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We investigate theoretically effects of the dynamic deformation of the device configuration due 
to phonons on the transport characteristics of a single electron transistor. We formulate the 
electron-phonon interaction peculiar to the device originating from changes in capacitances and 
tunnel resistances caused by the breathing and oblong vibrations of the island that forms part of 
the transistor. We derive its transport properties by means of the master equation. For a single 
electron transistor with a gold nano particle island of radius 1 nm, we demonstrate the 
contribution to the transport properties that originates from tunneling channels associated with 
THz phonon emission and absorption.  

 
PACS numbers: 72. 10. Dj, 63. 22. -m, 73. 23. Hk 
 

 
I. INTRODUCTION 

 
The appearance of this document reflects the requirements of the style guide, formatting of 

main text and page layout for publication in Chinese Journal of Physics. The use of this style 
guide is critical to provide a consistent appearance and to minimize the typesetting or 
copyediting of your manuscript. 

In molecular devices, coupling between molecular vibrations and electron tunneling causes 
phonon mediated electron transport channels, giving rise to characteristic I-V curves owing to 
multi-phonon emission and absorption [1-3], where the coupling takes in two ways [3]; electron 
tunneling induces internal vibrations owing to rearrangement of atomic configuration, and the 
charged molecules are driven in the bias electric field. In contrast, electron transport 
characteristics that reflect multi-phonon emission and absorption are not expected in a 
metal-based single electron transistor (SET) since the nano particle is too stiff to allow the 
atomic configuration changes in accordance with tunneling like the molecular devices.  

In spite of that, we anticipate phonon mediated transport properties in the SET similar to 
the molecular devices due to a different type of electron-phonon interaction. The nano particle 
island is positioned near the electrodes, and the gaps between the island and electrodes set the 
key electronic parameters for the SET; the capacitances and tunnel resistances. Surface 
displacement of the particle island due to phonons modifies the gaps, which is expected to 
remarkably affect the current through the SET.  

The purpose of this work is to investigate the effects of gap modulation on the electron 
transport in the SET. In order to understand the character and magnitude of possible phonon 
effects, we model a SET containing a metal nano particle between the source and drain. (Fig. 1) 
Considering an ideal case, we assume that the particle has an almost stress free surface and will 
have relatively large amplitude surface vibrations due to phonons. Since only the breathing 
modes of spherical symmetry change the intrinsic capacitance of the island and the oblong 
modes modify tunnel resistances significantly more than other modes [4], we investigate the 
contributions of breathing and oblong mode phonons to the transport, respectively, as the 
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representative cases. 

 
FIG. 1: Model of a SET. The nano metal particle is linked electrically to the source and drain made of 
conducting planes. CL (R)  and RL (R)  are the capacitance and tunnel resistance between the particle and 
the left (right) electrode, respectively. a  and c  are the radius of the metal particle and the distance 
between the particle and the leads. The oval below the particle indicates a heat bath. 
 

The paper is planned as follows; In Sec. II, we describe the system to be studied in this 
work, and introduce the Hamiltonian of the system. The phonon mediate tunneling is formulated 
in this section. In Sec. III, the density matrix and associated master equations are introduced. In 
Sec. IV, we give numerical results for the thermal and transport properties. Finally, Sec. V 
provides a discussion and summary of the work.  
 
II. MODEL 

 
We consider a SET containing a gold spherical particle a  in radius, firmly suspended 

centrally between the source and drain made of conducting planes (Fig.1). The electron 
transport is due to single electron tunneling between the metal particle and the electrodes in the 
Coulomb blockade regime. The metal particle is connected to a heat bath, whose coupling 
strength is γ ∞ .  

