Title	ビット並列計算を用いた高度なパターン照合
Author(s)	金田, 悠作
Citation	2010年度科学技術振興機構ERATO湊離散構造処理系プロジェクト講究録. p.404-412.
Issue Date	2011-06
Doc URL	http://hdl.handle.net/2115/48352
Туре	conference presentation
Note	ERATO湊離散構造処理系プロジェクト : 2010年度初冬のワークショップ(ERATO合宿). 2010年11月29日 (月)~12月1日(水). 札幌北広島クラッセホテル.
File Information	05.06_kaneta.pdf

ビット並列計算を用いた 高度なパターン照合

北海道大学 博士後期課程2年

金田 悠作

17th String Processing and Information Retrieval Symposium (SPIRE2010)

Fast Bit-Parallel Matching for Network and Regular Expressions

Yusaku Kaneta, Shin-ichi Minato, and Hiroki Arimura

Graduate School of Information Science and Technology
Hokkaido University, Japan

Background

- Regular expression matching problem
 - Fundamental problem in string processing
- Its new applications have emerged such as
- NIDS (Network Intrusion Detection Systems)
- ESP (Event Stream Processing)
- There are demands for large-scale pattern matching systems
 - However, these systems have to cope with ...

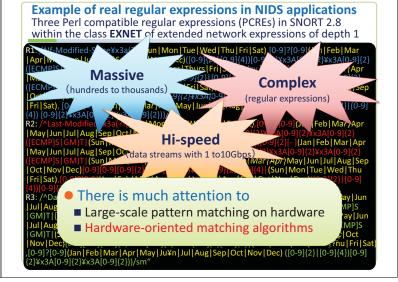
0/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田悠作(北海道大学

Example of real regular expressions in NIDS applicationsThree Perl compatible regular expressions (PCREs) in SNORT 2.8 within the class **EXNET** of extended network expressions of depth 1

R1: /^lf-Modified-Since\(\frac{\}\)aa(?!\(\frac{\}\)mon|\(\tau\)| \(\tau\)| \(\frac{\}\)mon|\(\frac{\}\)an|\(\frac{\}\)mon|\(\frac{\}\)ann|\(\frac{\}\)an|\(\frac{\}\)an|\(\frac{\}\)ann|\(\frac{\}\)ann|

R2: /^Last-Modified\x3a(?!((Sun | Mon | Tue | Wed | Thu | Fri | Sat), [0-9]?[0-9](Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec)((0-9](2)|[0-9](4)) [0-9](2)\x3A[0-9](2) | ([ECMP]S | GM)T | (Sun | Mon | Tues | Wednes | Thurs | Fri | Satur)day, [0-9](2]- | (Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec)|-|([0-9](2)|[0-9](4))[0-9](2]\x3A[0-9](2)\x3A[0-9](2) \x3A[0-9](2) | ([ECMP]S | GM)T | (Sun | Mon | Tue | Wed | Thu | Fri | Sat), [Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec)([0-9](2)|[2]\x3A[0-9](2]\x3A[0-9](2)|[2](1-9](4)|[3](1-9](2)|[2](1-9](4)|[3](1-9](2)|[3](1-9](1-9)[3]

 $\label{eq:resolvent} R3: $$ '\text{Date}$x3a(?!(Sun|Mon|Tue|Wed|Thu|Fri|Sat),} [0-9](0-9](Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) ([0-9]{2}|[0-9]{4}|[0-9]{2}|x3A[0-9]{2}|x3A[0-9]{2}|ECMP]S [GM]T|(Sun|Mon|Tues|Wednes|Thurs|Fri|Satur)day,[0-9]{2}|-[Jdan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|N¥ov|Dec)[-]([0-9]{2}|[0-9]{4})[0-9]{2}x3A[0-9]{2}x3A[0-9]{2}([ECMP]S [GM]T|(Sun|Mon|Tue|Wed|Thu|Fri|Sat) (Jan|Feb|Mar|Apr|May|Jun|Jul|Au¥g|Sep|Oct|Nov|Dec)[0-9][0-9][0-9]{2}x3A[0-9]{2}x3A[0-9]{2}[x3A[0-9]{2}](0-9)[4]|(Sun|Mon|Tue|Wed|Thu|Fri|Sat),[0-9](0-9][4]|(Sun|Mon|Tue|Wed|Thu|Fri|Sat),[0-9](0-9][4]|(Sun|Mon|Tue|Wed|Thu|Fri|Sat),[0-9](2)[2]x3A[0-9]{2}]x3A[0-9]{2}]x3A[0-9]{2}]x3A[0-9]{2}]x3A[0-9]{2})/sm"$



