Improving CO Tolerance of Pt$_2$Ru$_3$/C Catalyst by the Addition of Tin Oxide

G. X. Wang, T. Takeguchi, T. Yamanaka, E. N. Muhamad, and W. Ueda

Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan

SnO$_x$-modified Pt$_2$Ru$_3$/C catalysts were post-treated in different atmospheres at various temperatures to improve the catalytic activity for H$_2$/CO electro-oxidation. The structures of the Pt$_2$Ru$_3$/C and SnO$_x$/Pt$_2$Ru$_3$/C catalysts were characterized by X-ray diffraction. Electrochemical activities were evaluated by CO stripping voltammetry and single cell test. The SnO$_x$/Pt$_2$Ru$_3$/C catalysts had a lower onset potential for CO electro-oxidation and greater cell voltage than the Pt$_2$Ru$_3$/C catalyst under high CO concentrations. The SnO$_x$/Pt$_2$Ru$_3$/C catalyst treated in 5% H$_2$/Ar at 150$^\circ$C exhibited the greatest CO tolerance due to that the post-treatment caused the conversion of SnO$_2$ to SnO$_x$ (1 ≤ x ≤ 2) without destroying PtRu alloy structure.

Introduction

In recent years, polymer electrolyte fuel cell (PEFC) has attracted great interest as a promising power source for electric vehicles and residential co-generation systems. However, the CO tolerance of the anode catalyst is still a major challenge for the research and development of PEFC, operating on hydrogen produced by reforming of hydrocarbons (1). Until now, PtRu and PtSnO$_x$ catalysts are widely-investigated binary catalysts for H$_2$/CO electro-oxidation. Compared with that on PtRu catalyst, a lower onset potential of CO electro-oxidation is usually obtained on PtSnO$_x$ catalyst; however, the CO electro-oxidation rate above the onset potential on PtSnO$_x$ catalyst is not as sensitive with potential as that on PtRu catalyst. In view of the different catalytic properties of PtRu and PtSnO$_x$ catalysts toward CO electro-oxidation, it is interesting to investigate their combined effects on CO tolerance by preparing SnO$_x$-modified PtRu catalyst.

In this work, nano-sized SnO$_2$ was prepared by hydrolysis of SnCl$_2$ in ethylene glycol and then deposited onto a commercial Pt$_2$Ru$_3$/C catalyst, followed by a post-treatment in different atmospheres at various temperatures. The prepared catalysts were characterized by X-ray diffraction (XRD). CO stripping voltammetry and single cell test were conducted to evaluate the CO tolerance of variously treated catalysts.

Experimental section

9.4 mg of SnCl$_2$·2H$_2$O was dissolved in 30 mL ethylene glycol to form a clear solution, and the solution was heated to 190$^\circ$C at a rate of 10 K min$^{-1}$ and kept at that temperature for 0.5 h, and then cooled to room temperature. 500 mg of commercial Pt$_2$Ru$_3$/C catalyst (Pt: 29.7 wt %, Ru: 23 wt %, TEC61E54, Tanaka Kikinzoku Kogyo K. K., Japan) was added to 80 mL ethylene glycol to form black slurry with mechanical stirring, then the slurry was added into the SnO$_2$ colloid solution and stirred for about 12 h. Distilled water
was added to the mixture and the pH value was adjusted to about 2 with 0.1 M HCl solution, then the mixture was heated to 90°C and kept at that temperature for 24 h. The obtained catalyst was filtered and washed thoroughly with distilled water. To investigate the effect of treatment atmosphere, the obtained catalysts were treated under N₂ or 5 % H₂/Ar at 150 °C for 2 h, which were denoted as SnO₂/Pt₂Ru₃/C-150N and SnOₓ/Pt₂Ru₃/C-150H, respectively. To investigate the effect of treatment temperature, the obtained catalysts were treated in 5% H₂/Ar at 125, 150, 175 or 225°C, respectively, and denoted as SnOₓ/Pt₂Ru₃/C-125H, SnOₓ/Pt₂Ru₃/C-150H, SnOₓ/Pt₂Ru₃/C-175H and SnOₓ/Pt₂Ru₃/C-225H catalyst. The nominal atomic ratio of Pt and SnOₓ is 18:1 in the SnOₓ/Pt₂Ru₃/C catalysts.

