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Definition: Spanning Tree Congestion

G o " | Definition (Spanning Tree Congestion)
T: a spanning tree of a graph G.
Q (% ) @ The detour of {u, v} € E(G) is the
unique u—v pathin T.
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G o Qo Definition (Spanning Tree Congestion)
T: a spanning tree of a graph G.
(% | (% ) @ The detour of {u, v} € E(G) is the
unique u—v pathin T.
@ The congestion of e € E(T),
o o cngg r(e) is the number of edges in
G whose detours contain e.
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G o e Definition (Spanning Tree Congestion)
T: a spanning tree of a graph G.
(% } (% ) @ The detour of {u, v} € E(G) is the
unique u-v pathin T.
@ The congestion of e € E(T),
o o cngg r(e) is the number of edges in
Q o G whose detours contain e.
T 5 5 @ The congestion of T, cngg(T) is the
3 max. congestion over all its edges.
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Definition: Spanning Tree Congestion

Definition (Spanning Tree Congestion)

T: a spanning tree of a graph G.

@ The detour of {u, v} € E(G) is the
unique u—v pathin T.

@ The congestion of e € E(T),
cngg 7(e) is the number of edges in
G whose detours contain e.

@ The congestion of T, cngg(T) is the
max. congestion over all its edges.

@ The spanning tree congestion of G,
stc(G) is the min. congestion over
all its spanning trees.
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The problems

Problem: STC

Instance: Connected graph G, positive integer k.
Question: stc(G) < k?

Problem: k-STC

Instance: Connected graph G.
Question: stc(G) < k?
Note: k is a fixed constant.
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Instance: Connected graph G, positive integer k.
Question: stc(G) < k?

Problem: k-STC

Instance: Connected graph G.
Question: stc(G) < k?
Note: k is a fixed constant.

We investigate the complexity of STC and k-STC.
(k-STC is a parameterized version of STC.)
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Q Introduction

@ Previous work & Our results

21

Previous work

S.T.C. is a relatively new graph parameter.

Simonson ‘87 (implicitly) Bounds for outerplanar graphs
1990’s (implicitly) in papers on Tree Spanner problems
Ostrovskii '04 named the parameter S.T.C.

2008-2010 Bounds or exact values for some graphs such as
grids, complete k-partite graphs, and hypercubes.
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\ Our results

S.T.C. is a relatively new graph parameter.

Simonson '87 (implicitly) Bounds for outerplanar graphs
1990’s (implicitly) in papers on Tree Spanner problems
Ostrovskii '04 named the parameter S.T.C.

2008-2010 Bounds or exact values for some graphs such as
grids, complete k-partite graphs, and hypercubes.

No complexity result (to the best of my knowledge).

21

Theorem (Positive results)

k-STC is linear time solvable for each of the following cases:
Q k<3
@ input graphs are apex-minor-free.
© input graphs have bounded maximum degree.

Theorem (Negative results)

k-STC is NP-complete even if the following conditions hold:
@ k>8,
@ input graphs are Kg-minor-free, and
@ input graphs have only one vertex of unbounded degree.

STC is NP-complete for planar graphs.
No PTAS, unless P = NP.

449



Introduction
000®

Apex-minor-free graphs

Definition (Apex graphs)

An apex graph is a graph that can be made planar by the
removal of a single vertex.

Examples of apex graphs
Ks, Ks,» for any n (and of course all planar graphs).

Definition (Apex-minor-free graphs)

A graph class is apex-minor-free if it excludes a fixed apex
graph as a minor.

Examples of apex-minor-free graphs

Planar graphs, bounded genus graphs, and graphs of bounded
treewidth.
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@ Related problems
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Related problems

stretch: the length of the longest detour.

Tree spanner problem
Minimize the stretch.

stretch = 2
congestion = 3
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Related problems

stretch: the length of the longest detour.

Tree spanner problem
Minimize the stretch.

Bandwidth & Cutwidth problems

Embed a graph on a line (or, find a good
linear arrangement) so that the stretch
(bandwidth) or the congestion (cutwidth)
is minimized.

stretch = 3 stretch
congestion = 4 congestion

stretch = 2
congestion = 3

line spanning tree
Bandwidth Tree Spanner
Cutwidth S.T.C.
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k-STC for k < 3 (1 of 2)

ste(G) =1 < Gisatree
stc(G) <2 < G s a cactus

Good characterization for “stc(G) < 3" ?

Cactus

13/21
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k-STC for k < 3 (1 of 2)

| ntoduton ~ Sketchofproos  Conclusion
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k-STC for k < 3 (2 of 2)

! ste(G) =1 < Gisatree
4 stc(G) <2 < G s a cactus
A ° Good characterization for “stc(G) < 3" ?
@ °
Tree
If ste(G) < 3, then G is planar.
o o
9 °
x @ K, subdivision = stc>n—1
o ° @ K., subdivision = stc> n+1
° ° Nonplanarity = Ks or Kz 3 subdivision
Cactus — sic > 4. O
13/21

k-STC is solvable in linear time if k < 3.

@ Check the planarity of G in linear time.
@ If the answer is NO, then stc(G) > 4.