Background

- Large-scale pattern matching systems have to cope with requirements
 - Massive (hundreds to thousands)
 - Complex patterns (regular expressions)
 - High-speed data streams (with 1 to 10 Gbps)
- Hardware-oriented matching algorithms
 - DFA-based, NFA-based, CAM-based ...
 - None of these satisfies all of the above three requirements
- In this research, we focus on bit-parallel methods for efficient regular expression matching

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Classes of regular expressions

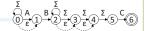
- We study the regular expression matching problem for the following subclasses of regular expressions
 - Regular expressions (REG)
 - Network expressions (NET):
 The subclass of REG without Kleene-star [Myers, '96]
 - Extended network expressions (EXNET): (our main target class)
 Network expressions over the class EXT of extended strings
 - which are concatenations of letter α, class of letters [ab...], optional letter a?, bounded repeat a{lo, hi}, and unbounded repeats a* and a+.
 - These subclasses are widely used in real world applications such as NIDS and ESP

Extended network expressions R = A(AB|B?)(B?.*|AB)C

2010/11/29 第2回 離散構造処理系シンボジウム:ピット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学

Bit-Parallel method

SHIFT-AND approach



- SHIFT-AND method [Baeza-Yates & Gonnet, '92]
- Bit-parallel matching algorithm for the class **STR** of strings
- Boolean (&, |) operations only
- Simple and efficient
- Extended SHIFT-AND method [Navarro & Raffinot, '01]
 - A nice extension to the class **EXT** of extended strings
 - Boolean (&, |, ~, ⊕) and arithmetic (-) operations
 - Still simple and efficient
- Challenge: Expressiveness of matching patterns
- Open problem: Can we extend Extended SHIFT-AND method to more general subclasses of REG?

1010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合 - 金田 悠作(北海道大学)

Related work

- Bit-parallel Thompson [Wu & Manber, '92]
 - Bit-parallel matching algorithm for the class **REG**
 - Boolean (&, |) operations
 - Table-lookup
- Myers's algorithm [Myers, '92]
 - Matching algorithm for the class **REG**
 - Table-lookup
 - Module decomposition of Thompson NFA
- Bille's algorithm [Bille, ICALP2006]
 - Bit-parallel matching algorithm for the class **REG**
 - Boolean (&, |) and arithmetic (-) operations
 - Module decomposition of Thompson NFA

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合 - 金田 悠作(北海道大学

Our results

- We developed Extended² SHIFT-AND method
- Fast bit-parallel matching algorithm for extended network expressions that runs in
 - O(ndm/w) time
 - O(dm/w) space
 - O(dm) preprocessing
- Extension for regular expressions
- Experimental results on hardware implementation of our algorithm
- Keys
 - Bi-monotonicity lemma for Thompson NFA
 - Bit-parallel operations Scatter, Gather, and Propagate for simulating ε-moves

m: size of R, n: size of T, d: depth of R, w: word length

2010/11/29 第2回 離散構造処理系シンボジウム: ビット並列計算を用いた高度なパターン照合-金田 悠作 (北海道大学)

Comparison: Time & Space complexities

- Our Extended² SHIFT-AND method is the first extension of SHIFT-AND and Extended SHIFT-AND methods to the following classes:
 - Extended network expressions (EXNET)
 - Regular expressions (REG)

Algorithm	Class	Time	Space (in words)
SHIFT-AND [Baeza-Yates & Gonnet, '92]	STR	O(nm/w)	O(m/w)
Extended SHIFT-AND [Navarro & Raffinot, '01]	EXT	O(nm/w)	O(m/w)
Extended ² SHIFT-AND	EXNET	O(ndm/w)	O(dm/w)
(in this talk)	REG	O(ndlog(m)m/w)	O(dlog(m)m/w)

 \mathbf{m} : size of R, \mathbf{n} : size of T, \mathbf{d} : depth of T, \mathbf{w} : word length

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学)

Hardware implementation

- Merit of our Extended² SHIFT-AND method
 - Simple and Efficient: Our algorithm is particularly efficient for expression of small depth and regular structure. Therefore, it is suitable to applications such as NIDS and ESP.
 - Hardware friendly: Our algorithm is suitable to modern parallel hardwares, such as FPGA and GPGPU since it uses only simple Boolean and arithmetic operations (+, −) avoiding the heavy use of table-lookup.