XRD patterns of the catalysts were recorded with a powder X-ray diffractometer (RIGAKU, RINT 2000) using Cu Kα radiation with a Ni filter. The tube current was 20 mA with a tube voltage of 40 kV.

Figure 1 (a) and (b) show the effect of post-treatment atmosphere of SnOₓ/Pt₂Ru₃/C catalyst on the PEFC performance. The loading of Pt and Ru in the anode was 0.89 ± 0.05 mg cm⁻². When pure H₂ was fed to anode, the SnO₂/Pt₂Ru₃/C-150N catalyst has a SnO₂ deposition, the particles are randomly distributed on the catalyst surface, the slightly lower performance than the Pt₂Ru₃/C catalyst, while the SnOₓ/Pt₂Ru₃/C-150H catalyst has a greater performance at high current densities. This maybe due to that the reduction treatment in 5% H₂/Ar made that the SnO₂ in the SnO₂/Pt₂Ru₃/C catalyst was converted to SnOₓ (1 ≤ x ≤ 2) and that removed the hydrocarbon species on the catalyst surface. When 500 ppm CO-contaminated H₂ was fed to anode, the SnO₂/Pt₂Ru₃/C-150N catalyst showed the greatest decline, indicating that the addition of SnO₂ into Pt₂Ru₃/C catalyst in the SnO₂/Pt₂Ru₃/C-150N catalyst did not improve the CO tolerance. After reduction treatment caused a mass redistribution and the SnOₓ particles combined with Pt₂Ru₃/C particles to form SnOₓ/Pt₂Ru₃/C composite particles, therefore, the interaction between Pt₂Ru₃ and SnOₓ particles was strong due to an intact contact, so the SnOₓ/Pt₂Ru₃/C-150H catalyst had a much greater CO tolerance than the Pt₂Ru₃/C catalyst.

Figure 2 shows XRD patterns of the Pt₂Ru₃/C, SnO₂/Pt₂Ru₃/C-150N and SnOₓ/Pt₂Ru₃/C-150H catalysts. The broad peak at around 26° is associated with the (002) diffraction peak of the carbon support. The diffraction peaks at around 41°, 46°, 69° and 83° are due to diffraction at Pt (111), (200), (220) and (311) planes, respectively. In addition, some other peaks at around 43° and 68° are also observed, which can be related to metallic Ru. However, the diffraction peaks of SnOₓ are absent, which can be due to a small content of tin species or that the SnOₓ exists as amorphous form in the SnOₓ/Pt₂Ru₃/C catalysts. The mean crystallite size of the catalysts was also calculated.
from the Pt (220) diffraction peak via the Scherrer equation, and the three catalysts have the same mean crystalline size of 3.5 nm. The similar diffraction peaks on the three catalysts indicated that the addition of SnO$_2$ and subsequent post-treatment under

![Graph](image1.png)

(a)

![Graph](image2.png)

(b)

Figure 1 PEFC performance of Pt$_2$Ru$_3$/C, SnO$_2$/Pt$_2$Ru$_3$/C-150N and SnO$_x$/Pt$_2$Ru$_3$/C-150H catalysts fed with pure H$_2$ (a) and 500 ppm CO-contaminated H$_2$ (b).
different atmospheres did not alter the crystalline structure of Pt$_2$Ru$_3$/C catalyst. The performance improvement in the SnO$_x$/Pt$_2$Ru$_3$/C-150H catalysts could be ascribed to the effective interaction between SnO$_x$ and Pt$_2$Ru$_3$ particles.

Figure 3 shows XRD patterns of Pt$_2$Ru$_3$/C and SnO$_x$/Pt$_2$Ru$_3$/C catalysts treated in 5% H$_2$/Ar at various temperatures. It can be observed that the intensity of Ru diffraction peak

![Figure 2 XRD patterns of Pt$_2$Ru$_3$/C (a), SnO$_2$/Pt$_2$Ru$_3$/C-150N (b) and SnO$_x$/Pt$_2$Ru$_3$/C-150H (c) catalysts.](image)

![Figure 3 XRD patterns of Pt$_2$Ru$_3$/C (a), SnO$_x$/Pt$_2$Ru$_3$/C-125H (b), SnO$_x$/Pt$_2$Ru$_3$/C-150H (c), SnO$_x$/Pt$_2$Ru$_3$/C-175H (d) and SnO$_x$/Pt$_2$Ru$_3$/C-225H (e) catalysts.](image)
at around 43º on the SnO$_x$/Pt$_2$Ru$_3$/C-175H and SnO$_x$/Pt$_2$Ru$_3$/C-225H catalysts increases, suggesting that a part of Ru was replaced by Sn from the PtRu alloy.

