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We consider an optimal investment problem when a firm such as an electric power com-
pany has the operational flexibility to expand and contract capacity with fixed cost.
This problem is formulated as an impulse control problem combined with optimal stop-
ping. Consequently, we obtain optimal investment timing, optimal capacity expansion
and contraction timing, and the investment value. We also show investment, capacity
expansion and contraction rule are influenced by the price volatility and the initial ca-
pacity is also influenced by the ratio between base-load plant and peak-load plant. In
addition, we investigate how time lag between investment and operation influences the
investment rule.

Keywords: Real options; investment and operation under uncertainty; time lag.

1. Introduction

Throughout the last two decades, analysis of investment and evaluation of actual
investment project under uncertainty have been studied by many research groups.
Especially, projects which the firm have such as investment, operation, and aban-
donment (i.e., a life cycle of the project) in various industries have been analyzed
by means of real options approach (Dixit and Pindyck, 1994; Trigeorgis, 1996). The
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firm has the investment option before the operation time, and sequential investment
option such as time-to-build in construction time (Majd and Pindyck, 1987; Bar-
Ilan and Strange, 1998). Furthermore, in operation time, the firm has the option
to start-up and shut-down the project (Dixit, 1989; Dixit and Pindyck, 1994), or
to expand and contract the capacity (Dixit and Pindyck, 2000; Guo and Pham,
2005; Goto, Takashima, and Tsujimura, 2006). Thus, these studies could be divided
roughly into two categories of investment and operation. The optimal investment
rule problem is one of major topics in real options theory, and is formulated as
an optimal stopping problem. On the other hand, optimal operation problems in-
clude entry and exit of project, and the capacity expansion and contraction, and
are formulated as singular stochastic control (Guo and Pham, 2005) and stochastic
impulse control problems (Vollert, 2003; Goto, Takashima, and Tsujimura, 2007).

In electric power industry, both optimal investment and operation rules can
be important issues. It takes more than five years to construct a power plant
(IEA/OECD-NEA, 2005). Then, the determination of investment timing is a sig-
nificant management strategy. In operation period, the firm has to adopt the start
and stop strategies for the power plant to change the generation capacity with the
demand and fuel cost trends. Therefore, investment and operation problems for the
power plant have attracted growing attention, and there exist the following various
researches: Pindyck (1993) evaluates investment of nuclear power plant under cost
uncertainty. Thompson, Davison and Rasmussen (2004) analyze operation of hy-
droelectric and thermal power plants. Gollier et al. (2005) examine two investment
projects with respect to a sequence of small nuclear power plants and a large nu-
clear power plant. These studies have not considered both problems of investment
and operation simultaneously. Näsäkkälä and Fleten (2005) analyze the decision
to upgrade a base load plant to a peak load plant under uncertainty of the spark
spread which is a sum of short-term deviations and equilibrium price. Takashima
et al. (2007) examine the optimal timing for decommissioning and refurbishment of
nuclear power plants. Siddiqui and Maribu (2009) evaluate the investment and up-
grade strategy, such as capacity and heat exchanger, for the microgrid’s distributed
generation.

Analyses of investment problem using stochastic impulse control combined with
optimal stopping include the following previous works. Dixit and Pindyck (1994)
and Brennan and Schwartz (1985) consider the operation problem such as entry-
exit with abandonment of project. Although these studies provide the solution in
specific case, Zervos (2003) solves completely this problem. To our knowledge, there
exist no model like these for analysis of both investment and operation. As Zervos
(2003) points out, the impulse control strategy for operation in this study is not
the standard framework because each capacity of controlled variable is given. The
solution of this optimal problem can be obtained due to this setting even if relatively
complicated model is formulated.

The closest work to this paper includes those of Aguerrevere (2003) and Sødal
(2006). Aguerrevere (2003) analyzes the optimal capacity choice taking into account
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investment option and operating flexibility a, which implies that the unit of capacity
can be started up or shut-down without cost. Sødal (2006) investigatesd entry and
exit problem with construction, scrapping, and investment lags. In actual operation
problem, the capacity may be expanded and contracted with fixed cost. We analyze
the optimal investment and operation problems taking into account these costs,
and additionally, the dependence of initial capacity on uncertainty and cost. We
also consider the time lags between the time of investment and operation.

