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THE FREENESS AND MINIMAL FREE RESOLUTIONS OF
MODULES OF DIFFERENTIAL OPERATORS OF A GENERIC

HYPERPLANE ARRANGEMENT

NORIHIRO NAKASHIMA, GO OKUYAMA, AND MUTSUMI SAITO

Abstract. Let A be a generic hyperplane arrangement composed of r hyperplanes in
an n-dimensional vector space, and S the polynomial ring in n variables. We consider
the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators
of order m preserving the defining ideal of A.

We prove that if n ≥ 3, r > n,m > r−n+1, then D(m)(A) is free (Holm’s conjecture).
Combining this with some results by Holm, we see that D(m)(A) is free unless n ≥ 3, r >
n,m < r − n + 1. In the remaining case, we construct a minimal free resolution of
D(m)(A) by generalizing Yuzvinsky’s construction for m = 1. In addition, we construct
a minimal free resolution of the transpose of the m-jet module, which generalizes a result
by Rose and Terao for m = 1.

Mathematics Subject Classification (2010): Primary 16S32; Secondary 13D02.
Keywords: ring of differential operators, generic hyperplane arrangement, minimal free
resolution, Jacobian ideal, jet module.

1. Introduction

In the study of a hyperplane arrangement, its derivation module plays a central char-
acter; in particular, its freeness over the polynomial ring attracts a great interest (see,
e.g., Orlik-Terao [6]). Generalizing the study of the derivation module for a hyperplane
arrangement to that of the modules of differential operators of higher order was initiated
by Holm [4], [5]. In particular, he studied the case of generic hyperplane arrangements in
detail.

Let K denote a field of characteristic zero, and A a generic hyperplane arrangement
in Kn composed of r hyperplanes. Let S be the polynomial ring K[x1, . . . , xn], and
D(m)(A) the S-module of homogeneous differential operators of order m of the hyperplane
arrangement A.

Among others, in [5], Holm gave a finite generating set of the S-module D(m)(A). As
to the freeness of D(m)(A), Holm [4] (cf. [9]) proved the following:

• If n = 2, then D(m)(A) is free for any m.
• If n ≥ 3, r > n,m < r − n+ 1, then D(m)(A) is not free.
• If n ≥ 3, r > n,m = r − n+ 1, then D(m)(A) is free.

Holm also conjectured that if n ≥ 3, r > n,m > r − n+ 1, then D(m)(A) is free.
Snellman [9] computed the Hilbert series of D(m)(A), which supported Holm’s conjec-

ture when n ≥ 3, r > n,m > r − n + 1, and he conjectured the Poicaré-Betti series of
D(m)(A) when n ≥ 3, r > n,m < r − n+ 1.

In the derivation module case, when n ≥ 3, r > n,m < r − n + 1 with m = 1, Rose-
Terao [7] and Yuzvinsky [11] independently gave a minimal free resolution of D(1)(A).
In the course of the proof, Rose-Terao [7] gave minimal free resolutions of all modules of
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logarithmic differential forms with poles along A. They also gave a minimal free resolution
of S/J , where J is the Jacobian ideal of a polynomial definingA. Yuzvinsky’s construction
[11] is more straightforward and combinatorial than [7].

In this paper, we prove Holm’s conjecture, namely, we prove that if n ≥ 3, r > n,m >
r−n+1, then D(m)(A) is free. Hence, for a generic hyperplane arrangement A, D(m)(A) is
free unless n ≥ 3, r > n,m < r−n+1. In the remaining case n ≥ 3, r > n,m < r−n+1,
we construct a minimal free resolution of D(m)(A) by generalizing [11] and a minimal free
resolution of the transpose of the m-jet module generalizing that of S/J given by [7].

After we fix notation on differential operators for a hyperplane arrangement in §2, we
recall the Saito-Holm criterion in §3. It was proved by Holm, and it is a criterion for
a subset of D(m)(A) to form a basis, which generalizes the Saito criterion in the case of
m = 1.

From §4 on, we assume that r ≥ n and the hyperplane arrangement A is generic. In
§4, we recall the finite generating set of D(m)(A) given by Holm [5]. Then we recall the
case n = 2 in §5 and the case m = r − n + 1 in §6 for completeness. In §7, we consider
the case m ≥ r − n+ 1 and prove Holm’s conjecture (Theorem 7.1).

From §8 on, we consider the case m < r − n + 1. In §8, we give a minimal generating
set of D(m)(A) (Theorem 8.3). In §9, we generalize [11] to construct a minimal free
resolution of D(m)(A) (Theorem 9.10). In §10, we generalize the minimal free resolution
of S/J given in [7] (Theorem 10.7). In §11, we prove that the S-module considered in
§10 is the transpose of the m-jet module Ω[1,m](S/SQ) (Theorem 11.2), where Q is a
polynomial defining A.

2. The Modules of Differential Operators for a Hyperplane
Arrangement

Throughout this paper, let K denote a field of characteristic zero, A a central hy-
perplane arrangement in Kn composed of r hyperplanes, and S the polynomial ring
K[x1, . . . , xn]. We assume that n ≥ 2.

For a hyperplane H ∈ A, we fix a linear form pH ∈ S defining H. Set

(2.1) Q := QA :=
∏
H∈A

pH .

Let D(S) = S⟨∂1, . . . , ∂n⟩ denote the nth Weyl algebra, where ∂j =
∂

∂xj
. For a nonzero

differential operator P =
∑

α∈Nn fα(x)∂
α ∈ D(S), the maximum of |α| with fα ̸= 0 is

called the order of P , where

∂α = ∂α1
1 · · · ∂αnn , |α| = α1 + · · ·+ αn

for α = (α1, . . . , αn). If P has no nonzero fα with |α| ̸= m, it is said to be homogeneous
of order m. We denote by D(m)(S) the S-submodule of D(S) of differential operators
homogeneous of order m.

We denote by ∗ the action of D(S) on S. For an ideal I of S,

(2.2) D(I) := {θ ∈ D(S) | θ ∗ I ⊆ I}
is called the idealizer of I.

We set

(2.3) D(A) := D(⟨Q⟩).
2



Holm [5, Theorem 2.4] proved

(2.4) D(A) =
∩
H∈A

D(⟨pH⟩).

We denote by D(m)(A) the S-submodule of D(A) of differential operators homogeneous
of order m. Then Holm [5, Proposition 4.3] proved

D(A) =
∞⊕

m=0

D(m)(A).

A differential operator homogeneous of order 1 is nothing but a derivation. Hence D(1)(A)
is the module of logarithmic derivations along A.

The polynomial ring S =
⊕∞

p=0 Sp is a graded algebra, where Sp is the K-vector sub-

space spanned by the monomials of degree p. The nth Weyl algebra D(S) is a graded
S-module with deg(xα∂β) = |α| − |β|. Each D(m)(A) is a graded S-submodule of D(S).
An element P =

∑
α∈Nn fα(x)∂

α ∈ D(m)(A) is said to be homogeneous of polynomial
degree p, and denoted by pdegP = p, if fα ∈ Sp for all α with nonzero fα.

3. Saito-Holm criterion

To prove that D(1)(A) is a free S-module, the Saito criterion ([8, Theorem 1.8 (ii)], see
also [6, Theorem 4.19]) is very useful. Holm [4] generalized the Saito criterion to the one
for D(m)(A). In this section, we briefly review Holm’s generalization.