We first evaluate the change in the tunnel resistances and capacitances between the metal 
island and electrodes due to phonons. Supposing the particle island as an isotropically elastic 
sphere, the phonon modes in the island are derived by means of a scalar and two vector 
potentials. The normal phonons modes in the elastic sphere are spheroidal and toroidal modes, 
the former of which gives rise to surface vibrations of the sphere, but the latter does not. The 
spheroidal modes are classified into the breathing mode having the spherical symmetry for the 
displacement, the oblong mode showing ellipsoidal deformation, and others based on the 
magnitude of angular momentum. Although all the spheroidal modes can cause surface 



 3 

vibrations, we focus in this work on only the breathing and oblong modes [4](Fig.2) since only 
the breathing modes of spherical symmetry change the intrinsic capacitance of the island and the 
oblong modes modify tunnel resistances significantly more than other modes [5], as mentioned 
in the previous section.  

 

 
FIG.2: The displacement of (a) the breathing mode and (b) the oblong mode. ur  indicates the 
surface displacement of the particle. 
 

Expressing the surface displacement ur  for the breathing modes, the radius of the sphere 
modulated by phonons becomes r = a + ur . We put the tunnel resistances that change 
exponentially with respect to the radius as  

RL ,R (r) = RL ,R (a)e
2(r−a)

λ ,                 (1) 
where λ  is a characteristic length of tunneling. 

The capacitance between a sphere and an conducting plane is evaluated by using a method 
of image charge [6] as 

Csphere (r) = 4πε
*ε0r 1+α +

α 2

1−α 2 +…
⎛
⎝⎜

⎞
⎠⎟
,           (2) 

where α = r / 2c.  Here c  is the distance between the center of the particle and the conducting 
plane, and then α < 1 / 2.  The total capacitance C (r)  of the SET composes CL  and CR , each 
of which is given by Eq.(2). Since the particle is positioned at the midpoint between the source 
and drain, CL = CR  and then the total capacitance becomes twice of Eq.(2), i.e. 
C(r) = 2Csphere (r) .  For small displacement in comparison with radius, i.e.  | ur | a , C(r)  is 
approximated as  

1
C(r)

≈ 1− β ur
a

⎛
⎝⎜

⎞
⎠⎟
1
C0

,              (3) 

where C0 = C(a)  and the factor β  is defined by βB = 1+ a / 2c.   
It is known that the intrinsic capacitance of a substance with finite volume is a minimum 

for a sphere[7]. Then the change in the intrinsic capacitance for the oblong modes depends on 
ur
2 , and the change in the capacitance is mainly due to the change in the gaps between the island 

and electrodes. Considering only the change in α  in Eq.(2), we obtain βO = a / 2c,  where we 
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suppose that the sphere is stretched toward the electrodes and regard ur  as the surface 
displacement in the direction. The change in the tunnel resistance for the oblong mode is same 
as Eq.(1) because of the assumption. βO  is not only for the oblong modes but also common to 
all the spheroidal modes except for the breathing mode. 

The surface displacement ur  toward the electrodes is expressed in a quantized form by 

ur =κ Ka(bK + bK
† ),             (4) 

in terms of the annihilation bK and creation operators bK† of a breathing ( K = B ) and oblong 
mode phonons ( K = O ) . In Eq.(4), κ K  is the ratio of the surface displacement to a , which is 
evaluated as [5] κ B = 2.33×10

−22a−2  for the breathing mode at the fundamental frequency ωB , 
and κO = 29.87 ×10−22a−2  for the oblong mode at the fundamental frequency ωO . 

The Hamiltonian of electrons and phonons in the island yields 

HS = εD,k +
eV
2

⎛
⎝⎜

⎞
⎠⎟k

∑ cD,k
† cD,k + EC cD,k

†

k
∑ cD,k

⎛
⎝⎜

⎞
⎠⎟

2

 
−ηK

2 EC
2

ωK

cD,k
†

k
∑ cD,k

⎛
⎝⎜

⎞
⎠⎟

4

 

  +Hphonon ,             (5) 
where EC = e2 / 2C0  and ηK = βKκ K .  The tunnel Hamiltonian HT between the metal island 
and electrodes becomes  

HT = tL
0cL ,k
† cD, ′k BK + tL

0*BK
† cD, ′k

† cL ,k + tR
0cR,k
† cD, ′k BK + tR

0*BK
† cD, ′k

† cR,k⎡⎣ ⎤⎦
k , ′k
∑ ,   (6) 

where BK = ez1bK
† −z2bK ,

 
z1 = ηK

EC

ωK

+κ K
a
λ

 and 
 
z2 = ηK

EC

ωK

−κ K
a
λ
.  

