, estimates rebar 

force and location from CODs through inverse analysis, and discusses the accuracy and 

applicability of the method.  

 

Fracture mechanics based integral transforms between crack bridging stress and COD 

were derived by many researchers in the last several decades (e.g. Marshall et al., 1985, 

Cox and Marshall, 1991a, Fett et al., 1996). Those computations were focused on ceramic 

matrix composites (CMC) or metal matrix composites (MMC) with extension to fiber 

reinforced concrete (FRC) and plain concrete (Kitsutaka, 1997). Most of those 

computations worked on the direct problems of estimating CODs from the known 

external loadings and assumed crack bridging stresses. Buchanan et al. (1997) used the 



finite element method to determine the crack bridging stresses from the CODs in CMC or 

MMC.  

 

Cox and Marshall (1991b) addressed the ill-posedness of the inverse problem in cases of 

continuously aligned fiber composites, and devised a solution based on the Tikhonov 

regularization method to estimate crack bridging stress from CODs. Results presented by 

them used only synthetic COD data, and Massabo et al. (1998) went further ahead with 

both synthetic and practical CODs to characterize the bridging mechanisms developed 

across delamination cracks by through-the-thickness reinforcements under mode II 

loading. This paper narrates the bending tests on model RC beams, explains a method of 

image collection and analysis to measure surface CODs, reformulates the basic equations 

of the Tikhonov regularization method [Tikhonov et. al. 1990] to fit into RC beam 

bending, and estimates the rebar force from the practical CODs.  

 

Cracked RC beam model 

A two dimensional bridged crack model is assumed for a through-the-thickness cracked 

RC beam, after the crack has passed all rebar layers. Linear elastic behavior of rebar and 

concrete is assumed at this stage, after an initial slip of rebars has occurred at crack 

initiation. These assumptions restrict the application of the current model within the 

loading interval between crack initiation (initial slippage) and rebar yielding, marked as 

the service loading range in Fig. 3. Progressive debonding between steel and concrete is 

accounted for by another rigid-plastic bond-slip law, discussed in Appendix A. Cracked 

RC beams of similar geometry were modeled by Carpinteri (1984), Bosco and Carpinteri 



(1992), and Carpinteri (1991) to examine fracture behavior in flexure.  They also adopted 

a bridged crack model to examine the influence of rebars on a crack in the matrix at 

different stages of rebar behavior.  Results presented by them include applied bending 

moments corresponding to fracture initiation in concrete, and yield initiation to the rebars. 

Carpinteri and Massabo (1997) took a novel approach by proposing nonlinear fracture 

mechanics models, which describe constitutive flexural behavior of brittle-matrix 

composites with localized and distributed ductile reinforcements.  

 

Following the procedures described in Cox and Marshall (1991a), and simulating rebar 

force as shown in Fig. 1, Nazmul and Matsumoto (2003) derived COD profiles,  xu  of 

RC beams under an applied (bending) stress  x  on the crack plane, which for the case 

of plane strain is 
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where cE and   are the Young’s modulus and the Poisson’s ratio of concrete 

respectively, and a is the crack length.  baxG ,,  is the weight (influence) function for a 

particular crack geometry, standard forms of which are available for a large variety of 

geometry in stress intensity handbooks (Tada et al., 1985). b is the beam total depth and 

ax , are the dummy variables for ax, . The term  xf   in Eq. (1) is the rebar force, 

considered as force per unit length along the crack (Fig. 1), which must be integrated 

over the cracked domain to obtain the total rebar force F for an acting bending moment M 

as 
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 jd is the internal lever arm between the total tension force in the rebar, and the total 

compression force in concrete, as simulated in the flexural analysis of cracked RC beam 

cross-section [Nilson et al., 2003],  where d is the effective beam depth. The 

transformation of a point rebar force into a distributed force per unit length  xf  is 

mathematically simulated by Unit Step Functions for any (m) number of rebar layers as 

(Nazmul and Matsumoto, 2004) 
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where, by  
ibii dFf /  the point loads of rebars are converted into (stepped) line loads 

(Fig. 1) along the crack, iF  is the total force at the i-th layer where the rebar diameter is 

ibd , and ih is the clear distance of a layer from the bottom face. It should be noted that 

cracks are usually meandering , which renders a non-linear x coordinate, but in this study 

linearity is ascertained by measuring x at regular intervals along the crack plane, and 

CODs normal to the x direction.   