Set

sm :=

(
n+m− 1

m

)
, tm :=

(
n+m− 2

m− 1

)
.

Let

{xα(1)

, xα
(2)

, . . . , xα
(sm)}

be the set of monomials of degreem. For operators θ1, . . . , θsm , define an sm×sm coefficient
matrix Mm(θ1, . . . , θsm) by

Mm(θ1, . . . , θsm) :=

 θ1 ∗ xα(1)

α(1)!
· · · θsm ∗ xα(1)

α(1)!
...

. . .
...

θ1 ∗ xα(sm)

α(sm)!
· · · θsm ∗ xα(sm)

α(sm)!

 ,
where α! = (α1!)(α2!) · · · (αn!) for α = (α1, α2, . . . , αn).

The proofs of the following two propositions go similarly to those of [6, Proposition
4.12] and [6, Proposition 4.18].

Proposition 3.1 (III Proposition 5.2 in [4] (cf. Proposition 4.12 in [6])). If θ1, . . . , θsm ∈
D(m)(A), then

detMm(θ1, . . . , θsm) ∈ ⟨Qtm⟩.

Proposition 3.2 (III Proposition 5.7 in [4] (cf. Proposition 4.18 in [6])). Suppose that
D(m)(A) is a free S-module. Then the rank of D(m)(A) is sm.

The following is a generalization of the Saito criterion. This was proved by Holm [4, III
Theorem 5.8].
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Theorem 3.3 (Saito-Holm criterion). Given θ1, . . . , θsm ∈ D(m)(A), the following two
conditions are equivalent:

(1) detMm(θ1, . . . , θsm) = cQtm
A for some c ∈ K×,

(2) θ1, . . . , θsm form a basis for D(m)(A) over S.

The following is an easy consequence of Theorem 3.3.

Theorem 3.4 (III Theorem 5.9 in [4] (cf. Theorem 4.23 in [6])). Let θ1, . . . , θsm ∈ D(m)(A)
be linearly independent over S. Then θ1, . . . , θsm form a basis for D(m)(A) over S if and
only if

sm∑
j=1

pdeg θj = rtm.

Suppose that D(m)(A) is free over S. We denote by expD(m)(A) the multi-set of
polynomial degrees of a basis for D(m)(A). The expression

expD(m)(A) = {0e0 , 1e1 , 2e2 , . . .}
means that expD(m)(A) has ei i’s (i = 0, 1, 2, · · · ).

Proposition 3.5 (cf. Proposition 4.26 in [6]). Assume that D(m)(A) is free over S, and
suppose that

expD(m)(A) = {0e0 , 1e1 , 2e2 , . . .}.
Then ∑

k

ek = sm,
∑
k

kek = rtm.

Proof. Proposition 3.2 is the first statement, and Theorem 3.4 the second. �

4. Generic arrangements

In the rest of this paper, we assume that r ≥ n and A is generic. An ar-
rangement A is said to be generic, if every n hyperplanes of A intersect only at the
origin.

For a finite set S, let S(k) ⊆ 2S denote the set of T ⊆ S with ♯T = k.
Given H ∈ A(n−1), the vector space

{δ ∈
n∑

i=1

K∂i | δ ∗ pH = 0 for all H ∈ H}

is one-dimensional; fix a nonzero element δH of this space. Note that

(4.1) δH ∗ pH = 0 ⇔ H ∈ H,
since A is generic.

For H1, . . . ,Hm ∈ A(n−1), put

(4.2) P{H1,...,Hm} :=
∏

H/∈∩mi=1Hi

pH .

Then P{H1,...,Hm}δH1 · · · δHm ∈ D(m)(A) by (2.4). In particular, for H ∈ A(n−1),

PHδ
m
H ∈ D(m)(A),
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where PH := P{H}. Note that

(4.3) degPH = r − n+ 1.

The operator

(4.4) ϵm :=
∑

|α|=m

m!

α!
xα∂α

is called the Euler operator of order m. Then ϵ1 is the Euler derivation, and ϵm =
ϵ1(ϵ1 − 1) · · · (ϵ1 −m+ 1) [5, Lemma 4.9].

Holm gave a finite set of generators of D(m)(A) as an S-module:

Theorem 4.1 (Theorem 4.22 in [5]).

D(m)(A) =
∑

H1,...,Hm∈A(n−1)

SP{H1,...,Hm}δH1 · · · δHm + Sϵm.

The following lemma will be used in Sections 7, 8, and 9.

Lemma 4.2. (1) The set {δr−n+1
H |H ∈ A(n−1)} is a K-basis of

∑
|α|=r−n+1K∂

α.

(2) The set {PH |H ∈ A(n−1)} is a K-basis of
∑

|α|=r−n+1Kx
α = Sr−n+1.

Proof. The dimensions of
∑

|α|=r−n+1K∂
α and Sr−n+1 are equal to

sr−n+1 =

(
r

r − n+ 1

)
=

(
r

n− 1

)
= ♯A(n−1).

Let H,H′ ∈ A(n−1). Then

(4.5) δr−n+1
H ∗ PH′ = δr−n+1

H ∗
∏
H/∈H′

pH =

{
(r − n+ 1)!

∏
H/∈H(δH ∗ pH) if H′ = H

0 otherwise.

The assertions follow, since δH ∗ pH = 0 if and only if H ∈ H. �

5. The case n = 2

In this section, we consider central arrangements with r ≥ 2 in K2, which are always
generic. Note that sm = m+ 1, and tm = m.

Let A = {H1, H2, . . . , Hr}. Put pi := pHi , Pi := P{Hi}, and δi := δ{Hi} for i = 1, 2, . . . , r.
We may assume that there exist distinct a2, . . . , ar ∈ K such that

p1 = x1, pi = x2 − aix1 (i = 2, . . . , r).

Then
δ1 = ∂2, δi = ∂1 + ai∂2 (i = 2, . . . , r),

and
Pi = Q/pi (i = 1, . . . , r).

Proposition 5.1 (Proposition 6.7 III in [4], Proposition 4.14 in [9]). The S-module
D(m)(A) is free with the following basis:

(1) {ϵm, P1δ
m
1 , . . . , Pmδ

m
m} if m ≤ r − 2.

(2) {P1δ
m
1 , . . . , Prδ

m
r } if m = r − 1.

(3) {P1δ
m
1 , . . . , Prδ

m
r , Qηr+1, . . . , Qηm+1} if m ≥ r, where {δm1 , . . . , δmr , ηr+1, . . . , ηm+1}

is a K-basis of
∑m

i=0K∂
i
1∂

m−i
2 .
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Corollary 5.2.

expD(m)(A) =

 {m1, (r − 1)m} (1 ≤ m ≤ r − 2),
{(r − 1)m+1} (m = r − 1),
{(r − 1)r, rm−r+1} (m ≥ r).

6. The case m = r − n+ 1

In this section, we consider the case m = r − n+ 1. In this case,

(6.1) sm =

(
n+m− 1

m

)
=

(
r

m

)
=

(
r

n− 1

)
.

Note also that degPH = r − n+ 1 = m (4.3).
In Sections 7, 8, and 9, we use Lemma 4.2 in the case m = r−n+1. Lemma 4.2 reads

as follows in this case:

Lemma 6.1. (1) The set {δmH |H ∈ A(n−1)} is a K-basis of
∑

|α|=mK∂
α.