 
III. MASTER EQUATION 
 

In order to formulate transport properties such as current and its noise, we introduce a 
reduced density matrix defined by 

  
ρnn

mm(t) = Tr[ρ(t)]n,m ,  where m(= mK )  is the number of 
breathing/oblong mode phonons in the island. Considering the case that only the two states with 
n = 0  and 1  are involved in transport, we derive equations of motion of ρnn

mm  for each n . 
Using a von Neumann equation, the master equation yields  

 
ρ00
mm = Γ00

mm '

′m
∑ ρ00

′m ′m + Γ01
mm '

′m
∑ ρ11

′m ′m           (7) 

 
ρ11
mm = Γ10

mm '

′m
∑ ρ00

′m ′m + Γ11
mm '

′m
∑ ρ11

′m ′m .         (8) 

The matrix elements are 

 
Γ01
m ′m =

1
RTe

2 m BK ′m
2

α =L ,R
∑ F(−Δµα + EC + ΔµD + ( ′m − m)ωK )    (9) 

 
Γ10
m ′m =

1
RTe

2 ′m BK m
2

α =L ,R
∑ F(Δµα − EC − ΔµD − (m − ′m )ωK )      (10) 

  
Γ00

m ′m = −δm, ′m Γ10
′′m m

′′m
∑ − 2γ ∞N (ω K )[(m +1)δm, ′m − mδm−1, ′m ]  
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  −2γ ∞[N(ωK ) +1][mδm, ′m − (m +1)δm+1, ′m ]         (11) 

  
Γ11

m ′m = −δm, ′m Γ01
′′m m

′′m
∑ − 2γ ∞N (ω K )[(m +1)δm, ′m − mδm−1, ′m ]  

    
−2γ ∞[N (ω K ) +1][mδm, ′m − (m +1)δm+1, ′m ] ,        (12) 

where we put   RT = RL (a) = RR (a)  and   F(x) = x / (1− e−x / kBT ).  The changes in the chemical 
potentials are related to the bias voltage as follows;   ΔµL = eV ,ΔµR = 0,ΔµD = eV / 2 . 
The Franck-Condon factor can be computed as  

  
m B ′m

2
= e− z1z2 z2|m− ′m | p!

q!
Lp

|m− ′m |(z1z2 )⎡⎣ ⎤⎦
2
,             (13) 

where   z = z1Θ(m − ′m ) − z2Θ( ′m − m) ,   p = min(m, ′m )  and   q = max(m, ′m ) , and 
  
Lp

|m− ′m |  is the 
associated Laguerre polynomial. The diagonal elements of Eq.(13) decay from unity as the 
product   z1z2 increases from 0. On the other hand, the off-daigonal ones related to tunneling 
associated with multi-phonon emission or absorption increase.  

Equations(7) and (8) comprise the terms of electron tunneling with or without phonon 
mediation and the phonon exchange terms with the heat bath in the Lindblad form[8] as seen in 
Eqs.(11) and (12), where   N (ωK ) is the Bose-Einstein distribution function of phonons in the 
heat bath at the same frequency as the breathing or oblong mode phonons.  

