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THE FREENESS AND MINIMAL FREE RESOLUTIONS OF
MODULES OF DIFFERENTIAL OPERATORS OF A GENERIC
HYPERPLANE ARRANGEMENT

NORIHIRO NAKASHIMA, GO OKUYAMA, AND MUTSUMI SAITO

ABSTRACT. Let A be a generic hyperplane arrangement composed of r hyperplanes in
an n-dimensional vector space, and S the polynomial ring in n variables. We consider
the S-submodule D™ (A) of the nth Weyl algebra of homogeneous differential operators
of order m preserving the defining ideal of A.

We prove that if n > 3,7 > n,m > r—n+1, then D(™)(A) is free (Holm’s conjecture).
Combining this with some results by Holm, we see that D(™)(A) is free unless n > 3,7 >
n,m < r —mn -+ 1. In the remaining case, we construct a minimal free resolution of
D(™)(A) by generalizing Yuzvinsky’s construction for m = 1. In addition, we construct
a minimal free resolution of the transpose of the m-jet module, which generalizes a result
by Rose and Terao for m = 1.

Mathematics Subject Classification (2010): Primary 16S32; Secondary 13D02.
Keywords: ring of differential operators, generic hyperplane arrangement, minimal free
resolution, Jacobian ideal, jet module.

1. INTRODUCTION

In the study of a hyperplane arrangement, its derivation module plays a central char-
acter; in particular, its freeness over the polynomial ring attracts a great interest (see,
e.g., Orlik-Terao [6]). Generalizing the study of the derivation module for a hyperplane
arrangement to that of the modules of differential operators of higher order was initiated
by Holm [4], [5]. In particular, he studied the case of generic hyperplane arrangements in
detail.

Let K denote a field of characteristic zero, and A a generic hyperplane arrangement
in K™ composed of r hyperplanes. Let S be the polynomial ring Klzy,...,z,], and
D™ (A) the S-module of homogeneous differential operators of order m of the hyperplane
arrangement A.

Among others, in [5], Holm gave a finite generating set of the S-module D™ (A). As
to the freeness of D™ (A), Holm [4] (cf. [9]) proved the following:

o If n =2, then D™ (A) is free for any m.
e Ifn>37>nm<r—n+1, then D™ (A) is not free.
o Ifn>3,r>nm=r—n+1, then D™ (A) is free.

Holm also conjectured that if n > 3,7 > n,m >r —n + 1, then D™ (A) is free.
Snellman [9] computed the Hilbert series of D™ (A), which supported Holm’s conjec-
ture when n > 3,7 > n,m > r —n + 1, and he conjectured the Poicaré-Betti series of
D™ (A) when n > 3,r >n,m <r—n-+1.
In the derivation module case, when n > 3,7 > n,m < r —n + 1 with m = 1, Rose-
Terao [7] and Yuzvinsky [11] independently gave a minimal free resolution of DM (A).

In the course of the proof, Rose-Terao [7] gave minimal free resolutions of all modules of
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logarithmic differential forms with poles along A. They also gave a minimal free resolution
of S/.J, where J is the Jacobian ideal of a polynomial defining .A. Yuzvinsky’s construction
[11] is more straightforward and combinatorial than [7].

In this paper, we prove Holm’s conjecture, namely, we prove that if n > 3,r >n,m >
r—n+1, then D" (A) is free. Hence, for a generic hyperplane arrangement A, D™ (A) is
free unless n > 3,7 > n,m < r—n+1. In the remaining case n > 3,7 >n,m <r—n-+1,
we construct a minimal free resolution of D™ (A) by generalizing [11] and a minimal free
resolution of the transpose of the m-jet module generalizing that of S/.J given by [7].

After we fix notation on differential operators for a hyperplane arrangement in §2, we
recall the Saito-Holm criterion in §3. It was proved by Holm, and it is a criterion for
a subset of D™ (A) to form a basis, which generalizes the Saito criterion in the case of
m = 1.

From §4 on, we assume that r > n and the hyperplane arrangement A is generic. In
§4, we recall the finite generating set of D™ (A) given by Holm [5]. Then we recall the
case n = 2 in §5 and the case m = r —n + 1 in §6 for completeness. In §7, we consider
the case m > r —n + 1 and prove Holm’s conjecture (Theorem 7.1).

From §8 on, we consider the case m < r —n + 1. In §8, we give a minimal generating
set of D™ (A) (Theorem 8.3). In §9, we generalize [11] to construct a minimal free
resolution of D™ (A) (Theorem 9.10). In §10, we generalize the minimal free resolution
of S/J given in [7] (Theorem 10.7). In §11, we prove that the S-module considered in
§10 is the transpose of the m-jet module Q™(S/SQ) (Theorem 11.2), where Q is a
polynomial defining A.

2. THE MODULES OF DIFFERENTIAL OPERATORS FOR A HYPERPLANE
ARRANGEMENT

Throughout this paper, let K denote a field of characteristic zero, A a central hy-
perplane arrangement in K™ composed of r hyperplanes, and S the polynomial ring
Klzy,...,z,). We assume that n > 2.

For a hyperplane H € A, we fix a linear form py € S defining H. Set

1) Q= Qu= [ rm
HeA
Let D(S) = S(0, ..., 0,) denote the nth Weyl algebra, where 0; = %. For a nonzero

differential operator P = ) n fa(2)0% € D(S), the maximum of |a| with f # 0 is
called the order of P, where

0% =07t --- oo, ol =g+ -+ ay

for a = (aq,...,a,). If P has no nonzero f, with |a| # m, it is said to be homogeneous
of order m. We denote by D™ (S) the S-submodule of D(S) of differential operators
homogeneous of order m.