(2) The set {PH |H ∈ A(n−1)} is a K-basis of
∑

|α|=mKx
α = Sm.

Proposition 6.2 (III Proposition 6.8 in [4]). The S-module D(m)(A) is free with a basis
{PHδ

m
H |H ∈ A(n−1)}.

Corollary 6.3. If m = r − n+ 1, then

expD(m)(A) = {m( rm)}.

7. The case m ≥ r − n+ 1

In this section, we assume that m ≥ r − n + 1, and we prove Holm’s conjecture by
giving a basis of D(m)(A).

Set

r̃ := n+m− 1,

and add r̃ − r hyperplanes to A = {H1, . . . , Hr} so that

(7.1) Ã := A ∪ {Hr+1, . . . , Hr̃}
is still generic.

For H ∈ Ã(n−1), define a homogeneous polynomial P ′
H ∈ S by

(7.2) P ′
H :=

∏
H/∈H;H∈A

pH .

Theorem 7.1. The S-module D(m)(A) is free with a basis {P ′
Hδ

m
H |H ∈ Ã(n−1)}.

Proof. By (2.4), P ′
Hδ

m
H ∈ D(m)(A) for each H ∈ Ã(n−1).

By Lemma 6.1 (1), {P ′
Hδ

m
H |H ∈ Ã(n−1)} is linearly independent over S. Since

degP ′
H = ♯{H ∈ A |H /∈ H},

the number of H ∈ Ã(n−1) with degP ′
H = j is(

r

j

)(
r̃ − r

n− 1− (r − j)

)
=

(
r

j

)(
m+ n− r − 1

n− r + j − 1

)
.
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Then ∑
j

j

(
r

j

)(
m+ n− r − 1

n− r + j − 1

)
= r

∑
j

(
r − 1

j − 1

)(
m+ n− r − 1

n− r + j − 1

)
= r

∑
j

(
r − 1

j − 1

)(
m+ n− r − 1

m− j

)
= r

(
m+ n− 2

m− 1

)
= rtm.

Hence we have the assertion by Theorem 3.4. �

Corollary 7.2.

expD(m)(A) = {j(
r
j)(

m+n−r−1
m−j ) | r − n+ 1 ≤ j ≤ min{r,m}}.

8. The case m < r − n+ 1

Throughout this section, we assume that m < r − n+ 1.
Recall that D(m)(A) is generated by

(8.1) {P{H1,...,Hm}δH1 · · · δHm | H1, . . . ,Hm ∈ A(n−1)} ∪ {ϵm}

over S (Theorem 4.1). In this section, we choose a minimal system of generators from
(8.1) (Theorem 8.3), which implies that D(m)(A) is not free (Remark 8.5).

Note that

♯A(n−1) =

(
r

n− 1

)
>

(
n+m− 1

n− 1

)
= sm.

Lemma 8.1. For any H1, . . . ,Hm ∈ A(n−1), the following hold:

(1) P{H1,...,Hm} ∈
∩

∩mi=1Hi⊂H∈A(n−1)

SPH.

(2) δH1 · · · δHm ∈
∑

∩mi=1Hi⊂H∈A(n−1)

KδmH .

Proof. (1) If ∩m
i=1Hi ⊂ H ∈ A(n−1), then PH =

∏
H ̸∈H pH divides

∏
H ̸∈∩mi=1Hi

pH =

P{H1,...,Hm}. Hence the assertion is clear.
(2) Let r̄ := n+m− 1. Take a subarrangement B ⊃ ∩m

i=1Hi of A with r̄ hyperplanes.
By Lemma 6.1, there exist cH ∈ K (H ∈ B(n−1)) such that

(8.2) δH1 · · · δHm =
∑

H∈B(n−1)

cHδ
m
H .

It suffices to show that cH = 0 for all H ̸⊃ ∩m
i=1Hi. Fix H ∈ B(n−1) with H ̸⊃ ∩m

i=1Hi,
and put PH =

∏
H∈B\H pH . Then degPH = r̄ − (n − 1) = m. Since there exists H0 ∈

(∩m
i=1Hi) \ H, we have δHi

∗ pH0 = 0 for all i = 1, . . . ,m, and hence δH1 · · · δHm ∗ PH = 0.
Recall from (4.5) that

δmH′ ∗ PH =

{
m!

∏
H∈B\H(δH′ ∗ pH) ̸= 0 if H′ = H

0 otherwise.
7



Let the operator (8.2) act on PH. Since

0 = δH1 · · · δHm ∗ PH =
∑

H∈B(n−1)

cHδ
m
H ∗ PH = cH ·m!

∏
H∈B\H

(δH ∗ pH),

we have cH = 0. �
Proposition 8.2. If m < r − n+ 1, then

D(m)(A) =
∑

H∈A(n−1)

SPHδ
m
H + Sϵm

Proof. Let H1, . . . ,Hm ∈ A(n−1). By Lemma 8.1,

P{H1,...,Hm}δH1 · · · δHm ∈ P{H1,...,Hm} ·
∑

∩mi=1Hi⊂H∈A(n−1)

KδmH

⊂
∑

∩mi=1Hi⊂H∈A(n−1)

SPHδ
m
H .

Hence we obtain the assertion from (8.1). �
The system of generators for D(m)(A) in Proposition 8.2 is still large. Next, we fix m

hyperplanes H1, . . . , Hm, and define an S-submodule Ξ(m)(A) of D(m)(A) by

(8.3) Ξ(m)(A) := {θ ∈ D(m)(A) | θ ∗ (pH1 · · · pHm) = 0}.
For H ∈ A(n−1) with H ∩ {H1, . . . , Hm} ≠ ∅, we have δH ∗ pHi = 0 for some i, and hence
PHδ

m
H ∈ Ξ(m)(A). Furthermore we have the following.

Theorem 8.3. If m < r − n+ 1, then

D(m)(A) = Ξ(m)(A)⊕ Sϵm =
∑

H∈A(n−1)

H∩{H1,...,Hm}̸=∅

SPHδ
m
H ⊕ Sϵm

Moreover, the set {PHδ
m
H |H ∈ A(n−1),H ∩ {H1, . . . , Hm} ̸= ∅} is a minimal system of

generators for Ξ(m)(A) over S.

Proof. Let θ ∈ D(m)(A). Then θ − 1
m!

θ∗(pH1
···pHm )

pH1
···pHm

ϵm ∈ Ξ(m)(A), since θ ∈ D(m)(A) ⊂
D(m)(⟨pH1 · · · pHm⟩) by (2.4). So we have D(m)(A) = Ξ(m)(A) + Sϵm. Moreover, ϵm ∗
(pH1 · · · pHm) = m!pH1 · · · pHm ̸= 0 implies that Ξ(m)(A) ∩ Sϵm = 0.

Next, we show the second equality. By Proposition 8.2, it suffices to show that

PH0δ
m
H0

∈
∑

H∈A(n−1)

H∩{H1,...,Hm}̸=∅

SPHδ
m
H ⊕ Sϵm

for every H0 ∈ A(n−1) with H0 ∩ {H1, . . . , Hm} = ∅. Put B := H0 ∪ {H1, . . . , Hm}. By
Proposition 6.2,

D(m)(B) =
⊕

H∈B(n−1)

SPHδ
m
H ,

where PH =
∏

H∈B\H pH . Since ϵm ∈ D(m)(B), there exist cH ∈ S (H ∈ B(n−1)) such that

(8.4) ϵm =
∑

H∈B(n−1)

cHPHδ
m
H .
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(By looking at polynomial degrees, we see cH ∈ K.) Multiplying q :=
∏

H∈A\B pH from
the left, we have

(8.5) qϵm =
∑

H∈B(n−1)

cHPHδ
m
H .