 

Results shown in this paper are two-fold. First, practical CODs on a cracked RC beam 

surface under a constant load are measured by image analysis, and presented in Fig. 6. 

For comparison, practical CODs are plotted with the theoretical one’s obtained by the 

direct solutions of Eq. (1). But, the direct solution requires a known rebar force, which in 

turn, requires the known cross-section of a beam. Since all information was available 



during the laboratory tests, Eq. (2) was applied to determine the rebar force, and the 

theoretical CODs were calculated by directly solving Eq. (1). Later, the cross-section will 

be considered unknown in the inverse analysis, and only CODs will be used to estimate 

the rebar force.  

 

The second set of results presented in Fig. 7 is the set of rebar forces estimated by the 

inverse analysis of practical and theoretical CODs. Only CODs and the applied load are 

required here without any cross-section information, which manifests the applicability of 

the proposed method to the existing structures. A further insight into Fig. 7 reveals that 

noiseless theoretical CODs yielded the exact rebar force (dotted lines), which 

demonstrates the correctness of the mathematical procedure. Better approximations from 

practical CODs are obtained by minimizing errors in COD measurements, convergence 

during numerical approximations, and on a correct choice of the regularization parameter.  

 

The laboratory test 

Materials and specimens 

A batch of eight RC beams was cast in the laboratory with normal strength concrete and 

steel rebars deformed with lateral ribs. All beams were 40 cm long with 10 cm x 10 cm 

uniform square cross-section (Fig. 2). By compressive tests on 10 cylindrical test 

specimens of dimensions 10 cm x 20 cm the average compressive strength of the concrete 

was determined to be 30 MPa. The yield strength of the rebar was determined to be 345 

MPa. For these values a balanced steel reinforcement proportion of 0.0293 can be 



computed. The reinforcement ratios of the model beams were kept less than this value by 

placing only two 6 mm diameter rebars in order to obtain comprehensive crack 

propagation before steel yielding. The clear covers at the bottom were varied (25 mm to 

35 mm) among the specimens to examine appropriateness in determination of location of 

rebars, whereas the side covers were 20 mm on both sides for all specimens.  The 

specimens were cured in the laboratory for 28 days before testing. 

 

A concrete cutter with a 1 mm thick cutter blade was used to create 3 mm wide notches 

of 1 cm depth at middle of the bottom faces of all specimens. The notch ensures that the 

crack plane will be right at the middle. The front and back faces of the specimens were 

painted white to make adequate contrast between cracked and non-cracked zones. 

 

Electrical resistance strain gauges were attached on rebar’s surfaces, at 3 cm inward from 

the possible crack plane at the notch. Required areas on the rebar’s surfaces were 

smoothened by sand paper for better adherence, and strong adhesives were used. Strictly 

speaking, the strain gauges should be attached at the midspan over the notch, since their 

readings will be compared with the estimated rebar force at the cracked section. But 

progressive cracking in concrete and subsequent friction at steel-concrete interface lead 

to unreliable strain gauge reading, or even damage of the gauges. Alternatively, 

attachment of strain gauges 3 cm inward from the crack plane leads to underestimation of 

the rebar strain, because concrete carries a significant tensile stress at the uncracked 

section. A “strain correction” has been introduced to amend this error, which is explained 

in Appendix A.  