In this paper, we investigate the firm’s optimal investment problem with opera-
tional flexibility under output price uncertainty. To solve the problem, we formulate
it as an impulse control problem combined with optimal stopping. Consequently, we
show the optimal investment rule and value with capacity expansion and contrac-
tion, so that the initial capacity in operation time is obtained. We also examine how
the price volatility and investment cost influence the initial capacity. Furthermore,
we investigate the time lag between the investment and the operation influences the
initial capacity.

The paper is organized as follows. In the next section, we develop the basic
model, and derive the solution. In Section 3, we describes the model taking into
account the effect of time lag. Section 4 presents some comparative statics with
regard to price volatility, capacity ratio of plant, and time lags. Finally, Section 5
summarizes the paper and provides a direction for future works.

2. Analytical Framework

In many actual situations like electric power plant projects, the firm first decides
to investment project. Then, the firm operates the capacity of the plant. When the
output price is higher than a level or lower than another level in operation period,
the firm changes the capacity size with a fixed cost. In this paper, we assume
that the firm switches between the larger size and the smaller size of the capacity.
We therefore consider the optimal investment strategy with operational flexibility
switching two given capacities.

We assume that output price follows the geometric Brownian motion:

dPt = µPtdt+ σPtdWt, P0 = p, (2.1)

where µ is the expected price growth rate, σ is the volatility of price, and Wt

is a standard Brownian motion adapted to a filtration Ft of a probability space
(Ω,F , P ). Suppose that the firm invests at time T̃ , and then begins the opera-
tion. In operation period, the capacity of plants can be changed to operation state
Zt ∈ {0, 1} with the fixed costs. Zt = 0 represents the small capacity and Zt = 1
represents the large one. Then the firm’s operation strategy v is defined by the
sequence of the pair of the ith switching time τi and ith switching operation ζi:

aIn addition to these characteristic, the capacity choice with time-to-build is also analyzed.
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v = (τi, ζi)i≥0. Note that ζi = Zτi . Then the firm’s investment and operation strat-
egy ψ is defined as the following:

ψ = (T̃ , v). (2.2)

With investment and operation rule ψ, the firm’s expected discounted value of
profit is given by the following equation,

J(p;ψ) = E
[∫ ∞

T̃

e−rt
[
{QPt −Q(αCb + (1− α)Cp)}Zt

+ αQ(Pt − Cb)(1− Zt)
]
dt− e−rT̃Q (αIb + (1− α)Ip)

−
∞∑

i=1

e−rτiK(Zτi−, Zτi)1{τi<∞}

]
, (2.3)

where Q is a total capacity of plant which the firm has, 0 < α < 1b is a capacity
ratio of plant which can not be shut down (i.e., base-load plant), 1−α is a capacity
ratio of plant which can be shut down (i.e., peak-load plant), αQ is a capacity of
base-load plant, Cb is its operation cost, Ib is its construction cost, (1 − α)Q is a
capacity of peak-load plant, Cp is its operation cost, Ip is its construction cost,

K(0, 0) = K(1, 1) = 0, (2.4)

K(0, 1) = Ke, (2.5)

K(1, 0) = Kc (2.6)

are fixed costs to change operation, and r is a discount rate. We must have r > µ

in order to ensure that the firm value is finite.
The firm’s problem is to maximize the expected discounted profit J by selecting

an optimal investment and operation strategy. The value function is expressed by
the following equation:

V (p) = sup
ψ∈Ψ

J(p;ψ) = J(p;ψ∗), (2.7)

where Ψ is the collection of admissible controls and ψ∗ is an optimal investment
and operation strategy.

3. Investment And Operation Strategy

In this section, we solve the firm’s problem (2.7). We can solve this investment
problem by working backward, i.e., by first finding the value of the operation and
then finding the value of the investment. Thus Eq.(2.7) is equivalent to the following
calculation. To this end, we first solve the firm’s operation problem. Next, we solve
the firm’s investment problem.

bAlthough it is theoretically possible to set 0 ≤ α ≤ 1, we do not consider the setting of α = 0, 1
in this paper.
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3.1. Operation value

We consider the operation value for two states of small and large capacities. The
ordinary differential equation, which is satisfied by the operation value for a state of
small capacity φ0, is derived from Bellman’s optimality principle, See, for example,
Dixit and Pindyck (1994),

1
2
σ2p2φ′′0 + µpφ′0 − rφ0 + αQ(p− Cb) = 0. (3.8)

The general solution of Eq.(3.8) is given by the following equation:

φ0(p) = A1p
λ1 +A2p

λ2 +
αQp

r − µ −
αQCb
r

, (3.9)

where A1 and A2 are constants to be determined and

λ1 =
1
2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r
σ2

> 1, λ2 =
1
2
− µ

σ2
−
√(

µ

σ2
− 1

2

)2

+
2r
σ2

< 0.(3.10)

Using the similar methods discussed above, it is straightforward to exhibit that
the operation value for large capacity φ1 must satisfy the following ordinary differ-
ential equation:

1
2
σ2p2φ′′1 + µpφ′1 − rφ1 +Qp−Q(αCb + (1− α)Cp) = 0. (3.11)

The general solution of Eq.(3.11) is given by

φ1(p) = B1p
λ1 +B2p

λ2 +
Qp

r − µ −
Q(αCb + (1− α)Cp)

r
, (3.12)

where B1 and B2 are constants to be determined. The operation value in Eqs. (3.9)
and (3.12) must satisfy the following boundary conditions:

φ0(0) = −αQCb
r

, lim
p→∞

(B1p
λ1 +B2p

λ2) = 0. (3.13)

These imply thatA2 = 0 andB1 = 0 in Eqs. (3.9) and (3.12), respectively. Moreover,
at thresholds, pe, of which the capacity is changed from small state to large one
with a cost Ke, the operation value must satisfy the following boundary conditions,

φ0(pe) = φ1(pe)−Ke, φ′0(pe) = φ′1(pe). (3.14)

These conditions are value-matching and smooth-pasting conditions, respectively.
Likewise, at threshold pc switching from large capacity to small one with a cost Kc,
the conditions are:

φ1(pc) = φ0(pc)−Kc, φ′1(pc) = φ′0(pc). (3.15)

Substituting Eqs (3.9) and (3.12) into Eqs (3.24) and (3.15), the equations are
rewritten as follows:

A1p
λ1
e +

αQpe
r − µ −

αQCb
r

= B2p
λ2
e +

Qpe
r − µ −

Q(αCb + (1− α)Cp)
r

−Ke (3.16)
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A1λ1p
λ1−1
e +

αQ

r − µ = B2λ2p
λ2−1
e +

Q

r − µ (3.17)

B2p
λ2
c +

Qpc
r − µ −

Q(αCb + (1− α)Cp)
r

= A1p
λ1
c +

αQpc
r − µ −

αQCb
r
−Kc (3.18)

B2λ2p
λ2−1
c +

Q

r − µ = A1λ1p
λ1−1
c +

αQ

r − µ (3.19)

These four equations provide simultaneous nonlinear equation system, which can
be solved A1, B2, pe, and pc by means of numerical calculation such as Newton-
Raphson method.

3.2. Investment option

Since the firm has the two operation values φ0(p) and φ1(p), we consider two invest-
ment options F0(p) and F1(p), respectively. The investment option Fj must satisfy
the following ordinary differential equation:

1
2
σ2p2F ′′j + µpF ′j − rFj = 0, (3.20)

where j = 0, 1. The operation starts in the initial state of small capacity when j = 0
and the large capacity when j = 1. The general solution of Eq. (3.20) is given by
the following equation:

Fj(p) = C1p
λ1 + C2p

λ2 , (3.21)

where C1 is the unknown constant, C2 = 0 due to boundary condition, Fj(0) = 0,
and λ1 and λ2 are obtained by Eq. (3.10).

The initial capacity of the operation Q∗ depends on the threshold value of in-
vestment p∗ and the investment value at threshold Fj(p∗). The dependence of the
initial capacity on each threshold value such as pe, pc, and p∗ can be represented
as follows:

Q∗ =




Q (pe < p∗),
Q or αQ (pc ≤ p∗ ≤ pe),
αQ (pc > p∗).

(3.22)

Since the firm maximizes the value at p∗ in the region of pc ≤ p∗ ≤ pe, the initial
capacity is determined by the following method:

Q∗ =
{
Q (F1(p∗) ≥ F0(p∗)),
αQ (F1(p∗) < F0(p∗)).