Let the operator (8.4) act on PH0 . Since

0 ̸= m!PH0 = m!cH0PH0 ·
∏

H∈B\H0

δH0 ∗ pH = m!cH0PH0 ·
m∏
i=1

(δH0 ∗ pHi),

we have cH0 ̸= 0. Hence, we have

PH0δ
m
H0

= c−1
H0

qϵm −
∑

H∈B(n−1)

H̸=H0

cHPHδ
m
H

 ∈
∑

H∈A(n−1)

H∩{H1,...,Hm}̸=∅

SPHδ
m
H ⊕ Sϵm.

Finally, we show the minimality. It suffices to show that the set {PHδ
m
H |H ∈ A(n−1),H∩

{H1, . . . , Hm} ̸= ∅} is linearly independent over K, since all PHδ
m
H have the same polyno-

mial degree. Suppose that

(8.6)
∑

H∈A(n−1)

H∩{H1,...,Hm}≠∅

cHPHδ
m
H = 0 (cH ∈ K).

Fix arbitrary hyperplanes Hi1 , . . . , Him ∈ A, and put q′ := pHi1 · · · pHim and B′ := A \
{Hi1 , . . . , Him}. Let the operator (8.6) act on q′. Then we have

∑
H∈B′(n−1)

H∩{H1,...,Hm}̸=∅

cHPH

m∏
ν=1

(δH ∗ pHiν ) = 0.

By Lemma 4.2, the set {PH |H ∈ B′(n−1)} is linearly independent over K. Hence cH = 0
for H ∈ B′(n−1) with H∩{H1, . . . , Hm} ≠ ∅. For H ∈ A(n−1) with H∩{H1, . . . , Hm} ̸= ∅,
we may take Hi1 , . . . , Him ∈ A so that H ∈ B′(n−1), since r > m + n− 1. Hence we have
finished the proof. �

Corollary 8.4 (cf. Conjecture 6.8 in [9]). The S-module Ξ(m)(A) is minimally generated
by

(
r

n−1

)
−
(
r−m
n−1

)
operators of polynomial degree r − n+ 1.

Remark 8.5. We can show(
r

n− 1

)
−

(
r −m

n− 1

)
+ 1 >

(
n+m− 1

n− 1

)
,

supposing that m < r − n + 1. Then by Proposition 3.2 and Corollary 8.4 we see that,
for n ≥ 3 and m < r − n + 1, D(m)(A) is not free over S, which was proved by Holm [4,
III Proposition 6.8].
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9. Generalization of Yuzvinsky’s paper [11]

In this section, we assume m ≤ r − n + 1, and we construct a minimal free resolution
of Ξ(m)(A) when m < r − n + 1 and n ≥ 3. We generalize the construction in [11] step
by step, and basically we succeed Yuzvinsky’s notation.

Let V := Kn. Recall that, for H ∈ A(n−1), δH ∈ (V ∗)∗ = V is the nonzero derivation
with constant coefficients such that δH ∗ pH = 0 for all H ∈ H. Under the identification
(V ∗)∗ = V , KδH corresponds to the linear subspace [H] :=

∩
H∈HH =

∩
H∈H(pH = 0) of

V . Similarly, H ∈ A(n−j) corresponds to the linear subspace [H] =
∩

H∈HH ∈ Lj, where
Lj is the set of elements of dimension j of the intersection lattice of A.

For H ∈ A(n−j) with 1 ≤ j ≤ n, set

∆H :=
∑

H′∈(A\H)(j−1)

KδmH∪H′ .

Note that

∆H = KδmH for H ∈ A(n−1),

and

∆∅ =
∑

H∈A(n−1)

KδmH .

Each ∆H is a subspace of ∆∅.

Example 9.1. Let m = 1. Then

∆H = {δ ∈ (V ∗)∗ | δ ∗ pH = 0 for all H ∈ H}.

Hence, under the identification (V ∗)∗ = V , ∆H corresponds to [H] =
∩

H∈HH =
∩

H∈H(pH =
0).

Lemma 9.2. Let 1 ≤ j ≤ n, and let H ∈ A(n−j).
Take A′ := {H1, H2, . . . , Hr̄} ⊆ A with r̄ = m+ n− 1 so that H ⊆ A′.

Then {δmH∪H′ |H′ ∈ (A′ \ H)(j−1)} forms a basis of ∆H, and dim∆H =
(
r̄−(n−j)

j−1

)
=(

m+j−1
j−1

)
.

Proof. By Lemma 6.1,

(9.1)
∑

|α|=m

K∂α =
⊕

H′′∈(A′)(n−1)

KδmH′′ .

Hence δmH∪H′ (H′ ∈ (A′ \ H)(j−1)) are linearly independent.
Let H′′′ ∈ (A \H)(j−1) \ (A′)(j−1). Then

(9.2) δmH∪H′′′ =
∑

H′′∈(A′)(n−1)

δmH∪H′′′ ∗ P ′
H′′

δmH′′ ∗ P ′
H′′

δmH′′ ,

where

(9.3) P ′
H′′ :=

∏
H∈A′\H′′

pH .
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ForH′′ ̸⊇ H, there existsH ∈ H\H′′. Then pH divides P ′
H′′ , and hence δmH∪H′′′∗P ′

H′′ = 0.
Therefore

(9.4) δmH∪H′′′ =
∑

H′∈(A′\H)(j−1)

δmH∪H′′′ ∗ P ′
H∪H′

δmH∪H′ ∗ P ′
H∪H′

δmH∪H′ .

Hence {δmH∪H′ |H′ ∈ (A′ \ H)(j−1)} forms a basis of ∆H, and dim∆H =
(
r̄−(n−j)

j−1

)
=(

m+j−1
j−1

)
. �

Let A = {H1, H2, . . . , Hr}. We write Hi ≺ Hj if i < j.
We define the complex C∗(A) = C∗ as follows. For j = 1, 2, . . . , n, set

Cn−j :=
⊕

H∈A(n−j)

∆He∧H,

where e∧H is just a symbol. In particular,

Cn−1 :=
⊕

H∈A(n−1)

KδmHe∧H,

and

C0 := ∆∅e∧∅.

The differential ∂j : Cj → Cj−1 is defined by

Cj =
⊕

H∈A(j)

∆He∧H ∋ ξe∧H 7→
∑
H∈H

(−1)lH(H)ξe∧(H\{H}) ∈ Cj−1,

where

lH(H) := ♯{H ′ ∈ H |H ′ ≺ H}.
Set

Cn := Ker ∂n−1.

Lemma 9.3 (cf. Lemma 1.1 in [11]). The sequence C∗ is exact.

Proof. As in [11, Lemma 1.1], we prove the assertion by induction.
Let r = m+ n− 1. Then by Lemma 6.1

∆H =
⊕

H′∈(A\H)(j−1)

KδmH∪H′ for H ∈ A(n−j).