Test procedure  

Four-point static bending tests were carried out by a digital electro-hydraulic feed-back 

controlled universal testing machine. Displacement control was selected, while the load, 

the mid-span deflection, and the rebar strain histories were recorded.  Sample test data 

showing total load vs. rebar strains are shown in Fig. 3. The theoretical strains in Fig. 3 

were computed by the elastic flexure formula while the section remains uncracked, and 

by Eq. (2) after the section has been cracked. The comparison of strain gauge readings 

with the theoretical strains demonstrates that the strain histories recorded by the strain 

gauges were expected, particularly the load plateau, when the rebar force experiences a 

jump as the tensile stress at the bottom exceeds the modulus of rupture, taken as cf 5.7  

[Nilson et al., 2003]. As the crack propagates with increasing bending moment beyond 

the “load plateau”, rebar stresses are linear elastic until the steel yields, as predicted by 

the theoretical strains as well as evidenced by the strain gauge readings (Fig. 3). The 

interval between crack initiation and steel yielding is the service loading range, where the 

current model is applicable. Monotonic loading was interrupted several times within this 

interval, suspended for approximately 6 minutes while the microscope was allowed to 

take pictures under a constant load, after which loading had been resumed.  

Collection of Images 

The laboratory set-up consisted of a microscopic digital camera, and a 3-axis controlled 

stage system (Fig. 4), both having separate controller units, synchronized and operated by 

a computer. The set-up had been mounted in front of the beam specimen before any load 

was applied, and no out-of-plane movement was allowed after focus and accommodation 

of the lens. A 4 cm x 10 cm area having the notch at the middle was marked on the beam 



front face. The area was virtually divided into a grid by 21 horizontal and 9 vertical 

straight lines, all with 5 mm spacing. Thus the grid had 189 points of intersection, to be 

focused by the microscope. The microscope focused on a point, took a picture covering 

6.67 mm x 5 mm area with the point at the centroid, stored the picture into a 640 x 480 

pixel image file of 2400 dpi, and moved to the following point. Starting from the top-

right, the image capturing process finished at the bottom-left corner, and the microscopic 

lens automatically moved back to the top-right corner for the next set of images. 

Image analysis  

The digital images contained cracked beam surface information in terms of pixel values 

(e. g. RGB values), exploited in the image analysis method to determine CODs. Image 

analysis methods for COD measurements have been reported in literature by many 

researchers of material science and engineering. For example, small-scale CODs in CMC 

or MMC are determined by Scanning Electron Microscopes (SEM), or Laser 

Interferometric Displacement Gauges (IDG) (Buchanan et al., 1997, Rodel et al., 1990). 

A video microscope in combination with an automated image analysis was reported by 

Schutter (2002) for crack width measurement. In this study, gray value variation among 

the pixels along an arbitrary line was exploited to measure CODs.  

 

Gray value measures the intensity of light at a pixel, defined by a series of shades from 

white to black, with a value 255 for white, and a zero for black. A schematic explanation 

of the procedure of measuring COD is shown in Fig. 5, where a continuous profile of 

gray value variation (Fig. 5c) along a line AB was evaluated. It was observed that the 

gray values were almost white (since the beam surface was painted white) at all pixels, 



except the crack proximity, where gray values sharply decreased at the crack boundary, 

reached a minimum at the crack plane, and again sharply increased at the other boundary. 

The actual crack boundaries were assumed at the mid-heights of the cliffs of the gray 

value profile, and CODs were measured as shown in Fig. 5. Measurement of CODs 

started from the crack mouth at 0x , proceeded along the crack plane on equal 

interval xh  up to the crack tip at ax  , and a COD profile was obtained as 

     axxpkuxux pkk  and0with,......,1,,, 1 . (4) 

 

COD profiles 

Practical COD profiles 

Practical COD plot points along the crack are shown in Fig. 6 as dots. Local fluctuations 

in the raw COD data were smoothened by a linear filter. The linear filter with weights 

 rcccc ,......,,, 210  transformed the obtained COD data to weighted average as 


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where, the total number of data points were reduced to 1 rn . Here, the weights in the 

linear filter were so chosen that





1

0
1

r

j jc , which is called a simple moving average. 