(3.23)

For F1(p∗) ≥ F0(p∗), from value-matching and smooth-pasting conditions,

F1(p∗) = φ1(p∗)−Q (αIb + (1− α)Ip) , F ′1(p∗) = φ′1(p∗), (3.24)

the equations can be written as

C1p
∗λ1 = B2p

∗λ2 +
Qp∗

r − µ −
Q(αCb + (1− α)Cp)

r
−Q (αIb + (1− α)Ip) , (3.25)
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C1λ1p
∗λ1−1 = B2λ2p

∗λ2−1 +
Q

r − µ. (3.26)

Eliminating C1 from Eqs. (3.25) and (3.26), the nonlinear equation for p∗ can be
described as

(λ1 − λ2)B2p
∗λ2 + (λ1 − 1)

Q

r − µp
∗ − Q(αCb + (1− α)Cp)λ1

r

−Q (αIb + (1− α)Ip)λ1 = 0. (3.27)

Equation (3.27) has no analytical solution, therefore it must be solved numerically.
Similarly, for F1(p∗) < F0(p∗), we obtain the following equations,

C1p
∗λ1 = A1p

∗λ1 +
αQp∗

r − µ −
αQCb
r
−Q (αIb + (1− α)Ip) , (3.28)

C1λ1p
∗λ1−1 = A1λ1p

∗λ1−1 +
αQ

r − µ. (3.29)

Solving Eqs. (3.28) and (3.29) for p∗ and C1, respectively, gives

p∗ =
r − µ
αQ

λ1

λ1 − 1

[
αQCb
r

+Q (αIb + (1− α)Ip)
]
, (3.30)

C1 = A1 +
1
λ1

αQ

r − µp
∗1−λ1 . (3.31)

Unlike in the case of F1(p∗) ≥ F0(p∗), we can obtain the analytical solutions for p∗

and C1.

4. Time Lags

In the previous section, we have considered the investment and operation strategy
in which the firm begins the operation as soon as the construction investment.
However, in realistic situations, there exists a time lag between the investment
decision and the beginning time of the operation. Thus, in this section, we analyze
the investment and operation problems with a time lag. We denote the investment
lag or time to build by δ > 0. When the profit flow of the operation for each capacity
at time t is πjt (j = 0, 1), the expected value of operation for each capacity is given
by the following equation:

Ξj = E
[∫ ∞

δ

e−rt πjt dt
]

= e−rδ E
[∫ ∞

0

e−rt πjt+δ dt
]

= e−rδ E
[
Πj
t+δ

]
, (4.32)
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where j = 0, 1 denote the state of small and large capacity, respectively. In the state
of small capacity, E[·] in Eq. (4.32) can be written as

E
[
Π0
t+δ

]
=
∫ pe

0

[
A1p

λ1
t+δ +

αQpt+δ
r − µ − αQCb

r

]
f(pt+δ) dpt+δ

+
∫ ∞
pe

[
B2p

λ2
t+δ +

Qpt+δ
r − µ −

Q(αCb + (1− α)Cp)
r

−Ke

]
f(pt+δ)

×dpt+δ, (4.33)

where f(·) is the probability density function of output price. Substituting Eq. (4.33)
into Eq. (4.32) and calculating the expected values in Eq. (4.32) (See, for example,
in Aguerrevere (2003); Bar-Ilan and Strange (1996) for more detail), the operation
value for small capacity with time lag is given by the following equation:

Ξ0 = e−rδ
[
A1Φ(ν0 − λ1σ

√
δ)E

[
pλ1
t+δ

]
+ Φ(ν0 − σ

√
δ)

αQ

r − µE [pt+δ]

−Φ(ν0)
αQCb
r

+B2

(
1− Φ(ν0 − λ2σ

√
δ)
)
E
[
pλ2
t+δ

]

+
(

1− Φ(ν0 − σ
√
δ)
) Q

r − µE
[
pt+δ

]

− (1− Φ(ν0))
Q(αCb + (1− α)Cp)

r
− (1− Φ(ν0))Ke

]

= A1Φ(ν0 − λ1σ
√
δ)pλ1 + Φ(ν0 − σ

√
δ)
αQp

r − µe
−(r−µ)δ

−Φ(ν0)
αQCb
r

e−rδ +B2

(
1− Φ(ν0 − uσ

√
δ)
)
pλ2

+
(

1− Φ(ν0 − σ
√
δ)
) Qp

r − µe
−(r−µ)δ

− (1− Φ(ν0))
Q(αCb + (1− α)Cp)

r
e−rδ − (1− Φ(ν0))Kee

−rδ, (4.34)

where Φ(·) is the standard normal cumulative distribution function and ν0 =(
ln pe − ln p−

(
µ− σ2

2

)
δ
)
/
(
σ
√
δ
)

.
Similarly, in the state of large capacity, E[·] can be written as

E
[
Π1
t+δ

]
=
∫ pc

0

[
A1p

λ1
t+δ +

αQpt+δ
r − µ − αQCb

r
−Kc

]
f(pt+δ) dpt+δ

+
∫ ∞
pc

[
B2p

λ2
t+δ +

Qpt+δ
r − µ −

Q(αCb + (1− α)Cp)
r

]
f(pt+δ)