Hence

Cn−j =
⊕

H∈A(n−j)

⊕
H′∈(A\H)(j−1)

KδmH∪H′e∧H =
⊕

H∈A(n−1)

KδmH ⊗ (
⊕

H′∈H(n−j)

Ke∧H′).

Thus, in this case, with Cn = 0,

C∗ =
⊕

H∈A(n−1)

KδmH ⊗ S̃(H),

where S̃(H) is the augmented chain complex of the simplex with vertex set H. Hence C∗
is exact.
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For n = 2, the sequence

0 −−−→ Ker ∂1 −−−→ C1
∂1−−−→ C0 −−−→ 0∥∥∥ ∥∥∥⊕

H∈AKδ
m
H −−−→

∑
H∈AKδ

m
H

is clearly exact.
Suppose that n > 2 and r > m+n− 1. Consider the arrangements A\{Hr} and AHr .

Since r > m+n−1, we have ∆H(A) = ∆H(A\{Hr}) for H ∈ (A\{Hr})(n−j) by Lemma
9.2. Hence

0 → C∗(A \ {Hr}) → C∗(A) → C∗(AHr)(−1) → 0

is exact. We thus have the assertion by induction. �

Let H ∈ A(n−j) with j = 1, 2, . . . , n, and let C
[H]
∗ := C∗(A[H]). For H′ ∈ (A \ H)(j−t),

we have

∆H′(A[H]) =
∑

H′′∈(A\H∪H′)(t−1)

K(δ
[H]
H′∪H′′)

m.

Since we may identify δ
[H]
H′∪H′′ with δH∪H′∪H′′ , we may identify ∆H′(A[H]) with ∆H∪H′ .

Hence

(9.5) C
[H]
j−t =

⊕
H′∈(A\H)(j−t)

∆H∪H′e∧H′eH

for t = 1, 2, . . . , j, where eH is again a symbol.
We put

E[H] := C
[H]
j := Ker(∂

[H]
j−1 : C

[H]
j−1 → C

[H]
j−2)

for H ∈ A(n−j) with j ≥ 2, and

E[H] := KδmHeH

for H ∈ A(n−1). Then we put

Ej :=
⊕

H∈A(n−j)

E[H].

for j = 1, 2, . . . , n.

Remark 9.4 (cf. Remark 1.2 in [11]). Let 1 ≤ j ≤ n and H ∈ A(n−j). Then

dimE[H] =

(
r −m− n+ j − 1

j − 1

)
.

Proof. By Lemma 9.3,

dimE[H] = dimC
[H]
j =

j∑
l=1

(−1)l−1 dimC
[H]
j−l.

Then by Lemma 9.2

dimC
[H]
j−l =

(
r − n+ j

j − l

)(
m+ l − 1

l − 1

)
.
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Hence

dimE[H] =

j∑
l=1

(−1)l−1

(
m+ l − 1

l − 1

)(
r − n+ j

j − l

)

=

j∑
l=1

(−1)l−1

(
m+ l − 2

l − 1

)(
r − n+ j − 1

j − l

)
= · · ·

=

j∑
l=1

(−1)l−1

(
l − 2

l − 1

)(
r −m− n+ j − 1

j − l

)
=

(
r −m− n+ j − 1

j − 1

)
.

�

Let

∆ij :=
⊕

H∈A(n−i)

⊕
H′∈(A\H)(i+j−n)

∆H∪H′e∧H′eH

for 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1 with i+ j ≥ n, and

∆in := Ei =
⊕

H∈A(n−i)

E[H].

Then

∆ij =
⊕

H∈A(n−i)

C
[H]
i+j−n, and hence ∆i• =

⊕
H∈A(n−i)

C [H]
• (−(n− i)).

As differentials of ∆i•, we take (−1)i times the differentials of
⊕

H∈A(n−i) C
[H]
• (−(n− i)).

We define a linear map ϕ(j)i : ∆ij → ∆i−1j for 0 ≤ j ≤ n− 1 by

∆ij ∋ ξe∧H′eH 7→
∑
H∈H′

(−1)lH′ (H)ξe∧(H′\{H})eH∪{H} ∈ ∆i−1j

for H ∈ A(n−i),H′ ∈ (A \ H)(i+j−n), and ξ ∈ ∆H∪H′ . We define ψi : Ei → Ei−1 as the
restriction of ϕ(n− 1)i.
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Then we have the double complex ∆••:

0 0 0 0 0y y y y y
0 −−−−−→ En −−−−−→ ∆n,n−1 −−−−−→ ∆n,n−2 −−−−−→ · · · −−−−−→ ∆n,1 −−−−−→ ∆n,0 −−−−−→ 0

ψn

y y y y y
0 −−−−−→ En−1 −−−−−→ ∆n−1,n−1 −−−−−→ ∆n−1,n−2 −−−−−→ · · · −−−−−→ ∆n−1,1 −−−−−→ 0

ψn−1

y y y y
.
..

.

..
.
.. 0

ψ3

y y y
0 −−−−−→ E2 −−−−−→ ∆2,n−1 −−−−−→ ∆2,n−2 −−−−−→ 0

ψ2

y y y
0 −−−−−→ E1 −−−−−→ ∆1,n−1 −−−−−→ 0y y

0 0.

We add

ψ1 : E1 =
⊕

H∈A(n−1)

KδmHeH ∋ δmHeH 7→ δmH ∈ E0 := ∆∅ =
∑

H∈A(n−1)

KδmH .

Lemma 9.5 (cf. Lemma 1.3 in [11]). The sequence

E∗ : 0 → En → En−1 → · · · → E1 → E0 → 0

is exact.

Proof. All rows of ∆•• are exact by Lemma 9.3 and the argument in the paragraph just
after the proof of Lemma 9.3.

For 1 ≤ j < n, since we have

∆ij =
⊕

H∈A(n−i)

⊕
H′∈(A\H)(i+j−n)

∆H∪H′e∧H′eH

=
⊕

H∈A(j)

∆H ⊗K (
⊕

H′∈H(i+j−n)

Ke∧H′eH\H′),

the j-th column ∆•j is the same as
⊕

H∈A(j) ∆H ⊗K S̃(H), where S̃(H) is the augmented
chain complex of the simplex with vertex set H:

0 → Ke∧H →
⊕

B∈H(j−1)

Ke∧B →
⊕

B∈H(j−2)

Ke∧B → · · · →
⊕
H∈H

KeH → Ke∅ → 0.

Thus the j-th columns (1 ≤ j ≤ n−1) are exact. The 0-th column has the unique nonzero
term ∆∅e∅(= E0) at i = n. Hence by the spectral sequence argument we see that E∗ is
exact. �
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Let σ ⊆ {1, 2, . . . , r} and σ ̸= ∅. Put
Lj[σ] := {H ∈ A(n−j) | H ∩ {Hi | i ∈ σ} ̸= ∅ }.

For 1 ≤ j ≤ n,

Ej[σ] :=
⊕

H∈Lj [σ]

E[H].

Then
En[σ] = 0, E1[σ] =

⊕
H∈L1[σ]

KδmHeH.

We put

E0[σ] :=
∑

H∈L1[σ]

KδmH .

We also put
Ej[∅] := 0.

for all j. Then {(E∗[σ], ψ∗[σ])} is a subcomplex of {(E∗, ψ∗)}.