We denote by * the action of D(S) on S. For an ideal I of S,

(2.2) D(I):={0eD(S)|0xIC I}
is called the idealizer of I.

We set
(2.3) D(A) := D((Q)).



Holm [5, Theorem 2.4] proved
(2:4) D(A) = () D((pu))-

HeA

We denote by D™ (A) the S-submodule of D(A) of differential operators homogeneous
of order m. Then Holm [5, Proposition 4.3] proved

D(A) = é D™(A).

A differential operator homogeneous of order 1 is nothing but a derivation. Hence DM (A)
is the module of logarithmic derivations along A.

The polynomial ring S = @;ozo Sy is a graded algebra, where S, is the K-vector sub-
space spanned by the monomials of degree p. The nth Weyl algebra D(S) is a graded
S-module with deg(z®0®) = || — |B|. Each D™(A) is a graded S-submodule of D(S).
An element P = Y . fa(2)0* € DM(A) is said to be homogeneous of polynomial
degree p, and denoted by pdegP = p, if fo € S, for all @ with nonzero f,.

3. SAITO-HOLM CRITERION

To prove that DM (A) is a free S-module, the Saito criterion ([8, Theorem 1.8 (ii)], see
also [6, Theorem 4.19]) is very useful. Holm [4] generalized the Saito criterion to the one
for D™ (A). In this section, we briefly review Holm’s generalization.

Set
n+m-—1 n+m—2
S = , ty 1= .
m m—1
Let
CONpe) (sm)
S e AR
be the set of monomials of degree m. For operators 64, ..., 6, , define an s, X s, coefficient
matrix M,,(0y,...,60, ) by
o)) o))
Orx Ty o O, * Ty
Mm(ﬁl,...,ﬁsm) = )
ma(sm) ma(Sm)
01 * alsm)l esm * alsm)l
where a! = (oq!)(ag!) -+ - (ay,!) for oo = (g, aa, ..., o).

The proofs of the following two propositions go similarly to those of [6, Proposition
4.12] and [6, Proposition 4.18].

Proposition 3.1 (Il Proposition 5.2 in [4] (cf. Proposition 4.12 in [6])). If 04,...,0s, €
D™ (A), then
det M, (01, ...,0,,) € (Q"™).

Proposition 3.2 (I Proposition 5.7 in [4] (cf. Proposition 4.18 in [6])). Suppose that
D(A) is a free S-module. Then the rank of D™ (A) is sy,.

The following is a generalization of the Saito criterion. This was proved by Holm [4, II

Theorem 5.8].
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Theorem 3.3 (Saito-Holm criterion). Given 6y,...,0, € D(A), the following two

conditions are equivalent:
(1) det My, (61,...,05,) = Q'3 for some c € K*,
(2) 04,...,0,,, form a basis for DU (A) over S.

m

The following is an easy consequence of Theorem 3.3.

Theorem 3.4 (Il Theorem 5.9 in [4] (cf. Theorem 4.23 in [6])). Let 6y,...,60,, € D™ (A)
be linearly independent over S. Then 0y,...,0,  form a basis for D™ (A) over S if and

only if
Z pdeg8; = rt,,.
j=1

Suppose that D™ (A) is free over S. We denote by exp D (A) the multi-set of
polynomial degrees of a basis for D (A). The expression

exp DU (A) = {0%,1°,2°2 ..}
means that exp D™ (A) has e; i’s (i = 0,1,2,---).

Proposition 3.5 (cf. Proposition 4.26 in [6]). Assume that D™ (A) is free over S, and
suppose that

exp D™ (A) = {0%, 1,27 .. }.

Then
Zek = S, Z ke = rt,,.
k k
Proof. Proposition 3.2 is the first statement, and Theorem 3.4 the second. U

4. GENERIC ARRANGEMENTS

In the rest of this paper, we assume that r > n and A is generic. An ar-
rangement A is said to be generic, if every n hyperplanes of A intersect only at the
origin.

For a finite set S, let S®) C 25 denote the set of T C S with 47 = k.

Given H € A=Y the vector space

{6 € ZK&-M*})H:Ofor all H € H}
i=1
is one-dimensional; fix a nonzero element d4 of this space. Note that
(41) 5H*pH:0<:>H€H7

since A is generic.
For Hi,..., Hm € A put

(42) P{’Hl 77777 Hm} = H PH.

.....

Pyé3; € DI (A),
1



where P, := Pj3;;. Note that

(4.3) deg Py =r—n+1.
The operator
m! e
(4.4) €m = laz_: poE 0

is called the Euler operator of order m. Then €; is the Euler derivation, and €, =
er(eg—1)--- (e, —m+1) [5, Lemma 4.9].
Holm gave a finite set of generators of D™ (A) as an S-module:

Theorem 4.1 (Theorem 4.22 in [5]).
D(m) (.A) == Z SP{’H1 ..... ’Hm}(S’H1 e (57.[m -+ SEm.
Hi,eoy Hm €A1
The following lemma will be used in Sections 7, 8, and 9.
Lemma 4.2. (1) The set {85, " |H € A"V} is a K-basis of >l
(2) The set {Py|H € A"V} is a K-basis of o

Proof. The dimensions of 37, ., .,

_ T _ T _ (n—l)
Frontl (7‘ —n+ 1) (n — 1) i '

Let H,H' € A™ Y. Then

r—n+1 _ or—n+1 . (7’ —n -+ 1)' HHgéH(é"H * pH) itH' =H
(4.5) 0y * Py = 0y ¥ H br = { 0 otherwise.