© Otherwise, use our linear time algorithm for planar graphs.
(Or, we can use another practical algorithm.)

G —H planar? ﬁﬁ stc < k? &) Yes
I no J’no
» No

14/21

Outline

k-STC for graphs of bounded degree (1 of 2)

e Sketch of proofs

@ k-STC for bounded degree graphs

15/21

We need the following two lemmas. (A(G) is the max degree)

tw(G) < A(G)(stc(G) — 1)/2.

k-STC is linear time solvable for graphs of bounded treewidth.

Proof of the second lemma.

k-STC can be expressed in MSO logic. Courcelle’s Theorem

implies the lemma. O

16/21

MSO logic expression for k-STC

k-STC for graphs of bounded degree (2 of 2)

Degl(vy, Ey) := (3 € Ey)(Vey € Ey)(e1 = 62 < inc(vy, 62))
Part(Vy, Vo, Vg) i= Vo £ DA Vg DA (Vo U Vg = Vi) A (Vo Vg = 0)
Adj(vy, vo, Ey) := vy # v A (e € Eq)(inc(vy, €) Ainc(vp, )
Ey =Ind(Vy) := (Vey)(ey € Ey <= (3vq, v € Vq)(vy # vp Alinc(vq, e1) Ainc(va, e1)))
Ey = Incg(vy) := (Veqr)(ey € Ey <= inc(vq, e1))
Vi =TIncy(Ey) == (Yvy)(vy € Vi <= (Jer € Ey)(inc(vy, €1)))
Conn(Ey) := (VVa, Vg)(Part(Incy (Eq), Vo, Vg) = (Ivp € Vo, v3 € Va)(Adj(va, v3, Ey)))
BiConn(Ey) := (Ivy, Vo, v3 € Iney (Ey))(v; # v)(1 < i < j < 3) A (Yvg)(Conn(Ey \ Incg(v4)))
Forest(Ey) := (YV; C Incy(E;))(=BiConn(Ind(V) N Ey))
Tree(Ey) := Forest(Ey) A Conn(Ey)
Path(vq, vp, Ey) := Tree(Eq) A (Vvg € Incy(Eq))(Degl(vs, Ey) <= V3 =Vv4 Vg = 1p)
SpnTree(E; ) := Tree(Ey) A (VV)(v € Incy(Ey))
Detour(eq, Ey) := (3vy, vo)(vy # Vo Ainc(vy, 1) Ainc(vp, 1) A Path(vy, vo, Ey))
Congy (€. Eg) := —(Fey, ..., e)((er ¢ E)(1 < i< K Aeg#eg(l <i<j<k)
A (3Ej)(e € E; A Ej C Ey A Detour(e;, Ej))(1 < i < k)

,,,,,

stc(G) < k < G = (3Eo)(SpnTree(Eg)A(Vey € Ep)(Congy(eo, Eo))).

k-STC is linear time solvable on graphs of bounded degree.

@ Check tw(G) < d(k — 1)/2in linear time. (d := A(G))
@ If the answer is NO, then stc(G) > k.
© O.w, use a linear time algorithm for bounded treewidth.

G_ﬁ tw< d(k— 1)/2?&” stc < k?&)Yes
Ino lno

We use Bodlaender’s algorithm to check bounded tw.

L Q
[ 4

No
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e Conclusion
@ Conclusion & Open problems

Our results

Theorem (Positive results)

k-STC is linear time solvable for each of the following cases:
Q k<3
@ input graphs are apex-minor-free.
© input graphs have bounded maximum degree.

Theorem (Negative results)

k-STC is NP-complete even if the following conditions hold:
@ k>38,

@ input graphs are Kg-minor-free, and
@ input graphs have only one vertex of unbounded degree.

STC is NP-complete for planar graphs.
No PTAS, unless P = NP.
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Open problems

@ Complexity of k-STC for k € {4,5,6,7}.
o | think 4-STC might be NP-complete.
@ Complexity of STC and k-STC for some graph classes.

o Recent progress with Y. Okamoto, R. Uehara, and T. Uno:

STC is NP-complete for split graphs and chordal bipartite

graphs, and linear time solvable for trivially perfect graphs.

@ Approximation. (O(log n)-factor approximation?)
e Constant factor approximation might be NP-hard.
@ Is STC € FPT for k-outerplanar graphs? (parameter is k)

o If k =1, i.e., for outerplanar graphs, STC can be solved in
linear time. (with Bodlaender, Kozawa, Matsushima)

Open problems

@ Complexity of k-STC for k € {4,5,6,7}.
e | think 4-STC might be NP-complete.
@ Complexity of STC and k-STC for some graph classes.

o Recent progress with Y. Okamoto, R. Uehara, and T. Uno:
STC is NP-complete for split graphs and chordal bipartite
graphs, and linear time solvable for trivially perfect graphs.

@ Approximation. (O(log n)-factor approximation?)
o Constant factor approximation might be NP-hard.
@ Is STC € FPT for k-outerplanar graphs? (parameter is k)

e If k =1, i.e., for outerplanar graphs, STC can be solved in
linear time. (with Bodlaender, Kozawa, Matsushima)

Thank you for your attention!
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