Lemma 9.6 (cf. Lemma 1.4 in [11]). For every σ with |σ| ≤ n+m− 1, E∗[σ] is exact.

Proof. We prove the assertion by induction on |σ|. If |σ| = 0, then the assertion is trivial.
When n = 2, we have

0 → E1[σ] =
⊕

H∈L1[σ]

KδmHeH =
⊕
H∈σ

KδmHeH → E0[σ] =
∑

H∈L1[σ]

KδmH =
∑
H∈σ

KδmH → 0.

This is an isomorphism, since |σ| ≤ 2 +m− 1 (see Lemma 6.1).
Now assume that |σ| ≥ 1 and n ≥ 3. Fix j ∈ σ and put τ := σ \ {j}. Then E∗[τ ] and

E∗[{j}] = E∗(AHj) (by (9.5)) are subcomplexes of E∗[σ], which are exact by the induction
hypothesis and Lemma 9.5. Moreover there exists an exact sequence of complexes:

0 → E∗[τ ] ∩ E∗[{j}] → E∗[τ ]⊕ E∗[{j}] → E∗[σ] → 0.

Since E∗[τ ] ∩ E∗[{j}] = E∗[τ ](AHj) and |τ | ≤ (n− 1) +m− 1, we are done. �

Put
σ0 := {1, 2, . . . ,m},

and
Ē∗ := E∗[σ0].

We use notation
ψj : Ēj → Ēj−1 (j = 1, 2, . . . , n− 1).

Put
Fj := S ⊗ Ēj (j = 0, 1, . . . , n− 1).

Note that Fi is a submodule of

S∆i,n−1[σ0] =
⊕

H∈Li[σ0]

⊕
H′∈(A\H)(i−1)

SδmH∪H′e∧H′eH.

For i ≥ 2, the morphism di : Fi → Fi−1 is defined by

e∧H′eH 7→
∑

H′∈H′

(−1)lH′ (H′)pH′e∧(H′\{H′})eH∪{H′}.
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Note that
F0 = S ⊗K

∑
H∈L1[σ0]

KδmH ,

and
F1 =

⊕
H∈L1[σ0]

SδmHeH.

We define a morphism d1 : F1 → F0 by

δmHeH 7→ PHδ
m
H .

Lemma 9.7. The sequence

0 → Fn−1
dn−1→ Fn−2

dn−2→ · · · d2→ F1
d1→ F0 → 0

is a complex.

Proof. By the definition of di, clearly di ◦ di+1 = 0 for i ≥ 2. We prove d1 ◦ d2 = 0.
Let X =

∑
H∈L2[σ0]

∑
H/∈H fH,Hδ

m
H∪{H}e∧HeH ∈ F2. Then∑

H/∈H

fH,Hδ
m
H∪{H} = 0 for all H ∈ L2[σ0].

We have

d1 ◦ d2(X) = d1(
∑

H∈L2[σ0]

∑
H/∈H

fH,HpHδ
m
H∪{H}eH∪{H})

=
∑

H∈L2[σ0]

∑
H/∈H

fH,HpHPH∪{H}δ
m
H∪{H}

=
∑

H∈L2[σ0]

∑
H/∈H

fH,HPHδ
m
H∪{H} (Here PH :=

∏
H/∈H

pH .)

=
∑

H∈L2[σ0]

PH
∑
H/∈H

fH,Hδ
m
H∪{H} = 0.

�
The following is Theorem 8.3.

Lemma 9.8 (cf. Lemma 2.1 in [11]). Assume that m < r − n+ 1. Then the image of d1
coincides with Ξ(m)(A).

By Remark 9.4, we have the following.

Remark 9.9 (cf. Remark 2.2 in [11]).

rankS(Fj) =

(
r −m− n+ j − 1

j − 1

)((
r

n− j

)
−

(
r −m

n− j

))
=: w

(m)
j .

Under the above preparations, we can prove the following theorem. Since the proof is
almost the same as that of [11, Theorem 2.3], we omit it.

Theorem 9.10 (cf. Theorem 2.3 in [11]). Assume that n ≥ 3 and m < r − n+ 1. Then
the complex

F∗ : 0 → Fn−1
dn−1→ Fn−2

dn−2→ · · · d2→ F1
d1→ Ξ(m)(A) → 0
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is a minimal free resolution of Ξ(m)(A). In particular, the projective dimensions of S-
modules Ξ(m)(A) and D(m)(A) are equal to n− 2.

By Theorem 8.3, Remark 9.9, and the construction of the complex F∗ in Theorem 9.10,
we have the following corollary:

Corollary 9.11 (cf. Corollary 4.4.3 in [7]). Assume that n ≥ 3 and m < r−n+1. Then
there exist exact sequences

0 → S(m+ 1− r)w
(m)
n−1 → · · · → S(m+ n− j − r)w

(m)
j → · · ·

→ S(m+ n− 2− r)w
(m)
2 → S(m+ n− 1− r)w

(m)
1 → Ξ(m)(A) → 0,

0 → S(m+ 1− r)w
(m)
n−1 → · · · → S(m+ n− j − r)w

(m)
j → · · ·

→ S(m+ n− 2− r)w
(m)
2 → S(m+ n− 1− r)w

(m)
1

⊕
S → D(m)(A) → 0,

where w
(m)
j were defined in Remark 9.9, and all maps are homogeneous of degree 0.

In particular, the Castelnuovo-Mumford regularities of Ξ(m)(A) and D(m)(A) are equal
to r −m− n+ 1.

Remark 9.12. If we use the polynomial degrees in Ξ(m)(A) and D(m)(A) as the degrees of
graded S-modules, then the degrees are shifted by m. Then the Castelnuovo-Mumford
regularities of Ξ(m)(A) and D(m)(A) are equal to r − n + 1 as stated for D(1)(A) in [1,
Section 5.2], and the Poicaré-Betti series of Ξ(m)(A) and D(m)(A) coincide with the ones
conjectured by Snellman [9, Conjecture 6.8].

10. Minimal free resolution of Jm(A)

In this section, we generalize the minimal free resolution of S/J given in [7], where J
is the Jacobian ideal of Q. We retain the assumptions n ≥ 3 and n+m− 1 < r.

Let Jm(A) denote the S-submodule of S(
n+m−1
m−1 ) =

⊕
|β|≤m−1 Seβ generated by all

(10.1)
1

α!
∂α •Q := (

1

(α− β)!
∂α−β ∗Q : |β| ≤ m− 1) =

∑
|β|≤m−1

1

(α− β)!
∂α−β ∗Qeβ

with 1 ≤ |α| ≤ m. Here we agree ∂α−β = 0 for β ̸≤ α.

Example 10.1. Let m = 1. Then J1(A) is the S-submodule of S generated by ∂j ∗ Q
(j = 1, . . . , n), i.e., J1(A) is nothing but the Jacobian ideal J of Q.

Lemma 10.2. For all α,β ∈ Nn,

1

(α− β)!
∂α−β = (−1)|β|

(adx)β

α!
(∂α).

Here we denote by adxi the endomorphism of D(S): D(S) ∋ P 7→ adxi(P ) = [xi, P ] ∈
D(S). For β = (β1, . . . , βn) ∈ Nn, we set (adx)β = (adx1)

β1 ◦ · · · ◦ (adxn)βn.
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Proof. We prove the assertion by induction on |β|. For all α,β ∈ Nn,

adxi((−1)|β|
(adx)β

α!
(∂α)) =

1

(α− β)!
adxi(∂

α−β)

= − 1

(α− β)!
(αi − βi)∂

α−β−1i

= − 1

(α− β − 1i)!
∂α−β−1i .