=r—n+1 Ko,
K:Ca - ST‘*TL+1'

=r—n+1

KO* and S,_, 1 are equal to

He¢H'
The assertions follow, since dy * py = 0 if and only if H € H. 0

5. THE CASE n = 2

In this section, we consider central arrangements with » > 2 in K?, which are always
generic. Note that s,, =m + 1, and ¢, = m.
Let A= {H,H,,...,H,}. Put p;, .= pn,, P, := Py}, and §; := 6,y fori =1,2,... 7.
We may assume that there exist distinct as,...,a, € K such that
p1 = 1, pi=xs—ary (1=2,...,r).
Then
(51:82, 5i:81+ai82 (iZQ,...,T),
and
P=Q/p; (i=1,...,r).
Proposition 5.1 (Proposition 6.7 1 in [4], Proposition 4.14 in [9]). The S-module
D A) is free with the following basis:
(1) {em, P17, ..., Ppol} if m <r—2.
(2) {PoY, ..., PO} ifm=r—1.
(3) {Por", .. B0 Qs oo, Qi b if mo >, where {67, 07" N1y - oy N }
is a K-basis of Y ;- KOj05'~".
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Corollary 5.2.
{m!', (r — 1)™} (1<m<r-2),
oxp DM (A) = ¢ {(r— 1™} (m=r—1),
{(r=1)",rm "} (m > ).
6. THE CASE m=7r—n-+1

In this section, we consider the case m = r —n + 1. In this case,

o e (E-()-(0)

Note also that deg Py =7 —n+1=m (4.3).
In Sections 7, 8, and 9, we use Lemma 4.2 in the case m = r —n + 1. Lemma 4.2 reads
as follows in this case:

Lemma 6.1. (1) The set {65 | H € A"V} is a K-basis of > o =m KO
(2) The set {Py |H € A"V} is a K-basis of > o= KT = Sy
Proposition 6.2 (Il Proposition 6.8 in [4]). The S-module D™ (A) is free with a basis
{Pyé5 | H € AV,
Corollary 6.3. If m=r —n+1, then
exp D™(A) = {m(;)}

7. THE CASEm >r—n+1

In this section, we assume that m > r —n + 1, and we prove Holm’s conjecture by
giving a basis of D™ (A).
Set
r=n+m—1,
and add 7 — r hyperplanes to A = {Hy, ..., H,} so that
(7.1) A= AU{H,4,... H:}

is still generic.
For H € A1, define a homogeneous polynomial P;, € S by

(7.2) Py= [ opu

H¢H; HEA
Theorem 7.1. The S-module D™ (A) is free with a basis {Py,0% | H € At=11,

Proof. By (2.4), P},65 € DU™(A) for each H € Al=1),
By Lemma 6.1 (1), {P},65 | H € A™~Y} is linearly independent over S. Since

deg Py = 4{H € A[H ¢ 1},
the number of H € A™=D with deg Py, = j is

OO



Then

Z,r m4+n—r—1 B r—1\/m+n—r—1

jjj n-r+j-1) — TG \n—raj-t
B r—1\/m+n—r—1
R AVES m—j

(m—i—n—Q)
=7 = Tlm.
m—1

Hence we have the assertion by Theorem 3.4. U

Corollary 7.2.

r m+n—r—1

exp DU (A) = {j(g)( m—j >]r—n+ 1 <j <min{r,m}}.

8 THE CASEm<r—n-+1

Throughout this section, we assume that m <r —n + 1.
Recall that D™ (A) is generated by

(81) {P{Hl ..... ’Hm}d'r"h e (5Hm ’ Hla s 7Hm € A(n_l)} U {Em}

over S (Theorem 4.1). In this section, we choose a minimal system of generators from
(8.1) (Theorem 8.3), which implies that D™ (A) is not free (Remark 8.5).

Note that
JjA(”_l)z T - n+m-—1 .
n—1 n—1

Lemma 8.1. For any Hi, ..., Hm € A®Y | the following hold:
(1) Pagy. a0y € N SPy.
Nm, H;CHeAMR=1)
(2) 5H1 e 5H7n 6 Z K(S:ZZ'
N Hi CHeArR—D
Proof. (1) If N, H; € H € A"V, then Py = [1rgy pr divides HHem’ngipH =
Py, ... 31,1 Hence the assertion is clear.

(2) Let 7 := n+m — 1. Take a subarrangement B D N, H; of A with 7 hyperplanes.
By Lemma 6.1, there exist ¢y € K (H € B™Y) such that

(8.2) Oup O = Y, eudy.

HeB—1)
It suffices to show that ¢y = 0 for all H 2 ML, H;. Fix H € BC=Y with H 2 N, H,
and put Py = HHeB\H py. Then deg Py = 7 — (n — 1) = m. Since there exists Hy €
(N H;) \ H, we have 0y, * pp, = 0 for all i = 1,...,m, and hence &y, - - - 63, * Py = 0.
Recall from (4.5) that
m! HHGB\H<5H/ *pH) 7é 0 if Hl =H

O % Py = { 0 otherwise.
7



Let the operator (8.2) act on Py. Since

0 =03, On,, * Py = Z cny x Py = cz - m! H (0 * pu),
HeB(n-1) HeB\H
we have ¢y = 0. 0

Proposition 8.2. If m <r —n+1, then
DM(A) = > SPudj + Sen

HeAlr—1)
Proof. Let Hq,...,Hm € A” V. By Lemma 8.1,
Pt tadOrs 030 € Ppag ) > Koy
N HCHeAl—D
C > SPyy.

N HiCHEAM—D

Hence we obtain the assertion from (8.1). O

The system of generators for D™ (A) in Proposition 8.2 is still large. Next, we fix m
hyperplanes H,, ..., H,,, and define an S-submodule Z™(A) of D™ (A) by
(8.3) =™ (A) == {0 € D™ (A) [0 (pp, -+ pn,,) = 0}.
For H € A"V with H N {Hy,...,H,} # 0, we have dy * pg, = 0 for some i, and hence
P07 € ZM(A). Furthermore we have the following.
Theorem 8.3. If m <r —n+1, then

D™(A) = 2™ (A) @ Se,, = > SPy 0% @ Sep,

HeAln—1)
HO{Hy,...,Hn }F#0D

Moreover, the set {Pyd5 |H € A"V HN{Hy,...,H,} # 0} is a minimal system of
generators for 2™ (A) over S.