The current in the steady state that may be described as 

  
I = e Γ10

mm

m≥0
∑ ρ00

mm + I ph ,              (14) 

which is derived from the master equations (7) and (8) provided that    〈 n〉 = 0 . The relevant 
phonon mediated component 

 
I ph  is  

  
I ph = e Γ10

m+m ',m

′m ≥−m
∑

m≥0
∑ ρ00

mm.             (15) 

 
IV. RESULTS 
  

We investigate the thermal and transport properties of a SET of gold nano particle 
a = 1nm  in radius, by numerically solving Eqs.(7) and (8) self-consistently by means of the 
Runge-Kutta method of fourth order. We substitute the temperature T  in F(x)  by the 
temperature T '  in the island calculated from the averaged number of phonons discussed below 
in order to incorporate thermal equilibration among phonons and electrons. Used parameters are 
ωB / 2π = 1.516 THz , κ B = 2.426 ×10−4 , βB = 1.5 , z1 = 1.62 ×10

−2 , z2 = 6.517 ×10
−3  for the 

breathing mode, and  ωO / 2π = 0.515 THz , κO = 29.876 ×10−4 , βO = 0.5 , z1 = 1.97 ×10
−1 , 

z2 = 7.750 ×10
−2  for the oblong mode. We assume the characteristic tunneling rates 

γ (≡ 1 / RTC0 )  to be  γ ωK . 
Phonon emission and absorption induced by electron tunneling are expected to heat up or 

to cool down the island, and then we first examine the temperature on the particle.  At the 
steady state, i.e.  ρnn

mm = 0 , thermal properties depend on the ratio γ ∞ / γ . Then we put 
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γ ∞ = 0.01γ  in this work for convenience. 
At the steady state, the total phonon occupation probability ρmm  (= ρ00

mm + ρ11
mm )  is 

expected to obey the canonical distribution. On the other hand, it is known that ρmm  deviates 
from the canonical distribution when electron tunneling associated with multi-phonon emission 
and absorption takes place in the molecular devices. The present system also shows such 
deviation of ρmm  from the canonical distribution, which is, however, limited to the voltage 
region of the onset of Coulomb blockade, and the deviation is subtle. As a consequence, we may 
evaluate the temperature in the island from the averaged number of phonons 〈mK 〉[= Tr(mρnn

mm )]K , 
using the Bose-Einstein distribution function; 

  

 
′T =
ωK

kB
ln 1

〈mK 〉
+1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1

.            (16) 

 
In Fig.3, we plot ′T  versus V  at T = 4  K and 40 K  for each case of the breathing and 

oblong mode phonons, with γ ∞ = 0.01γ , 0.1γ  and 0.5γ . Here the bias voltage V  is 
expressed in unit of e /C0 , and VC0 / e = 1  that is equivalent to eV / 2 = EC  is the threshold 
bias voltage for tunneling without phonon mediation. The rate at which ′T  increases with bias 
depends on how fast the phonon energy dissipates to the heat bath, and becomes small for large 
γ ∞ / γ . 

FIG.3: The temperature  ′T  in the nano particle versus V  at   T = 4 K  for  γ ∞ = 0.01γ ,  0.1γ  and 

 0.5γ . The data lines of  γ ∞ = 0.1γ  and  0.5γ  are denoted by arrows.  T  is the temperature of the heat 
bath. 
 

The onset of the temperature increase depends on the phonon modes.  The temperature 
rise begins at a lower bias voltage for the breathing mode than that for the oblong mode because 
the threshold voltage associated with phonon absorption is lower for the breathing mode; 
ωB >ωO . Even below the threshold bias for tunneling associated with phonon emission, the 
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island gains phonon energy by phonon emission as mentioned above. As a consequence, the 
temperature for the breathing mode rises more steeply at lower bias voltage. Conversely, the 
increasing rate is larger for the oblong mode than that for the breathing mode, which is seen 
clearly at the heat bath temperature of T = 40 K .  