Figure 4 shows the cell voltage of Pt$_2$Ru$_3$/C and SnO$_x$/Pt$_2$Ru$_3$/C catalysts under different CO concentrations at a current density of 0.2 A cm$^{-2}$. The loading of Pt and Ru

![Figure 4](image1)

Figure 4 Cell voltages of Pt$_2$Ru$_3$/C and SnO$_x$/Pt$_2$Ru$_3$/C catalysts at 0.2 A cm$^{-2}$ under different CO concentrations.

![Figure 5](image2)

Figure 5 CO stripping voltammetry on Pt$_2$Ru$_3$/C and SnO$_x$/Pt$_2$Ru$_3$/C catalysts in 0.1 M HClO$_4$ at 25 ºC, scan rate: 5 mV s$^{-1}$.
in the anode was 0.53 ± 0.05 mg cm⁻². The SnOₓ/Pt₂Ru₃/C-150H catalyst has a slightly greater performance than the SnOₓ/Pt₂Ru₃/C-125H catalyst, while the SnOₓ/Pt₂Ru₃/C-175H catalyst has a slightly lower performance than the SnOₓ/Pt₂Ru₃/C-150H catalysts. For the SnOₓ/Pt₂Ru₃/C-225H catalyst, the cell voltage under 100 ppm and 500 ppm CO-contaminated H₂ decreases greatly, indicating that the PtSn alloy formation by displacing Ru decreases the CO tolerance under low CO concentrations. Under 1000 ppm and 2000 ppm CO-contaminated H₂, the performance of different SnOₓ/Pt₂Ru₃/C catalysts is similar and greater than that of the Pt₂Ru₃/C catalyst. The SnOₓ/Pt₂Ru₃/C-150H catalyst showed the greatest CO tolerance among the Pt₂Ru₃/C and different SnOₓ/Pt₂Ru₃/C catalysts. CO stripping voltammetries were conducted to investigate the difference between the Pt₂Ru₃/C and SnOₓ/Pt₂Ru₃/C-150H catalysts, as shown in Figure 5. On the Pt₂Ru₃/C catalyst, CO_ads is electro-oxidized in a relatively sharp stripping peak centered at 0.420 V, while the SnOₓ/Pt₂Ru₃/C-150H catalyst has a peak potential of 0.408 V, and the onset potential for CO_ads electro-oxidation on the SnOₓ/Pt₂Ru₃/C-150H catalyst is greatly shifted negatively, indicating that the addition of SnOₓ promotes CO_ads electro-oxidation at low potentials.

Conclusions

SnO₂ nanoparticles were prepared by hydrolysis of SnCl₂ in ethylene glycol and deposited onto the commercial Pt₂Ru₃/C catalyst, followed by a post-treatment in different atmospheres at various temperatures to form SnOₓ/Pt₂Ru₃/C composite catalysts. XRD results indicated that the treatment atmosphere did not alter the crystalline structure of Pt₂Ru₃/C catalyst; however, the reduction treatment caused a great improvement in CO tolerance due to a strong interaction between SnOₓ and Pt₂Ru₃ particles. The treatment temperature also had a pronounced effect on the CO tolerance of SnOₓ/Pt₂Ru₃/C catalyst. The SnOₓ/Pt₂Ru₃/C catalyst treated in 5% H₂/Ar at 150°C showed the greatest CO tolerance due to a mild reduction treatment, while the high-temperature reduction treatment at 175°C and 225°C destroyed the PtRu alloy structure and decreased the cell voltage under low CO concentrations. The CO stripping voltammetry result verified that the addition of SnOₓ promoted the CO electro-oxidation at low potentials.

Acknowledgments

This study was supported by Strategic Development of PEFC Technologies for Practical Application Grant Program from New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References