Proof. Let € D™ (A). Then 6 — L Mﬁm € Z™(A), since § € DM(A) C

m!  pH - PHp,
D™ ({py, -+ pu,,)) by (2.4). So we have D™ (A) = =™ (A) + Se,,. Moreover, e, *
(p, -+ - pm,,) = m'pw, - - - pr,, # 0 implies that 2™ (A) N Se,, = 0.
Next, we show the second equality. By Proposition 8.2, it suffices to show that

Py, 05, € > SPyy @ Sem

HeAMP—D)
Hﬂ{Hl ..... Hm}#q)

for every Ho € A"V with Ho N {Hy,...,H,} = 0. Put B:= HoU{H,,...,H,}. By
Proposition 6.2,

D"MB)= @ SPudsy.

HEB(nfl)
where Py = [sres P Since €, € D™ (B), there exist cy € S (H € B™V) such that
HeBrn-1)

8



(By looking at polynomial degrees, we see ¢ € K.) Multiplying ¢ := [y 4 spn from
the left, we have

(85) q€Em = Z C;«.qu.[é;_)z.
HeB(n-1)

Let the operator (8.4) act on Pyy,. Since

m

0 # m! Py, = mlcy, Py, - H 53 * Dir = mlcy, Py, - H((SHO * Dr, ),
HeB\Ho =1

we have ¢y, # 0. Hence, we have

Pu 0y =cpb [ aem— D> enPudii | € > SPudy; @ Sen.
HeB(—1) HeAn—1)
H#Ho HO{Hy,...,Hm }#£0
Finally, we show the minimality. It suffices to show that the set { Py 5 | H € A™~Y HN
{Hy,...,Hy,} # 0} is linearly independent over K, since all Py 0%} have the same polyno-
mial degree. Suppose that

(8.6) > e Pt =0 (e € K).

Fix arbitrary hyperplanes H;,,..., H;, € A, and put ¢' := py, ---pp, and B = AN\
{H;,...,H,;, }. Let the operator (8.6) act on ¢’. Then we have

Z C?-LPH H((sq.[ *leD) = 0.

HeB/(nfl) v=1
HO{H ..., Hyn V0

By Lemma 4.2, the set {Py |H € BV} is linearly independent over K. Hence cy = 0
for H € BV with HN{H,,...,H,} #0. For H € A"V with HN{H,,..., H,} #0,

we may take H; ,..., H; € Asothat H € B™ Y since r > m +n — 1. Hence we have
finished the proof. O

Corollary 8.4 (cf. Conjecture 6.8 in [9]). The S-module Z™ (A) is minimally generated
by (nil) — (T_m) operators of polynomial degree r —n + 1.

n—1

Remark 8.5. We can show

(o) G- (0

supposing that m < r —n + 1. Then by Proposition 3.2 and Corollary 8.4 we see that,
for n >3 and m <r —n+ 1, D™ (A) is not free over S, which was proved by Holm [4,
Il Proposition 6.8].

9



9. GENERALIZATION OF YUZVINSKY’S PAPER [11]

In this section, we assume m < r —n + 1, and we construct a minimal free resolution
of ZM(A) when m < r —n+ 1 and n > 3. We generalize the construction in [11] step
by step, and basically we succeed Yuzvinsky’s notation.

Let V := K". Recall that, for H € A"V, 6, € (V*)* = V is the nonzero derivation
with constant coefficients such that 04 * pg = 0 for all H € H. Under the identification
(V*)* =V, Kdy corresponds to the linear subspace [H] := (e H = ey (pa = 0) of
V. Similarly, # € A"~ corresponds to the linear subspace [H] = (s H € L;, Where
L; is the set of elements of dimension j of the intersection lattice of A.

For H € A"9) with 1 < j < n, set

M= > K&y
H e(A\H)G-D
Note that
Ay =Ko for He An™Y,
and

Ay = E Koy,
HeAlr—1)
Each Ay is a subspace of Ay.

Example 9.1. Let m = 1. Then
Ay ={6e€ (V)" |dxpy =0 forall He H}.

Hence, under the identification (V*)* = V', Ay, corresponds to [H] = ey H = Nyen(Pa =
0).

Lemma 9.2. Let 1 < j <n, and let H € A",

Take A" :={Hy,Hs,...,H;} C A witht=m+n—1 so that H C A'.

Then {65 2 | H' € (A \ H)U™DY forms a basis of Ay, and dim Ay = (F_j(fl_j)) =
(")

i1 )

Proof. By Lemma 6.1,
(9.1) Y Kor= P K.
|a‘:m H//G(A/)(n—l)

Hence 853 ., (H' € (A" \ H)U=Y) are linearly independent.
Let H" € (A\ H)U=D\ (A)Y~Y. Then

m 5m m X Pl 7
(92) 57—[[.)7—[’" - Z W—/CSH/”
67{// * P "
H//G(A/)(n—l)
where
(93) P';_[// = H PH.
HeA\H"

10



For H" 2 H, there exists H € H\'H". Then py divides P;,,, and hence 63} ., Pj,, = 0.
Therefore

m /
(9 4) 7’”_2’ H”l . 67‘[UH/// * PHUHI ;T[L Hl
. U - § : m / UH"
He(A\H)G-D) Oium * Pruow

Hence {85 ., |H' € (A" \ H)U=D} forms a basis of Ay, and dim Ay = (’:_j(fl_j)) =
(mj}j—l)' ]

7j—1

Let A= {Hy,H,,...,H,}. Wewrite H;, < H; if i < j.
We define the complex C,(A) = C, as follows. For j =1,2,...,n, set

Cp—j = @ Apeny,
HeAln—3)
where e, is just a symbol. In particular,
Coori= P Kdjem,
HeAln—1)
and
Co = Aqye/\@.
The differential 0; : C; — C}_; is defined by
C; = @ Ayeny D ey — Z(—l)l”(H)feA(H\{H}) € Cj_,
HeAW) HeH
where
ly(H):=t{H e H|H < H}.
Set
C, :=Kerd,_;.