�

By Lemma 10.2,

1

α!
∂α •Q = ((−1)|β|(adx)β(

1

α!
∂α) ∗Q : |β| ≤ m− 1).

We define an S-module morphism

δ0 : F
[1,m]
0 := D[1,m](S) :=

m⊕
k=1

D(k)(S) → S(
n+m−1
m−1 ) =

⊕
|β|≤m−1

Seβ

by

(10.2) δ0(θ) := θ •Q := ((−1)|β|(adx)β(θ) ∗Q : |β| ≤ m− 1).

By definition,

(10.3) Im δ0 = Jm(A).

Lemma 10.3. Let θ ∈ D(S). Then

θxβ =
∑
γ≤β

(−1)|γ|
(
β

γ

)
xβ−γ(adx)γ(θ),

where
(
β
γ

)
=

∏n
i=1

(
βi
γi

)
.

Proof. We prove the assertion by induction on |β|. We have

θxix
β = −(adxi(θ))x

β + xiθx
β

= −
∑
γ≤β

(−1)|γ|
(
β

γ

)
xβ−γ(adx)γ(adxi(θ)) + xi

∑
γ≤β

(−1)|γ|
(
β

γ

)
xβ−γ(adx)γ(θ)

=
∑
γ≤β

(−1)|γ+1i|
(
β

γ

)
xβ+1i−γ−1i(adx)γ+1i(θ) +

∑
γ≤β

(−1)|γ|
(
β

γ

)
xβ+1i−γ(adx)γ(θ)

=
∑

γ−1i≤β

(−1)|γ|
(

β

γ − 1i

)
xβ+1i−γ(adx)γ(θ) +

∑
γ≤β

(−1)|γ|
(
β

γ

)
xβ+1i−γ(adx)γ(θ)

=
∑

γ≤β+1i

(−1)|γ|
(
β + 1i

γ

)
xβ+1i−γ(adx)γ(θ).

�
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Let δ̄0 denote the composite of δ0 with the canonical projections of Seβ onto (S/SQ)eβ

for β ̸= 0:

(10.4) δ̄0 : D
[1,m](S)

δ0→
⊕

|β|≤m−1

Seβ → Se0

⊕ ⊕
0 ̸=|β|≤m−1

(S/SQ)eβ.

Here note that δ̄0 is a graded S-module homomorphism homogeneous of degree 0 if we
put deg(eβ) = −r − |β|.

In the following two lemmas, we describe the cokernel and the kernel of δ̄0.

Lemma 10.4.

Coker δ̄0 = S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )).

Proof. By (10.3), we only need to show Qe0 ∈ Im δ̄0. We have ϵ1 ∗ Q = rQ. Since
ϵ1 ∈ D(A), we see δ0(ϵ1) ∈

⊕
|β|≤m−1 SQeβ by the definition of δ0 (10.2). Hence

Qe0 = δ̄0(
1

r
ϵ1) ∈ Im δ̄0.

�

Lemma 10.5.

Ker δ̄0 =
m⊕
k=1

D(k)(A)′ =: D[1,m](A)′,

where D(k)(A)′ := {θ ∈ D(k)(A) : θ ∗Q = 0}.

Proof. If θ ∈ D[1,m](A)′, then (adx)β(θ) ∈ D(A) for all β, and θ∗Q = 0. Hence θ ∈ Ker δ̄0
by the definitions of D(A) and δ̄0.

Next we suppose that θ ∈ Ker δ̄0. Then by Lemma 10.3

(10.5) θ ∗ xβQ ∈ ⟨Q⟩ = QS for all β with |β| ≤ m− 1.

By [5, Proposition 2.3], we conclude that θ ∈ D[1,m](A)′. �

Lemma 10.6. Let k ≤ r. As S-modules,

Ξ(k)(A) ≃ D(k)(A)′.

Proof. It is easy to see that

γk : Ξ
(k)(A) ∋ θ 7→ θ − θ ∗Q

Q

ϵk
r(r − 1) · · · (r − k + 1)

∈ D(k)(A)′

and

D(k)(A)′ ∋ θ 7→ θ − θ ∗ (p1 · · · pk)
p1 · · · pk

ϵk
k!

∈ Ξ(k)(A)

are inverse to each other. �

For 1 ≤ k ≤ m, let F
(k)
∗ denote the minimal free resolution of Ξ(k) in Theorem 9.10.

We consider the following complex:

(10.6) 0 → F̃n−1
δ̃n−1→ · · · δ̃2→ F̃1

δ̃1→ F̃0
δ̃0→ F̃−1 → Coker(δ̃0) → 0,
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where

F̃−1 =
⊕

|β|≤m−1

Seβ,

F̃0 = D[1,m](S)
⊕ ⊕

0̸=|β|≤m−1

Seβ,

F̃j =
m⊕
k=1

F
(k)
j (j = 1, . . . , n− 1),

and

δ̃0(θ,
∑
β ̸=0

fβeβ) = δ0(θ) +
∑
β ̸=0

fβQeβ = θ ∗Qe0 +
∑
β ̸=0

((−1)|β|(adx)β(θ) ∗Q+ fβQ)eβ,

δ̃1(δ
k
He

(k)
H ) = (γk(PHδ

k
H),−

1

Q

∑
β ̸=0

(−1)|β|(adx)β(γk(PHδ
k
H)) ∗Qeβ),

δ̃j =
m⊕
k=1

d
(k)
j (j ≥ 2).

Recall that D(k)(S) = F
(k)
0 , and d1(δ

k
He

(k)
H ) = PHδ

k
H for 1 ≤ k ≤ m.

Theorem 10.7 (cf. Theorem 4.5.3 in [7]). The complex (10.6) is a minimal free resolution

of Coker(δ̄0) = S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )).

Proof. The complex (10.6) is exact by Theorem 8.3, Theorem 9.10, Lemma 10.4, Lemma
10.5, and Lemma 10.6. The operator PHδ

k
H is of order k and homogeneous of polynomial

degree deg(PH) = r−(n−1). Then each term of γk(PHδ
k
H) is of order k and of polynomial

degree greater than or equal to k. Hence each term of the operator (adx)β(γk(PHδ
k
H)) is

of order k−|β| and of polynomial degree greater than or equal to k. Therefore each term
of the polynomial

1

Q
(−1)|β|(adx)β(γk(PHδ

k
H)) ∗Q

is of degree greater than or equal to

r − (k − |β|) + k − r = |β| > 0.

Thus the free resolution (10.6) of Coker(δ̃0) is minimal. Clearly by (10.4)

Coker(δ̃0) = S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )) = Coker(δ̄0).

�

The following corollary is clear from Theorem 10.7 and the Auslander-Buchsbaum for-
mula.

Corollary 10.8 (cf. Corollary 4.5.5 [7]). The projective dimension of the S-module

S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )) is n, and the depth is 0.
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In the complex (10.6), the degrees of elements of bases are as follows:

deg(eβ) = −r − |β| in F̃−1,

deg(∂α) = −|α| in F̃0,

deg(eβ) = −|β| in F̃0,

deg(δkHeH) = −k + r − (n− 1) = r − n− k + 1 in F̃1.