Smoothened COD profiles are shown in Fig. 6 as solid lines.  

 



Location of rebars was primarily identified at the depression of a COD profile. A series 

of depressions are expected for several layers of rebars [Nazmul and Matsumoto, 2003], 

which, for a wider grid, may merge into one long depression. Such a long depression in 

the COD profile is also a viable input for the inverse analysis to obtain the total rebar 

force, since adoption of a finer grid should be compromised with computation time and 

efficiency. Another way is to have more data points at rebar locations, which has been 

followed in this study. CODs were measured in a grid having mm1.0xh at suspected 

rebar locations, and mm1xh at other locations. The rest CODs are interpolated for the 

smaller grid.   

 

The reason of tortuousness of the COD profiles is the inherent roughness of the fracture 

surfaces, which depends primarily on the size and type of aggregates, existence of 

impurities or voids, heterogeneity in compaction, etc. Apparent noise in the practical 

CODs due to these reasons are assumed to be successfully mitigated by the linear filter. 

But, fracture surface roughness is not the only source of noise in the data. 

Approximations and assumptions during image collection and analysis invoke more 

errors in COD data for which regularization is needed. 

Theoretical COD profiles  

If the rebar force was calculated by a cracked RC beam section analysis (which uses the 

cross-section geometry) using Eq. (2), the direct solution of Eq. (1) would yield the other 

COD profiles of Fig. 6. Analytical COD profiles are the solutions of the definite integrals 

of Eq. (1) by symbolic calculations. But, the inverse problem cannot be solved 

symbolically since CODs at grid-points are to be measured and entered. That’s why Eq. 



(1) is cast into its numerical form by replacing all functions with their finite difference 

equivalent vectors or matrices. The direct solutions of the numerical forms of Eq. (1) 

yielded the numerical COD profiles of Fig. 6. The comparison between the analytical and 

the numerical COD profiles demonstrates the convergence of functions while being 

replaced by their finite difference equivalents in a pre-defined grid; the finer the grid, the 

better the convergence. The large deviation of analytical/numerical COD profiles from 

the experimental one is primarily due to neglecting  bond-slip behavior of rebar in the 

model, discussed in Appendix A, and secondarily, due to idealization of the three 

dimensional beam into a two dimensional one, neglecting the effects of concrete cover, 

due to which centerline CODs are amplified at the surface.  

 

However, Eq. (1) is an integral transform as a direct problem. The results of the inverse 

problem are sensitive to the gradient of a COD profile, and more specifically, to the 

depressions at rebar locations. It is assumed that disregard of the effects of bond-slip and 

concrete cover underestimates the absolute COD values, but approximates the gradient of 

a COD profile within tolerable noise level, to be successfully mitigated by the Tikhonov 

regularization method. This is further supported by the facts that no stress relaxation 

occurs due to slip, and the rebar force remains the same before and after slip under a 

constant external loading.  

 

In addition, due to the heterogeneity of concrete, and a possible three-dimensional stress 

state along the crack front, a reverse channel shape of a crack profile is observed along 

the thickness of the beam, which overestimates the crack length (Jenq and Shah, 1991) as 



manifested in Fig. 6 by different locations of crack tips. Theoretically, the location of a 

crack tip was obtained by the fracture condition of a bridged crack model,  

ICIbIa KKK   (6) 

where,  IaK  and IbK are the stress intensity factors due to the external load and the crack 

bridging stress (rebar force) respectively, and ICK  is the fracture toughness of concrete 

(see Sauoma et al., 1982 for details). Practically obtained crack lengths are longer by a 

small percentage, which will underestimate the rebar force in inverse analysis as 

compared with other fracture mechanics based calculations.  