Lemma 9.3 (cf. Lemma 1.1 in [11]). The sequence C, is exact.

Proof. As in [11, Lemma 1.1], we prove the assertion by induction.
Let r =m +n — 1. Then by Lemma 6.1

A= P  Kéfy forHe A
H €(A\H) G-
Hence
@ @ K(sf}’r_rzuf}_[/e/\’;.[ — @ K(sgz ® ( @ Ke/\H/).
HeAn=0) H'¢(A\H)G-D) HeAln—1) H' eH(n—T)

Thus, in this case, with C,, =
C.= P K& oSH),
HeAM—1)

where S(#) is the augmented chain complex of the simplex with vertex set H. Hence C,

1s exact.
11



For n = 2, the sequence

0 —— Kergy —— (& LN Co — 0

H H
@HGA K(S?} - ZHGA Kég

is clearly exact.

Suppose that n > 2 and 7 > m+n — 1. Consider the arrangements A\ {H,} and A"
Since r > m+n— 1, we have Ay (A) = Ay(A\{H,}) for H € (A\ {H,})" 9 by Lemma
9.2. Hence

0— C.(A\{H,}) = C.(A) = C.(AT)(-1) =0

is exact. We thus have the assertion by induction. O

Let # € A9 with j = 1,2,...,n, and let CM = C,(AM)). For #' € (A\ H)U,

we have

Mp(AM)y=" Y K(Gply)™
H'"e(A\HUH)(E=1)

Since we may identify 61 ., with Sy s, we may identify Ay (AM) with Agy gy,
Hence

H
(9.5) = P Aduwwenen
H e(A\H)G—1)
fort =1,2,...,7, where ey is again a symbol.
We put

H H H H
Epg = O = Ker(@", : ¢ — M)
for H € A9 with j > 2, and

E[q.q = K(%?_Zey
for H € A®=Y. Then we put
Ei= P Ew
He Aln—3)

forj=1,2,... n.
Remark 9.4 (cf. Remark 1.2 in [11]). Let 1 < j < n and H € A®9). Then

dimEm]:(r m-n-l-] )
7—1
Proof. By Lemma 9.3,
J
dim Ejy) = dim C']m = Z(—l)l*1 dim C[H]l

=1

. H] r—n+j\/m+Il-1
dlijl—( i )( 11 .

Then by Lemma 9.2



Hence

J .
) s f(m+l—=1\[/r—n+)
dim Bpa = ZH)H( -1 )( j—1 )

I=1
B i(‘l)ll m+1—-2\(r—n+j—1
&= -1 j—1
>
I=1

o (2 (Y

r—-m-n+j—1
j—1 '

Let

= B ) Ay enwen

HeAln—1) H'c(A\H)(i+i—n)

for1<i<n,0<j<n-—1withi+j>n, and

- P Ew

HeAn—1)

Then

@ ,ﬂ ., and hence A, = EB C’[H] (n —1)).

HeAln—1) HeAln—1)

As differentials of A, we take (—1)" times the differentials of @y, 4m-s) CEH](—(n —1)).
We define a linear map ¢(j); : A;; = Aj_q; for 0 < j <n—1by

Aij 3 Leppey — Z (_1)lH/(H)geA(H’\{H})e’HU{H} SAVIRY:
HeM!

for H € A H € (A\ H) ™ and € € Ayuy. We define o : E; — E;_; as the
restriction of ¢(n — 1);.
13



Then we have the double complex A,,:

0 0 0 0 0
! ! l ! !
0 —— En — Apn-1 —— Apn_2 cee Ani Ano 0
o) ! l l !
0O —— Fp1 —— An—l,n—l e An—l,n—Q An_1,1 E— 0

boms ! l l

s ! !

00— FEy — Agyn_l _— Ag,n_z —F 0

Jl ! l

0 — F4 _— Al,n—l _— 0
0 0
We add
B = @ Kijeysdjen o€ Byi=2= Y Ko
HeAln—1) He Aln—1)

Lemma 9.5 (cf. Lemma 1.3 in [11]). The sequence
E,:0—-FE,—-FE, 11— --—F —FE —0
18 ezact.

Proof. All rows of A,, are exact by Lemma 9.3 and the argument in the paragraph just
after the proof of Lemma 9.3.
For 1 < j < n, since we have

Ay = @ @ Ayowenwen

He Aln—i) H’G(A\H)(i+j_n>

= @ A’H XK ( @ KeAH’eH\H’)a
)

HeAU H e H(i+i—n)

the j-th column A,; is the same as @, 1) An Ok S(H), where S(H) is the augmented
chain complex of the simplex with vertex set H:

0— Keny — @ Ke g — @ KeAB—>---—>@KeH—>Ke@—>O.
BeHG-1) BeH(G—2) HeH

Thus the j-th columns (1 < 7 < n—1) are exact. The 0-th column has the unique nonzero
term Agep(= Ep) at i = n. Hence by the spectral sequence argument we see that F, is

exact. O
14



Let 0 C {1,2,...,7} and o # (). Put
Lilo] ={Hec A" D | HN{H|ica}#0}
For1<j5<n,

E;lo] = EB Epyy.
HeL;[o]
Then
E\o]=0, Eio]= @ Kéjien.
HeL]o]
We put
Eylo] = Z K&y
HeL]o]
We also put
Ej [@] = 0

for all j. Then {(E.[c],v¥.[0])} is a subcomplex of {(F., 1)}
Lemma 9.6 (cf. Lemma 1.4 in [11]). For every o with |o| < n+m — 1, E,[o] is ezact.