×dpt+δ. (4.35)
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Thus, the operation value for large capacity is given by

Ξ1 = A1Φ(ν1 − λ1σ
√
δ)pλ1 + Φ(ν1)− σ

√
δ)
αQp

r − µe
−(r−µ)δ

−Φ(ν1)
αQCb
r

e−rδ − Φ(ν1)Kce
−rδ +B2

(
1− Φ(ν1 − uσ

√
δ)
)
pλ2

+
(

1− Φ(ν1 − σ
√
δ)
) Qp

r − µe
−(r−µ)δ

− (1− Φ(ν1))
Q(αCb + (1− α)Cp)

r
e−rδ, (4.36)

where ν1 =
(

ln pc − ln p−
(
µ− σ2

2

)
δ
)
/
(
σ
√
δ
)

. From Eqs (3.21), (4.34), and
(4.36), the optimal investment strategy and the project value with time lag can
be obtained by using value-matching and smooth-pasting conditions.

5. Numerical Example

From the model described above, the investment value, optimal investment and
operation strategy can be shown. In the following section, we present the numerical
examples of the investment option value and the dependence of investment and
operation strategy on uncertainty and plant ratio. In addition, we show the effect
of time lag between investment and operation on the investment strategy.

5.1. Investment strategy and initial capacity

Figure 1 shows sample paths of output price and capacity. For these paths, the firm
would invest in time of 7.2 because output price reaches the critical price of 15, p∗,

05
1015202530

0 10 20 30 40 50Time

Outpu
t price

01
23
45
67
89
10

Capac
ity

InvestmentCash flows startpe
pc

p*

Fig. 1. Simulated path of investment and operation strategies. This figure shows the simulation
of output price and capacity. The upper dashed line is threshold price of capacity expansion, and
the lower dashed line is threshold price of capacity contraction.
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-500
0

500
1000

0 5 10 15 20
Output priceInvest

ment a
nd ope
rations
 value

pepc p*φ0

φ1

F1

Fig. 2. Investment and operation values as a function of output price. Base case parameters are
as follows: µ = 0.03, σ = 0.2, r = 0.05, Q = 1.5, α = 0.67, Cb = 5, Cp = 10, Ke = 20, Kc = 10,
Ib = 80, and Ip = 40.

05
1015
2025
30

0.1 0.2 0.3 0.4Volatility

p* , pe, p
c pe

pc
p*

QQ αQ

Fig. 3. Dependence of thresholds of investment, expansion, and contraction on price volatility.
The upper and lower dashed line, and solid line show the threshold of expansion, contraction, and
investment, respectively.

described as optimal investment rule. Then, the operation starts and the capacity
can be changed with price level. In this figure, the capacity varies from large to
small when price reaches the critical price of 5, pc (e.g., in time of 10.5 and 44 ),
and vice versa if price reaches the critical price of 17.5, pe (e.g., in time of 21).

We can obtain the solution to optimal investment and operation strategy from
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0
5
10
15
20
25

0.2 0.3 0.4 0.5 0.6 0.7 0.8α

Thresh
old

Q QαQ
pe

pc
p*

Fig. 4. Dependence of thresholds of investment, expansion, and contraction on ratio of base-
load plant. Rhombus, triangle, and square represent thresholds of investment, expansion, and
contraction, respectively.

the model presented in the previous section. Given two states of small and large
capacities in operation period, Eqs. (3.27) and (3.31) give the optimal strategy of
investment in each case. In this section, the investment and the operation values
and the critical price at which investing and switching capacity are optimal are
provided.

In Figure 2, the solutions for F1, φ1, and φ0 and each critical price of p∗, pe, and
pc for base case parameters, µ = 0.03, σ = 0.2, r = 0.05, Q = 1.5, α = 0.67, Cb = 5,
Cp = 10, Ke = 20, Kc = 10, Ib = 80, and Ip = 40, are shown. The differences
between values of φ0 and φ1 at each critical prices as pc and pe correspond to costs
switching from one capacity state to another, respectively.