 

Inverse analysis 

Regularization of the inverse problem 

To apply the Tikhonov regularization method of linear ill-posed problems, the net COD 

estimated by Eq. (1) is thought to be composed of two effects. First, the crack is opened 

due to an applied load with the profile  xua , and second, the reactive rebar force closes 

the crack by  xub  as 

     xuxuxu ba   (7) 
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The former part  xua  may be determined for any known external loading within a grid 

of p points as 

 pkuu
kaa ,......,1,:  . (10) 

As such, data points relevant to the left side of Eq. (9) are determined by subtracting u of 

Eq. (4) from au of Eq. (10) as 

  uupkuu abb k
 ,......,1,:  (11) 

But, experimental CODs in Eq. (4) contain errors, where an incorrect u is obtained 

instead of a correct u . Consequently bu is perturbed as 
bu  up to a noise level . We 

consider Eq. (9) as a linear operator equation UZT :  between Hilbert spaces, which 

maps the rebar force Zf   into crack closings Uub  , and we adopt the Tikhonov 

regularization method, where the extremals of the following functional are sought 

  22

ZU
bh fufTfM   . (12) 

hT  is the numerical approximation of the transformation T , and 0  is the 

regularization parameter. A detailed method for solving the inverse problem of Eq. (9) is 

available in Nazmul and Matsumoto (2004), and a general mathematical procedure with 



various examples is explained in Tikhonov et al. (1990). Finally, we reach a normal 

equation  

vff  C B   (13) 

The matrix C is a pp identity matrix for the linear spaces chosen as  aLUZ ,0, 2 , 

while the matrix B and the vector v have entries given by 
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The weight function G for a Single Edge Notched fracture specimen is given in Appendix 

B. For numerical computations, G is approximated by its finite difference equivalent 

tensor, entries of which are found within the current grid as 
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Determining rebar location and force 

Solutions of Eq. (13) are the vectors f corresponding to current grid of p points, which are 

shown in Fig. 7 as crack bridging stress profiles along the crack length. Each plot shows 

two sets of profiles, the solid and the dashed lines. The dashed lines estimate the exact 

rebar forces, but inputs CODs from the numerical COD profiles of Fig. 6. Machine 

generated random numbers of width 0.001 are added to those CODs to invoke noise, also 



important to select a regularization parameter. On the other hand, the solid lines are the 

outputs of noisy practical CODs.  

 

Location of the centroid of rebars is identified by the peak (point A), and the total rebar 

force is computed by the area under the bridging stress profiles. The profiles contain 

undulations due to noise in the data, which at some locations indicates existence of 

absurd negative crack bridging stresses. These undulations could be smoothed out using 

the statistical method presented earlier; nevertheless, the percentages of errors of 

unsmoothed curves are calculated to demonstrate the accuracy of the inverse analysis.  

 

Accuracy of the inverse analysis method is checked in two ways (Table 1), (i) by 

comparing the estimated rebar force of inverse analysis with that obtained from other 

theoretical methods of analysis, and (ii) by comparing the estimated rebar strain by 

inverse analysis with that obtained by the attached strain gauges.  

 

One of the theoretical methods to estimate the rebar force has been introduced in Eq. (2), 

derived from a cracked RC beam section analysis. Another fracture mechanics based 

method has been borrowed from Bosco and Carpinteri (1992). Both methods require 

cross-section data, contrasting the current method. This demonstrates the non-destructive 

nature of the inverse analysis method, to be applied to the existing structures. Table 1 

shows the computed rebar stresses as well as error percentages compared with different 

methods. It is interesting to observe that the computed rebar stresses by inverse analysis 



fell in between those of the section analysis, and Bosco and Carpinteri’s (1992) fracture 

analysis results. 

 

Estimated rebar strains from the inverse analysis method are compared with the strain 

gauge readings in Table 1. A “strain correction” is required since the strain gauges were 

attached at 3 cm inward from the crack plane, which is an uncracked section. The strain 

correction is related to the significant amount of stress carried by concrete in an 

uncracked section, as calculated in Appendix A.  