Proof. We prove the assertion by induction on |o|. If |o| = 0, then the assertion is trivial.
When n = 2, we have

0— Eilo]= @ Kéjjen =@ Kdjjen — Eolo] = > Kéji=> Kdf —0.
HeL o] Heo HeL,[o] Heo

This is an isomorphism, since |o| < 2+ m — 1 (see Lemma 6.1).

Now assume that |o| > 1 and n > 3. Fix j € 0 and put 7 := o \ {j}. Then E.[r] and
E.[{j}] = E.(A%7) (by (9.5)) are subcomplexes of F,[o], which are exact by the induction
hypothesis and Lemma 9.5. Moreover there exists an exact sequence of complexes:

0 — E.[7]NE[{7}] = E.f7] @ E.[{j}] = E.[0] = 0.
Since E.[7] N E.[{j}] = E.[7](Ai) and |7| < (n — 1) + m — 1, we are done. O

Put
and
We use notation

Put B
FjI:S®Ej (j:O,l,,n—1>
Note that F; is a submodule of
SAinalo = P P S wenven
HeLi[oo] H/€(A\H)(E—D)
For ¢ > 2, the morphism d; : F; — F;_; is defined by
ern ey — Z 1) ) p e naun iy enoiry-

H'eH
15



Note that
F(] == S ®K Z Kém,
HEL1[oo]
and

= & Soyen
HeL[oo)
We define a morphism d; : Fy — Fy by
03 ey — Pyoy;.

Lemma 9.7. The sequence

dn—_2

0—)Fn_1dn—7)1Fn_2 = diFld#Fo—)O

s a complex.

Proof. By the definition of d;, clearly d; o d;y; = 0 for ¢ > 2. We prove d; o dy = 0.

> Fundfuun =0 for all H € Lofoq].
He¢H
We have

dyody(X) = dyf Z ZfH,HpH(wU{H}eHu{H})
HeLooo] HEH

= Y > FunpaPuom o

HEL2][oo] HEH

_ Z Z Fr,m Pl om (Here Py := H pH-)

HEL2[oo] HEH H¢H

= ) Pu funSium =0

HeLo [O’o} H%’H

The following is Theorem 8.3.

Lemma 9.8 (cf. Lemma 2.1 in [11]). Assume that m <r —n -+ 1. Then the image of d;
coincides with =™ (A).

By Remark 9.4, we have the following.
Remark 9.9 (cf. Remark 2.2 in [11]).

e = (77 1) (G5) - () =i

Under the above preparations, we can prove the following theorem. Since the proof is
almost the same as that of [11, Theorem 2.3|, we omit it.

Theorem 9.10 (cf. Theorem 2.3 in [11]). Assume that n >3 and m <r —n+ 1. Then
the complex

Fo:0—o Fyy ™ By ™2 B B2 4) 50
16



is a minimal free resolution of 2" (A). In particular, the projective dimensions of S-
modules 2™ (A) and D™ (A) are equal to n — 2.

By Theorem 8.3, Remark 9.9, and the construction of the complex F, in Theorem 9.10,
we have the following corollary:

Corollary 9.11 (cf. Corollary 4.4.3 in [7]). Assume that n > 3 and m <r—n-+1. Then
there exist exact sequences

0 — S(m+1—7“)wm1—>---—>S(m+n—j—r)w§m—>---
— S(m+n—2—7“)wém)—>S(m+n—1—r)w§m>—>E(m)(.,4)—>0,
0 = Stm+1—r)" 5o Sman—j—r)" ...
— S(m+n-2- r)wém) —S(m+n—-1- r)wgm) @S — DMM(A) — 0,
where w](-m) were defined in Remark 9.9, and all maps are homogeneous of degree 0.

In particular, the Castelnuovo-Mumford regularities of 2™ (A) and D™ (A) are equal
tor—m—n+1.

Remark 9.12. If we use the polynomial degrees in 2™ (A) and D™ (A) as the degrees of
graded S-modules, then the degrees are shifted by m. Then the Castelnuovo-Mumford
regularities of 2™ (A) and D™ (A) are equal to r — n + 1 as stated for DM(A) in [1,
Section 5.2], and the Poicaré-Betti series of 2™ (A) and D™ (A) coincide with the ones
conjectured by Snellman [9, Conjecture 6.8].

10. MINIMAL FREE RESOLUTION OF J,,(A)
In this section, we generalize the minimal free resolution of S/J given in [7], where .J

is the Jacobian ideal of (). We retain the assumptions n >3 and n+m —1 <.
Let J,,(A) denote the S-submodule of s(amt) = D5/<m_1 S€p generated by all

1 o — 1 o —
!8 PxQ 1B <m—-1)= Z !8 P % Qep

(10.1) 53%@:: (m 2 Reer

with 1 < |a| < m. Here we agree 9 # =0 for 8 £ .

Example 10.1. Let m = 1. Then J;(A) is the S-submodule of S generated by 0, * @
(j=1,...,n), i.e., Ji(A) is nothing but the Jacobian ideal J of Q.

