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Definition: Spanning Tree Congestion
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Definition (Spanning Tree Congestion)

T : a spanning tree of a graph G.
The detour of {u, v} ∈ E(G) is the
unique u–v path in T .
The congestion of e ∈ E(T ),
cngG,T (e) is the number of edges in
G whose detours contain e.
The congestion of T , cngG(T ) is the
max. congestion over all its edges.
The spanning tree congestion of G,
stc(G) is the min. congestion over
all its spanning trees.
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The problems

Problem: STC
Instance: Connected graph G, positive integer k .
Question: stc(G) ≤ k?

Problem: k -STC
Instance: Connected graph G.
Question: stc(G) ≤ k?

Note: k is a fixed constant.

We investigate the complexity of STC and k -STC.
(k -STC is a parameterized version of STC.)
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Previous work

S.T.C. is a relatively new graph parameter.

History
Simonson ’87 (implicitly) Bounds for outerplanar graphs

1990’s (implicitly) in papers on Tree Spanner problems
Ostrovskii ’04 named the parameter S.T.C.
2008–2010 Bounds or exact values for some graphs such as

grids, complete k -partite graphs, and hypercubes.

No complexity result (to the best of my knowledge).
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Our results

Theorem (Positive results)
k-STC is linear time solvable for each of the following cases:

1 k ≤ 3.
2 input graphs are apex-minor-free.
3 input graphs have bounded maximum degree.

Theorem (Negative results)

k-STC is NP-complete even if the following conditions hold:
k ≥ 8,
input graphs are K6-minor-free, and
input graphs have only one vertex of unbounded degree.

STC is NP-complete for planar graphs.
No PTAS, unless P = NP.
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Apex-minor-free graphs

Definition (Apex graphs)
An apex graph is a graph that can be made planar by the
removal of a single vertex.

Examples of apex graphs

K5, K3,n for any n (and of course all planar graphs).

Definition (Apex-minor-free graphs)

A graph class is apex-minor-free if it excludes a fixed apex
graph as a minor.

Examples of apex-minor-free graphs

Planar graphs, bounded genus graphs, and graphs of bounded
treewidth.
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Related problems

a
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T

stretch = 2
congestion = 3

a b f c e d

stretch = 3
congestion = 4

stretch: the length of the longest detour.

Tree spanner problem
Minimize the stretch.

Bandwidth & Cutwidth problems
Embed a graph on a line (or, find a good
linear arrangement) so that the stretch
(bandwidth) or the congestion (cutwidth)
is minimized.

line spanning tree
stretch Bandwidth Tree Spanner

congestion Cutwidth S.T.C.
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k -STC for k ≤ 3 (1 of 2)

Tree

Cactus

Theorem
stc(G) = 1 ⇐⇒ G is a tree
stc(G) ≤ 2 ⇐⇒ G is a cactus

Good characterization for “stc(G) ≤ 3” ?

Lemma
If stc(G) ≤ 3, then G is planar.

Proof.
1 Kn subdivision =⇒ stc ≥ n − 1
2 Kn,n subdivision =⇒ stc ≥ n + 1

Nonplanarity =⇒ K5 or K3,3 subdivision
=⇒ stc ≥ 4.
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k -STC for k ≤ 3 (2 of 2)

Theorem
k-STC is solvable in linear time if k ≤ 3.

Proof.
1 Check the planarity of G in linear time.
2 If the answer is NO, then stc(G) ≥ 4.
3 Otherwise, use our linear time algorithm for planar graphs.

(Or, we can use another practical algorithm.)

planar? stc ≤ k?G Yes

No

yes yes

no no
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k -STC for graphs of bounded degree (1 of 2)

We need the following two lemmas. (∆(G) is the max degree)

Lemma
tw(G) ≤ ∆(G)(stc(G)− 1)/2.

Lemma
k-STC is linear time solvable for graphs of bounded treewidth.