 

Sensitivity of Results 

Choice of a regularization parameter 

Theoretically, the regularization parameter   is chosen according to the following 

principle  
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where 0  is the noise level of the data, and h is the error due to approximation of the 

transformation such that hTTh  (Kirsch, 1996). Families of regularization strategies 

were fabricated for different values of , and the value which yields the infimum of the 

approximated Tikhonov functional, hT  was taken. However, the data error was 

uncertain in image analysis; a rough estimate was made in the following way.  

 



Experimentally obtained COD profiles were undulating, partly due to roughness of the 

crack surfaces (mitigated by the linear filter) and mostly due to the error in data 

collection and image analysis. The average smooth curves (least square fit) of COD 

profiles were determined discarding the possible rebar locations, and the deviation of 

each COD point from the smoothed curve is computed. In this procedure,   is 

determined as 

l
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where u are the COD points on raw profile, and lu are those on the smoothed least 

square fit.  

Uncertainty in material properties 

Any uncertainty in the determination of Young’s modulus or Poisson’s ratio leads to 

major deviations in the results as the method makes use of Young’s moduli of both 

concrete and steel (Cox and Marshall, 1991b). The Young’s modulus generally does not 

change during the service lives of structures, except for the structures under severe 

conditions. Core sampling or other non-destructive evaluation can be rendered for 

evaluation of material properties in-situ.  

 

However, accuracy in determination of location is not hampered as  xf  shifts up or 

down due to errors in Young’s modulus changing the total rebar force value only. In the 



cases of higher reinforcement ratios in the longitudinal direction, the orthotropic Young’s 

modulus suggested by Cox and Marshall (1991a) should be used for better accuracy.  

 

Conclusion 

A high resolution image collection and analysis method to measure CODs on concrete 

surface has been demonstrated by laboratory experiments. A fracture mechanics based 

model has been developed to theoretically estimate those CODs. Some adjustments have 

been suggested in the model for bond-slip behavior of the rebars close to the crack plane.  

 

Practically obtained CODs have been exploited to estimate the rebar force in buried 

concrete. But the practical CODs deviate from predicted theoretical values due to fracture 

surface roughness, and errors in image collection and analysis. The Tikhonov method of 

regularization of the theory of inverse problems has been employed in its numerical form 

which addresses those errors, and computes the best approximated rebar force. Accuracy 

of all methods has been tested, and demonstrated throughout the paper.   

 

Accuracy in measuring CODs mostly depends on the resolution of the digital pictures, the 

better the resolutions, the more accurate are the CODs. Accuracy in estimated rebar force 

depends on the accuracy of COD data, accuracy in prediction of material properties, and 

on a correct choice of regularization parameter. However, undulations in raw data and in 

inverse analysis results may be minimized by statistical data smoothing methods.  

 



The uniqueness of the current method to estimate rebar force lies in the fact that it does 

not require cross-section parameters like clear cover, reinforcement ratio, etc. The 

method may be used for structural health monitoring purposes since it uses external 

loadings, and external crack geometry only. Again, it only requires collecting digital 

pictures of the cracked concrete surfaces, which does not necessitate suspension of 

operation and does not require heavy equipment.  
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Appendix A: Bond-slip behavior of deformed bar 

Bond-slip behavior 

The importance of incorporating bond-slip behavior of buried rebars in the fracture 

mechanics based models has been demonstrated by Bazant and Cedoline (1980), where 

the length of the debonded zone, sL  for deformed bars being pulled with bar stress s

h  is 

derived as 

 
 

s

h

b

s
nU

L 









1

1
 (19) 

where   and n are the reinforcement ratio and the modular ratio respectively. bU   is the 

ultimate bond force per unit length. For standard deformed bars cb fU  9.2 for bar 

spacing≥ 150 mm, and cb fU  3.2  for bar spacing < 150 mm where cf   is in MPa.  

 



The amount of local pull-out depends on the fracture mechanical properties of the rebar-

concrete interface, and on the surrounding concrete. Frictional stress at the rebar-concrete 

interface is not uniform along the longitudinal z direction (Fig. 7) throughout the 

debonded length  sLz 0 . It is maximum near the exit  0z , and reduces to zero at 

the end of debonded length  sLz  .  