Lemma 10.2. For all o, 8 € N,

e

Here we denote by adz; the endomorphism of D(S): D(S) > P+ adx;(P) = [z;, P] €
D(S). For 8= (B1,...,8,) € N*, we set (adx)P = (adz1)? oo (adx,)"".
17
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Proof. We prove the assertion by induction on |3|. For all o, 3 € N",

o (ade)? ooy 1 (5o
adz;((—1) ~ (0%)) (o= 6)!adx,(8 )
1
= — . BHB-L
o~ A0
1
- - ga—p-1
-1’
O
By Lemma 10.2,
1 1
070 Q= ((-1)"(adz)?(—;0%) xQ : |B] <m —1).
We define an S-module morphism
dp : Fél’m} .= pltmi(g @D (") @ Seg
k=1 1Bl<m—1
by
(10.2) 5(0) :=0e0Q = ((—1)P(adz)?(0) * Q : |B] <m —1).
By definition,
Lemma 10.3. Let 0 € D(S). Then
0P = Z(_l)l‘vl (ﬂ) :1:'677(adx)7((9),
v<B v
where (3) =TI (5)-
Proof. We prove the assertion by induction on |3|. We have
Ora® = —(adx;(0))2P + x,02P
= _ Z ‘Y|( ) ﬁ’”(adx)”(adxi(e)) + Z(_l)hI (ﬂ) xﬂ*"(adx)'y(e)
7B v<B v
- Z(—l)hﬂi' (B) 2P (adg) YT () + Z 1)H (B) 2P (adx) 7 (0)
7B v v<B v
= Z (_1)7|( fl) A=Y (adz) Y (A) + Z 'v( ) 2P (adz) Y (0)
v 1<p T Y<B
= Z (=M (ﬁ+ 1i> A= (ad)7(6)
Y<B+1 7
O

18



Let &y denote the composite of §y with the canonical projections of Seg onto (S/SQ)egs
for 3 # 0:

(10.4) S : D(S) S D Ses— Sea P P (S/5Q)es

1Bl<m—1 0718 <m—1

Here note that &y is a graded S-module homomorphism homogeneous of degree 0 if we

put deg(eg) = —r — |3 -
In the following two lemmas, we describe the cokernel and the kernel of dy.

Lemma 10.4.

+

Coker 6y = S(nmﬁzl)/(t] (A) + QS( jnmll)).
Proof. By (10.3), we only need to show Qeg € Imdy. We have ¢; * Q = rQ. Since
€1 € D(A), we see do(€1) € D g/<,,_1 SQ€p by the definition of dy (10.2). Hence

Qeg = (50( 61) € Im (50

Lemma 10.5.
Ker &y = @D 9(AY = DAY,

where D™ (A) :={0 € D®(A) : 6% Q = 0}.

Proof. 1f § € D™ (A), then (adz)?(f) € D(A) for all 3, and 6xQ = 0. Hence 6§ € Ker §,
by the definitions of D(A) and dy.
Next we suppose that 6 € Ker dg. Then by Lemma 10.3

(10.5) 0+ 2°Q € (Q) = QS for all B with |3] <m — 1.
By [5, Proposition 2.3], we conclude that 6 € DI™I(A) . O
Lemma 10.6. Let k < r. As S-modules,
=0 (A) ~ DW(AY.
Proof. 1t is easy to see that

*Q €k

0
. =(k) —
Y2 (A) 30— 0 Q r(r—1)---(r—k+1)

e DW(AY

and
0 ..
D®(AY 566 0% (pr---pr) & e =0 (4)
pr--pr k!
are inverse to each other. O

For 1 <k <m, let F denote the minimal free resolution of Z*) in Theorem 9.10.
We consider the following complex:

(106) 0— Fn—l 5n—_>1 s g Fl i Fg g F_l — Coker((%) — 0,

19



where

F_l = @ Seg,

|B|<m—1
Fy = DM P Ses
0#|B|<m—1
k=1
and
00(0,  faes) = )+ fsQes =0+ Qeo+ > (=) (adw)?(0) x Q + f3Q)eg,
B#0 B#0 B#0
51(5;“{65_’?) = (m(Pyd%), Z )Pl (adz)P (4 (Pyo%,)) * Qeg),
[3750
5 = P =2,

k=1
Recall that D®)(S) = Fék), and d1(57’f[e§f)) = Pydk for 1 <k <m.

Theorem 10.7 (cf. Theorem 4.5.3in [7]). The complex (10.6) is a minimal free resolution

n+m n+m—1

of Coker(5y) = SUn™ ) /(T (A) + Q8w ).

Proof. The complex (10.6) is exact by Theorem 8.3, Theorem 9.10, Lemma 10.4, Lemma
10.5, and Lemma 10.6. The operator Pyd% is of order k and homogeneous of polynomial
degree deg(Py) = r—(n—1). Then each term of ;(Pyd% ) is of order k and of polynomial
degree greater than or equal to k. Hence each term of the operator (adz)P(y(Pydk,)) is
of order k —|B]| and of polynomial degree greater than or equal to k. Therefore each term
of the polynomial

%(—1)|B|(ad1’)ﬁ(7k<PH5§{)) * Q)

is of degree greater than or equal to
r—(k—18])+k—r=|8]>0.

Thus the free resolution (10.6) of Coker(dy) is minimal. Clearly by (10.4)

n+m—1

Coker(0y) = S )/(Jm(.A) + QS(n:ﬁII)) = Coker ().
U

The following corollary is clear from Theorem 10.7 and the Auslander-Buchsbaum for-
mula.