Proof of the second lemma.
k -STC can be expressed in MSO logic. Courcelle’s Theorem
implies the lemma.
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MSO logic expression for k -STC

Deg1(v1, E1) := (∃e1 ∈ E1)(∀e2 ∈ E1)(e1 = e2 ⇐⇒ inc(v1, e2))

Part(V1, V2, V3) := V2 6= ∅ ∧ V3 6= ∅ ∧ (V2 ∪ V3 = V1) ∧ (V2 ∩ V3 = ∅)
Adj(v1, v2, E1) := v1 6= v2 ∧ (∃e1 ∈ E1)(inc(v1, e) ∧ inc(v2, e))

E1 = Ind(V1) := (∀e1)(e1 ∈ E1 ⇐⇒ (∃v1, v2 ∈ V1)(v1 6= v2 ∧ inc(v1, e1) ∧ inc(v2, e1)))

E1 = IncE(v1) := (∀e1)(e1 ∈ E1 ⇐⇒ inc(v1, e1))

V1 = IncV(E1) := (∀v1)(v1 ∈ V1 ⇐⇒ (∃e1 ∈ E1)(inc(v1, e1)))

Conn(E1) := (∀V2, V3)(Part(IncV(E1), V2, V3) =⇒ (∃v2 ∈ V2, v3 ∈ V3)(Adj(v2, v3, E1)))

BiConn(E1) := (∃v1, v2, v3 ∈ IncV(E1))(vi 6= vj )(1 ≤ i < j ≤ 3) ∧ (∀v4)(Conn(E1 \ IncE(v4)))

Forest(E1) := (∀V1 ⊆ IncV(E1))(¬BiConn(Ind(V1) ∩ E1))

Tree(E1) := Forest(E1) ∧ Conn(E1)

Path(v1, v2, E1) := Tree(E1) ∧ (∀v3 ∈ IncV(E1))(Deg1(v3, E1) ⇐⇒ v3 = v1 ∨ v3 = v2)

SpnTree(E1) := Tree(E1) ∧ (∀v)(v ∈ IncV(E1))

Detour(e1, E1) := (∃v1, v2)(v1 6= v2 ∧ inc(v1, e1) ∧ inc(v2, e1) ∧ Path(v1, v2, E1))

Congk (e0, E0) := ¬(∃e1, . . . , ek )((ei /∈ E0)(1 ≤ i ≤ k) ∧ ei 6= ej (1 ≤ i < j ≤ k)

∧ (∃Ei )(e0 ∈ Ei ∧ Ei ⊆ E0 ∧ Detour(ei , Ei ))(1 ≤ i ≤ k))

stc(G) ≤ k ⇐⇒ G |= (∃E0)(SpnTree(E0)∧(∀e0 ∈ E0)(Congk (e0, E0))).
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k -STC for graphs of bounded degree (2 of 2)

Theorem
k-STC is linear time solvable on graphs of bounded degree.

Proof.
1 Check tw(G) ≤ d(k − 1)/2 in linear time. (d := ∆(G))
2 If the answer is NO, then stc(G) > k .
3 O.w., use a linear time algorithm for bounded treewidth.

tw ≤ d(k − 1)/2? stc ≤ k?G Yes

No

yes yes

no no

We use Bodlaender’s algorithm to check bounded tw.
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Our results

Theorem (Positive results)
k-STC is linear time solvable for each of the following cases:

1 k ≤ 3.
2 input graphs are apex-minor-free.
3 input graphs have bounded maximum degree.

Theorem (Negative results)

k-STC is NP-complete even if the following conditions hold:
k ≥ 8,
input graphs are K6-minor-free, and
input graphs have only one vertex of unbounded degree.

STC is NP-complete for planar graphs.
No PTAS, unless P = NP.
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Open problems

Complexity of k -STC for k ∈ {4, 5, 6, 7}.
I think 4-STC might be NP-complete.

Complexity of STC and k -STC for some graph classes.
Recent progress with Y. Okamoto, R. Uehara, and T. Uno:
STC is NP-complete for split graphs and chordal bipartite
graphs, and linear time solvable for trivially perfect graphs.

Approximation. (O(log n)-factor approximation?)
Constant factor approximation might be NP-hard.

Is STC ∈ FPT for k -outerplanar graphs? (parameter is k )
If k = 1, i.e., for outerplanar graphs, STC can be solved in
linear time. (with Bodlaender, Kozawa, Matsushima)

Thank you for your attention!
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