We plot the total current I  and the current Iph  only due to phonon mediated electron 
tunneling versus V  at T = 4  K  in Fig.4. Figure 4(a) shows the results for the breathing mode. 
The total current I  begins to flow at VC0 / e = 1  and increases almost linearly with increasing 
V  On the other hand, Iph  arises at  VC0 / e = 1+ ωB / EC ≈ 1.03  that is the threshold bias 
voltage for tunneling associated with single phonon emission. Because Iph  amounts, at most, to 
0.004%  of the total current, the signature of phonon effects on I  is obscured. Figure 4(b) 
plots I  and Iph  due to the oblong mode. Iph  begins to arise at  VC0 / e = 1+ ωO / EC ≈ 1.01 , 
and increases nonlinearly with respect to V . Although Iph  is three orders of magnitude larger 
than that for the breathing mode, it is not yet large enough to cause apparent modifications on 
the total current I .  

 

FIG.4: The total current I  and phonon mediated current 
  
Iph  for (a) the breathing and (b) oblong 

modes versus V  at  4 K .  
 
In order to resolve the subtle phonon effects on the current, we investigate the second 

derivative of current with respect to V . Figure 5(a) shows d 2 I / dV 2 and d 2 Iph / dV 2  versus V  
for the breathing mode at various heat bath temperatures from 4  K  to 40 K . d 2 I / dV 2  has a 
main peak at VC0 / e = 1 , which lowers and broadens with increasing temperature. On the other 
hand, at T = 4  K , d 2 Iph / dV

2 shows sidebands at VC0 / e = 1± 0.03  due to single phonon 
absorption (-) and emission (+). These two peaks are too small to be resolved in d 2 I / dV 2 . As 
the temperature increases, the peak due to the phonon absorption becomes larger and broadens, 
while the peak due to phonon emission flattens. The peaks eventually merge at T ≥ 20 K , and 
the effects of phonon absorption and emission become indistinguishable above 20 K .  

Figure 5(b) plots d 2 I / dV 2  and d 2 Iph / dV 2  versus V  for the oblong mode, and there 
are sidebands in d 2 Iph / dV

2  indicating single phonon absorption and emission at 
VC0 / e = 1± 0.01.  Because the two sidebands are close in energy, the peak corresponding to 
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phonon absorption is only just resolved at low temperature. The two peaks merge with 
increasing temperature, and become undistinguishable at T = 20 K . Although we expected 
other sidebands associated with multi-phonon absorption/emission at, for example, 
VC0 / e = 1.00 ± 0.02 , no evidence of extra peaks was found in d 2 Iph / dV 2 , indicating that the 
nonlinear increase in Iph  for the oblong mode is not primarily the result of multi-phonon 
mediated tunneling.  
 

 
FIG.5: The second differential conductance of the total current d 2 I / dV 2  and that of the phonon 
mediated current d 2 Iph / dV

2  versus V  at  4 K  for (a) the breathing mode and (b) oblong mode. 
 
V. SUMMARY AND CONCLUSION 
 

We have discussed how phonons associated with the island of an SET influence the 
electron transport of the device. We have formulated the tunnel Hamiltonian to incorporate the 
changes in the capacitances and tunnel resistances caused by phonons. Based on this result, we 
set up the master equations for the density matrix and formulate the current, differential 
conductance.  

Applying the model to an ideal SET containing a spherical gold particle 1nm  in radius, 
we calculated the effects of the breathing and oblong mode phonons on the thermal properties of 
the island and on the electron transport. Phonon emission associated with tunneling raises the 
temperature in the island, and multi-phonon emission makes the phonon occupation number in 
the island deviate from the canonical distribution even at steady state in the bias region close to 
the tunneling threshold. The current through the SET is dominated by tunneling without phonon 
mediation, with the differential conductance showing little noticeable change due to phonons. 
The second derivative of the phonon-mediated current exhibits peaks associated with single 
phonon absorption and emission similar to phonon signatures found by inelastic electron energy 
spectroscopy [2] in other systems. In the system studied, peaks associated with multi-phonon 
emission are smeared. We conclude that the dominant effect of the dynamic deformation of the 
particle island induced by phonons is on the thermal properties of the island rather than the 
electronic properties of the SET. Only the molecular vibrations such as vibrons lead to the vivid 
signatures of the vibrations of the island on the transport [1-3, 9-13].  
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