 

In Fig. 8, it is assumed that stresses in steel and concrete respectively vary linearly from 

 0,s
h  in the open portion to  c

o
s
o  ,  at the end of the debonded zone as  

   s
o

s
h

s

s
h

s

L

z
z    (20) 

  z
L

z
s

c
oc 

   (21) 

The relative slip, su  is the difference between the elongations of steel  su  and concrete 

cu , given by 

cs
s uuu   (22) 

We take derivatives of both sides of Eq. (22) to obtain strains in steel, s and strain in 

concrete, c  respectively and we use stress-strain relation as 

   z
E

z
Edz

du

dz

du

dz

du c

c

s

s

cs
cs

s 
11

  (23) 



where sE and cE are the Young’s moduli of steel and concrete respectively. Integration 

of Eq. (23) yields the total amount of slip where we substitute Eqs. (20) and (21) as 

  c
o

c

ss
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s
h

s

s
s

E

L

E

L
u 

22
  (24) 

Stresses in concrete and steel at the end of debonded zone  c
o

s
o  ,  can be computed 

with the help of interfacial shear stress s  at the debonded interface which depends on the 

confinement, type of deformed bar, bar diameter and number of cycles in fatigue loading 

(Popov, 1984). Thus  c
o

s
o  ,  are determined by force balance in the free body of steel 

and surrounding fictitious concrete cylinder as 

s
b

ss
h

s
o

d

L


4
  (25) 

  s
b

sbc
o

dhh

Ld



  (26) 

where h is the radius of the fictitious concrete cylinder surrounding the rebar which is 

the minimum of clear cover, side cover and half of bar spacing.  

 

COD profiles shown by the thin solid lines in Fig. 6 are drawn after adding slip of re-bars 

to the analytically computed COD profiles. It is assumed that the slip along re-bar 

periphery was uniform, increased towards the crack mouth and decreased towards the 

crack tip, both linearly with a slope of  



hda

u

b

s


 . (27) 

Thus the additives due to slip is zero at the crack tip, increases linearly to su at re-bar, 

constant within re-bar periphery and increases again with the same slope (Eq. 27) up to 

the crack mouth.  

 

Strain correction 

Since concrete carries a significant amount of stress at an uncracked section, strain gauge 

readings must be “corrected” before comparing with estimated strains obtained from 

inverse analysis at a cracked section. Strain gauges were attached 3 cm inward from the 

crack surface considering sensitivity of electrical resistance near the crack plane, which 

might lead to erroneous data or even damage due to progressive frictional stresses at 

rebar-concrete interface.  

 

The lengths of debonded zones for all service loads were found smaller than 3 cm for the 

current RC beams. In such a condition, the concrete ‘share’ of stress is obtained from Eq. 

(25) as 

s
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h
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L


4
  (28) 

and the strain correction is  
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Appendix B: Weight function for an SEN specimen 

The weight function for a SEN specimen of infinite length and finite width is (Tada et al., 

1985) 
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where  
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Appendix C: Notations 

The Following symbols are used in this paper 

a  = Crack length 

b  = Total depth of the beam (width of the fracture specimen) 



bd  = Diameter of re-bar 

cE  = Young’s modulus of concrete 

iF  = Total re-bars force in i-th layer of reinforcement 

F  = Total re-bars force in all the layers 

f  = Re-bar force simulated as force/unit length 

G  = Weight function for fracture specimens 

g  = Entries of the G matrix, approximated by it’s finite difference equivalent 

 H  = Unit step function (Heaviside function) 

h  = Error in the approximation of the transformation 

ih  = Clear distance from the bottom face of i-th re-bar layer 

xh  = Step interval in discretization 

2L  = Linear space of square-integrable functions 

sL  = The length of debonded zone 

M  = Applied moment on the crack plane 

 M  = The Tikhonov functional 

n = Modular ratio 

T  = The transformation 

hT  = The approximated transformation 

U  = Linear space where the crack closure vectors belong to 

bU   = Ultimate bond force per unit length between steel and concrete 

u  = Crack opening displacement 

au  = Crack opening due to the action of applied stress 



bu  = Crack closing due to the action of re-bars force 

su  = Amount of slip between concrete and re-bar 

x  = Location along the crack ( ax , are dummy variable for x ) 

Z  = Linear space where the re-bar force vectors belong to. 