Hence we have the following corollary:

Corollary 10.9 (cf. Corollary 4.5.4 in [7]). Assume that n ≥ 3 and m < r−n+1. Then
there exists an exact sequence

0 →
m⊕
k=1

S(k + 1− r)w
(k)
n−1 → · · · →

m⊕
k=1

S(k + n− j − r)w
(k)
j → · · ·

→
m⊕
k=1

S(k + n− 1− r)w
(k)
1 →

m⊕
k=1

S(k)sk
⊕m−1⊕

k=1

S(k)sk →

m−1⊕
k=0

S(r + k)sk → Coker(δ̄0) → 0,

where w
(k)
j were defined in Remark 9.9, sk =

(
n+k−1

k

)
, and all maps are homogeneous of

degree 0.
In particular, the Castelnuovo-Mumford regularity of Coker(δ̄0) is equal to r − n− 2.

Remark 10.10. In Corollary 10.9, to make the degrees of all the minimal generators of
Coker(δ̄0) nonnegative, we can shift the degrees by r + (m− 1) as in [7, Corollary 4.5.5].
Then the Castelnuovo-Mumford regularity of Coker(δ̄0) is equal to 2r +m− n− 3.

11. Jet modules

In this section, we prove that Coker(δ̄0) = S(
n+m−1
m−1 )/(Jm(A)+QS(

n+m−1
m−1 )) in Section 10

is the transpose of the m-jet module Ω[1,m](S/SQ). For the basics of jet modules, see [2],
[3], and [10].

Let I := ⟨f1, . . . , fk⟩ be an ideal of S. Let R := S/I. Define jet modules

Ω[1,m](S) := JS/J
m+1
S , Ω≤m(S) := S ⊗K S/Jm+1

S ,

Ω[1,m](R) := JR/J
m+1
R , Ω≤m(R) := R⊗K R/Jm+1

R ,
(11.1)

where

JS := ⟨1⊗ a− a⊗ 1 | a ∈ S⟩ ⊆ S ⊗K S,

JR := ⟨1⊗ a− a⊗ 1 | a ∈ R⟩ ⊆ R⊗K R.

Then Ω≤m(R) is the representative object of the functor M → Dm
R (R,M), i.e., there

exists a natural isomorphism of R-modules:

Dm
R (R,M) ≃ HomR(Ω

≤m(R),M),

where M is an R-module, and Dm
R (R,M) is the module of differential operators of order

≤ m from R to M .
As S-modules,

Ω≤m(S) = Ω[1,m](S)
⊕

S ⊗ 1, Ω≤m(R) = Ω[1,m](R)
⊕

R⊗ 1.
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Here note that S acts as S ⊗ 1. We have

{P ∈ Dm
R (R,M) |P ∗ 1 = 0} ≃ HomR(Ω

[1,m](R),M)

for an R-module M .
For a ∈ S (or R), we denote 1⊗ a− a⊗ 1 mod Jm+1

S (or Jm+1
R , respectively) by da.

Then, for f, g ∈ R, we have

(11.2) d(fg) = f dg + g df + (df)(dg).

As an S-module

Ω[1,m](S) =
⊕

1≤|α|≤m

S(dx)α.

For f ∈ S, we have

(11.3) df =
∑

1≤|α|≤m

1

α!
(∂α ∗ f)(dx)α.

We have a surjective S ⊗ S-module homomorphism

φ : Ω[1,m](S) ∋ (dx)α 7→ (dx̄)α ∈ Ω[1,m](R).

Lemma 11.1. As an S-module,

Kerφ =
∑

i; 1≤|α|≤m

Sfi(dx)
α +

∑
i; 0≤|α|≤m−1

S(dfi)(dx)
α.

Proof. The inclusion ‘⊃’ is clear. We prove the other inclusion.
First we prove that

(11.4) Kerφ = I dS + S dI.

Clearly the kernel of the S ⊗ S-module homomorphism :

Ω≤m(S) ∋ f ⊗ g 7→ f̄ ⊗ ḡ ∈ Ω≤m(R)

equals (S⊗ I + I ⊗S)/Jm+1
S or (S dI + I ⊗S)/Jm+1

S . Hence, to prove (11.4), it is enough
to show that

(11.5) (I ⊗ S) ∩ JS = I dS.

Let
∑

k ik ⊗ gk ∈ JS with ik ∈ I, gk ∈ S. Then
∑

k ikgk = 0. We have∑
k

ik ⊗ gk =
∑
k

(ik ⊗ gk − ikgk ⊗ 1) +
∑
k

ikgk ⊗ 1 =
∑
k

ik dgk + 0 ∈ I dS.

Hence we have proved (11.5) and in turn (11.4). Thus as an S-module

Kerφ =
∑

1≤|α|≤m

I(dx)α +
∑

0≤|α|<m

SdI(dx)α.

To finish the proof, we only need to show that d(fix
α) belongs to the right hand of the

assertion for any α. This is done by (11.2):

d(fix
α) = fid(x

α) + xαdfi + (dfi)(d(x
α)).

�
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Hence we have an S-free presentation of Ω[1,m](R):

(11.6) (
⊕

i; 1≤|α|≤m

Sfi(dx)
α)⊕ (

⊕
i; 0≤|β|≤m−1

S(dfi)(dx)
β) → Ω[1,m](S) → Ω[1,m](R) → 0.

Now we consider the case I = SQ:

(11.7) (
⊕

1≤|α|≤m

SQ(dx)α)⊕ (
⊕

0≤|β|≤m−1

S(dQ)(dx)β) → Ω[1,m](S) → Ω[1,m](S/SQ) → 0.

Hence, as an S/SQ-module, Ω[1,m](S/SQ) has a presentation:

(11.8)
⊕

0≤|β|≤m−1

(S/SQ)(dQ)(dx)β →
⊕

1≤|α|≤m

(S/SQ)(dx)α → Ω[1,m](S/SQ) → 0.

Note that by (11.3)

(dQ)(dx)β =
∑

|α+β|≤m,α ̸=0

1

α!
(∂α ∗Q)(dx)α+β

=
∑

|γ|≤m,γ ̸=β

1

(γ − β)!
(∂γ−β ∗Q)(dx)γ .

Hence the (β,γ)-component of the matrix of (11.8) equals
1

(γ − β)!
(∂γ−β ∗Q).

By Lemma 10.4, the S/SQ-module S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )) has a presentation:⊕

1≤|γ|≤m

(S/SQ)
1

γ!
∂γ

•→
⊕

0≤|β|≤m−1

(S/SQ)eβ(11.9)

→ S(
n+m−1
m−1 )/(Jm(A) +QS(

n+m−1
m−1 )) → 0,

and the (γ,β)-component of the matrix of the map • in (11.9) (recall (10.1)) equals
1

(γ − β)!
(∂γ−β ∗Q).

Thus we have proved the following theorem.

Theorem 11.2. The S/SQ-module S(
n+m−1
m−1 )/(Jm(A) + QS(

n+m−1
m−1 )) is the transpose of

Ω[1,m](S/SQ).

Corollary 11.3. The S/SQ-modules S(
n+m−1
m−1 )/(Jm(A) + QS(

n+m−1
m−1 )) and Ω[1,m](S/SQ)

share the same Fitting ideals.
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