The dependence of thresholds of investment, expansion, and contraction on price
volatility is illustrated in Figure 3. It is clear from this figure that as the price
volatility increases, the capacity expansion pe increase, while that of the capacity
contraction pc decreases. Although the thresholds of investment p∗ increases with
the the price volatility as the the capacity expansion, at σ = 0.33, p∗ is decreasing.
This implies the decrease of each opportunity, especially, in operation period, the
probability of inaction becomes higher as results in Dixit and Pindyck (1994). As
stated above, the initial capacity is determined from investment value at optimal
timing F (p∗). As a result, the curve of investment threshold p∗ is discontinuous in
σ (e.g., of 0.17 and 0.33). It can be seen that the initial capacity is the large state
for small σ, and the small one for large σ. This result describes actual situations,
and shows a standard characteristic of capacity choice, similar to earlier works as
Pindyck (1988), Dixit and Pindyck (1994), and Aguerrevere (2003). However, the
effect of entry and exit setting leads to a different result from previous works, which
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show that the initial capacity is large state for σ large enough. This is because that
the firm wait to invest, and price increases sufficient to expand the capacity.

Figure 4 shows the dependence of thresholds of investment, expansion, and con-
traction on ratio of base-load plant. As can be seen from this figure, the threshold
of expansion increases and that of contraction decreases as the ratio of base-load
plant α becomes large. This is because the opportunities of capacity expansion and
contraction decrease due to the reduction of the ratio of peak-load plant which has
the flexible operation strategy as shut-down option. In addition, for small ratio of
base-load plant, the initial capacity is large state Q because the threshold of ca-
pacity expansion becomes relatively small. On the other hand, when the ratio of
base-load plant become large as 0.8, the initial capacity is large state Q because of
the reduction of opportunity for shut-down. It is found that the initial capacity is
small state αQ for the range of α from 0.52 to 0.72.

5.2. Time lags

In this section, we investigate the effect of time lag on investment rule for various
volatilities and plant ratios by the model presented in Section 4.

In figure 5, the dependence of investment threshold on time-lag for various
volatilities is shown. The effect of the time lag induces increment of investment
opportunity by decreasing the investment option. The result of this analysis repre-
sents the actual situation as construction investment . Bar-Ilan and Strange (1996)
and Vollert (2003) also show the similar results. Also it seems that, for large time
lag, the probability of high output price is large at the start time of the operation.
That is, the price level can be higher than threshold price of capacity expansion.

We set small range of the time lag as 0 – 0.05 in order to investigate the effect of

10121416182022

0 1 2 3 4 5Time-lag

p*
σ= 0.3

σ= 0.2
σ= 0.1

Fig. 5. Dependence of investment threshold on time-lag, for various volatilities (σ = 0.1, 0.2, 0.3).
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Fig. 6. Dependence of investment threshold on time-lag, for various volatilities. Range of time-lag
level is 0 – 0.05.
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p* α= 0.2α= 0.5α= 0.8

Fig. 7. Dependence of thresholds of investment on time-lag, for various plant ratio (α = 0.2, 0.5,
and 0.8).

time lag on initial capacity. Figure 6 shows the dependence of investment threshold
on time-lag for σ = 0.2, 0.3, in this range of time lag. It turns out that the transition
of initial capacity from small state to large state occurs in smaller level of time lag
as the volatility becomes large.

Figure 7 shows the dependence of thresholds of investment on time-lag, for
various plant ratio. This function of time lag have more sharp gradient for small
ratio of base-load plant as 0.2. This indicates strong dependence of the threshold
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for small α, which means that there exist many operational options, on time lag.
This is because the effect of time lag leads to decrease the option value not only of
investment but also of operation.

6. Conclusions

We have proposed the model for analyzing optimal investment and operation strat-
egy under output price uncertainty. The model was formulated as an impulse control
problem combined with optimal stopping. We have shown that as price volatility
increases, the opportunities of investment, capacity expansion, and contraction de-
crease. We also showed the dependence of initial capacity at the beginning of the
operation on the price volatility and the capacity ratio of plant by calculating in-
vestment values in each case. If the price volatility of output produced from the
project becomes too large, the initial capacity was found to be large state due to
increment of investment threshold. Consequently, it turns out that the effect of en-
try and exit setting leads to a different result from previous works. The effect of
the capcity ratio, which varies total construction cost and operational cost, on the
investment and operation strategy are shown. Additionally, we calculated the opti-
mal investment rule and the value with time lag between the investment decision
and the beginning time of the operation.

Future work will include the applications to electric power industry such as new
entry and plants operation for IPPs. Furthermore, we will construct a model for
analyzing not only the investment timing and the operating flexibility but also the
capacity choice for the firm.
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