  = The regularization parameter 

  = Error in data 

  = Poisson’s ratio  

  = Reinforcement ratio 

s  = Interfacial shear stress 

  = Applied stress  
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Fig. 1. Rebar forces are assumed as stepped functions 

Fig. 2. Experimental set-up and specimen details 

Fig. 3. Variation of rebar strain with total load in a sample test. 

Fig. 4. Capturing digital images by a microscope 

Fig. 5. Schematic explanation of image analysis (a) picture of a ruler showing 1 mm on 

the beam surface = 96 pixels on pictures (b) a sample picture (c) sample gray value 

profile and COD determination 

Fig. 6. COD profiles on beam surface under a constant total load (inset). 

Fig. 7. Sample rebar force by inverse analysis. Estimated rebar forces from solid profiles 

are in the insets to be compared with the Fig. 6 inset values.  

Fig. 8. Length of debonded zone and assumed stresses at different points along the 

longitudinal direction of rebars. 

 

 



 

 

Fig. 1. Rebar forces are assumed as stepped functions 

 

Fig. 2. Experimental set-up and specimen details
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Fig. 3. Variation of steel strain with total load in a sample test. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Capturing digital images by a microscope 
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Fig. 5. Schematic explanation of image analysis (a) picture of a ruler showing 1 mm 

on the beam surface = 96 pixels on pictures (b) a sample picture (c) sample 

gray value profile and COD determination
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Fig. 6. COD profiles on beam surface under a constant total load (inset). 
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Legends: Experimental COD points   
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Fig. 7. Sample rebar forces by inverse analysis with h = 10
-3

. Estimated rebar forces from solid 

profiles are in the insets, to be compared with the Fig. 6 inset values.  
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Fig. 8. Length of debonded zone and assumed stresses at different points along the longitudinal 

direction of rebars.  
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Table 1: Applicability of the inverse analysis method for measuring reinforcing steel stress/strain compared with other methods.  

Sample specimen : cross-section 10cm x 10cm, span:24 cm, clear cover: 3.3 cm 

Load 

 

Bending 

Moment at 

Mid-

section 

 

Re-bar Stress 
Errors in re-bar stress 

from inverse analysis 
Re-bar Strain Errors in 

re-bar 

strain from 

inverse 

analysis 

100(Y-C-

D)/ Y 

Inverse 

analysis 

(X) 

Section 

analysis
1 

 (A) 

Fracture 

analysis
2 

(B) 

Compared 

with section 

analysis 

100(X-A)/A 

Compared 

with 

fracture 

analysis 

100(X-B)/B 

Inverse 

analysis 

(Y)  

Gauge 

reading 

(C)   

Strain 

Correction
3
 

(D) 

Ton N-mm MPa MPa MPa % % μm/mm μm/mm μm/mm % 

1.7 677262 220 209.3 232 4.86 -5.45 1.1 0.698 0.264 12.54 

2.02 804747 258 248.7 280 3.60 -8.53 1.29 0.854 0.284 11.78 

2.51 999958 324 309.03 334 4.62 -3.09 1.62 1.113 0.325 11.23 

3.02 1.203x10
6 

384 371.9 402 3.15 -4.69 1.92 1.444 0.338 7.18 

1 Based on Eq. (2). 

2 Based on fracture analysis by Bosco and Carpinteri (1992). 

3 A good percentage of total tensile stress is carried by concrete at un-cracked section where strain gauges were attached.  