Corollary 10.8 (cf. Corollary 4.5.5 [7]). The projective dimension of the S-module
n+m-—1

s >/(Jm(A) + QS(njﬁIl)) is n, and the depth is 0.
20



In the complex (10.6), the degrees of elements of bases are as follows:

deg(eg) = —r — | B in ]?_1,
deg(0) = — | in 7o,
deg(eg) = —|B| in Fo,

deg(0hey)=—k+r—(n—1)=r—n—k+1 in F.
Hence we have the following corollary:

Corollary 10.9 (cf. Corollary 4.5.4 in [7]). Assume that n >3 and m <r—n-+1. Then
there exists an exact sequence

0 = @St o s @S-
k=1 k=1
e m m—1
= @stktn-1-n"" > Pk PPsh -
k=1 et N
m—1
S(r + k)** — Coker(dg) — 0,

k=0
where wj(,’f) were defined in Remark 9.9, s, = (n—i—]l:—l); and all maps are homogencous of
degree 0.

In particular, the Castelnuovo-Mumford regularity of Coker(dy) is equal to r — n — 2.

Remark 10.10. In Corollary 10.9, to make the degrees of all the minimal generators of
Coker(dy) nonnegative, we can shift the degrees by r + (m — 1) as in [7, Corollary 4.5.5].
Then the Castelnuovo-Mumford regularity of Coker(dy) is equal to 2r +m —n — 3.

11. JET MODULES

n+m—1

In this section, we prove that Coker(dy) = S )/(Jm(A) —I—QS( ) in Section 10
is the transpose of the m-jet module Q™(S/SQ). For the basics of jet modules, see [2],
3], and [10].

Let I := (f1,..., fx) be an ideal of S. Let R := S/I. Define jet modules

Q[l,m](s) = JS/JgH_la Qﬁm(S) =95 KK S/ng‘f‘la

n+mfl)
m—1

(11.1) O (R) = Jp/ T3, Q5"(R) = R®x R/JFH,
where

Js = (I1®a—a®l|aecf) CS®kS,

Jp = (I1®a—a®llaeR) C Rk R.

Then Q=™(R) is the representative object of the functor M — DW(R, M), i.e., there
exists a natural isomorphism of R-modules:
D%(R, M) ~ Homg(Q="(R), M),

where M is an R-module, and D% (R, M) is the module of differential operators of order
< m from R to M.
As S-modules,

Qs =t Pse1,  oR) =R PR 1L
21



Here note that S acts as S ® 1. We have
{Pe DF(R,M)|P*1=0} ~Homg(QU"(R), M)

for an R-module M.
For a € S (or R), we denote 1 ® a — a ® 1 mod Jg'* (or J3*, respectively) by da.
Then, for f,g € R, we have

(11.2) d(fg) = fdg+ gdf + (df)(dg).
As an S-module

abrls)y = € S(dw)>.

1<|a|<m
For f € S, we have

1 (67 (6%
(11.3) df = ) (0% % f)(da).

1<|e|<m
We have a surjective S ® S-module homomorphism
@ QLM(S) 5 (dz)® — (dz)™ € QP™(R).
Lemma 11.1. As an S-module,
Kero= Y Sfi(dn)*+ > S(df;)(dx)™.
i; 1<|a|<m i; 0<|e|<m—1

Proof. The inclusion ‘D’ is clear. We prove the other inclusion.
First we prove that

(11.4) Kerp =1dS + Sdl.
Clearly the kernel of the S ® S-module homomorphism :
Q="(S)s fRg— f®ge QS"(R)

equals (S®@I+1®S)/JZ or (SdI+1®S)/J¢. Hence, to prove (11.4), it is enough
to show that

(11.5) (I®5S)NJs=IdS.
Let >, ik ® g € Jg with i € I, g € S. Then )", ixgx = 0. We have

dik@g=> (k®@g—irge®1)+ > ikgp @1 = irdgs+0 € IdS.
k k k k

Hence we have proved (11.5) and in turn (11.4). Thus as an S-module
Kerp = Z I(dx)™ + Z SdI(dx)®.
1<]al<m 0<|a|]<m

To finish the proof, we only need to show that d(f;xz%) belongs to the right hand of the
assertion for any a. This is done by (11.2):

d(fix®) = fid(x®) + x*df; + (df;)(d(x*)).

22



Hence we have an S-free presentation of QI™(R):
(1.6) ( P Sfildmym o @  Sdfi)(dx)?) - Qmi(S) —» Q(R) - 0.
i; 1<|x|<m i;0<|B|<m—1
Now we consider the case I = SQ:
1L7) ( P SQUn))e( @  SdQ)(dx)?) — albmi(s) — Qlbm(5/5Q) — 0.
1<]a|<m 0<|B|<m—1

Hence, as an S/SQ-module, Q1™ (S/SQ) has a presentation:
(11.8) P (9/5Q)@Q)(dx)® = P (5/5Q)(dx)* — Q™(S/5Q) — 0.

0<|Bl<m—1 1<|al<m
Note that by (11.3)
1
([dQ)(dr)® = >, — (0% Q)(dx)**
lo+B|<m, a0
1
= Z (0" P % Q)(dx)".
[vI<m,v#B (y=5)!

1
Hence the (3, ~)-component of the matrix of (11.8) equals m(@"’ﬁ * Q).

By Lemma 10.4, the S/SQ-module S(HLTII)/(Jm(.A) + QS(n:Ln:l)) has a presentation:

1 .
(11.9) P /s = P (5/5Q)es
1<|y|<m v 0<|B|<m—1
= SU) (T A) + sy 0,
and the (v, 8)-component of the matrix of the map e in (11.9) (recall (10.1)) equals

1
- (9P Q).
(v = B)! ( )
Thus we have proved the following theorem.

n+m—1

Theorem 11.2. The S/SQ-module SUn"1") /(J,.(A) + QS!
Q1ml(S/5Q).

n+m—1
mi )) is the transpose of

Corollary 11.3. The S/SQ-modules SUn™1") /(Jn(A) + QSU"1)Y and Qml(S/SQ)
share the same Fitting ideals.
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