 FPGA = Field Programmable Gate Array GPGPU = General Purpose GPU
- Implementation
 - We implemented our algorithm on FPGA.
 - The update formulae of bit-parallel matching are transformed into a fixed circuitry on FPGA in advance.
 - In preprocessing, bitmasks are loaded to block RAMs on FPGA.
 - In runtime, The NFA equivalent to a given expression is simulated by the circuitry.

1010/11/29 第2回離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Hardware implementation

- Experimental settings
 - Our circuit written in Verilog HDL is compiled and simulated on Xilinx Virtex-5 FPGA LX330 (51,840 slices and 1 MB block RAMs) using Xilinx ISE Design Suite and Synopsys VCS.
- Expertimental results
 - 128 patterns of length 32 can be installed on the FPGA
 - Our algorithm implemented on the FPGA (0.6 GHz clock) achieves the high throughput of 0.5 Gbps.

Algorithm	Class	#pat	#op	#add	Throughput
Extended ² SHIFT-AND (in this talk)	EXNET	128	20	9	0.5 Gbps

#pat, #op, and #add are the number of input expressions,
32-bit Boolean-operaions, and 32-bit integer additions, respectively

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合-金田 悠作(北海道大学)

Algorithms

010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合 - 金田 悠作(北海道大学)

Our bit-parallel algorithm

Outline of algorithm

Algorithm Extended² SHIFT-AND Preprocessing

- Transform an input regular expression R to the equivalent NFA N_R (Thompson NFA, TNFA).
- Construct a set of bitmasks for TNFA.

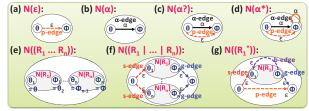
Runtime:

■ Simulate TNFA **N**_R on an input text by using the bitmasks based on bit-parallel method.

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合 - 金田 悠作(北海道大学)

16

Thompson NFA [Thompson, CACM1968]



- A NFA equivalent to a regular expression R
- The source θ and the sink ϕ
- Depths d(S) and d(x) of subexpressions S and states x
- The number of nesting of Union "|"
- TNFA for EXNET has three types of ε-edges
- Scatter edges, Gather edges, and Propagate edges
- TNFA for REG has one more type of ε-edges
- Back edges

1010/11/29 第2回 離散構造処理系シンボジウム: ピット並列計算を用いた高度なパターン照合 - 金田 悠作(北海道大学)

Simulation of Thompson NFA

- We use bit-parallel method
 - Encode a state set of TNFA in a bitmask **D**
- Procedure RunTNFA:
 - Simulates α-moves Move_N(D, α) in the same way as SHIFT-AND approaches [Baeza-Yates & Gonnet, '92][Navarro & Raffinot, '01]
 - Simulates ε-closure EpsClo_N(D) by combining bit-parallel operations Scatter, Gather, and Propagate [This talk]

Procedure RunTNFA(T = $t_1 \dots t_n$: input text)

1. $D \leftarrow Init_N$;

2. $D \leftarrow EpsClo_N(D)$;

3. for $t \leftarrow t_1, \dots, t_n$ do

4. if $D \otimes Accept_N \neq 0$ then

5. output match i-1;

6. $D \leftarrow Move_N(D, t)$;

7. $D \leftarrow EpsClo_N(D)$;

8. end for

11/29 第2回 離散構造処理系シンボジウム: ピット並列計算を用いた高度なパターン照合・金田 悠作(北海道大学)

a constant alphabet Σ , where $|\Sigma| = O(1)$

18

Our bit-parallel algorithm

- Key: Computation of ε-closure EpsClo_N(D)
- Consists of two components:
- 1. Bi-monotonicity lemma for Thompson NFA
- **2.** Bit-parallel implementation of three ε-move operations: **Scatter**, **Gather**, and **Propagate**

Scatte

Gather

Propagate

1010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学)

Bimonotonicity lemma

• Let $N_R = (V, E, \theta, \phi)$ be a TNFA with source θ and sink ϕ

Procedure Bypassing

- 1. Visit every **sub-TNFA N'** of N_R whose source θ' and sink φ' are connected by an ϵ -path π
- 2. Add an ε -edge directly connecting θ' and φ'

- Bypassing can be done in O(m) time in preprocessing
- Expand(R) denotes the NFA obtained from N_R by bypassing

2010/11/29 第2回 離散構造処理系シンボジウム: ビット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Bimonotonicity lemma

- Let x, y be any states in TNFA N_R for Expand(R)
- For any states x, y, define $d(x) \le_1 d(y)$ iff $d(x) d(y) \le 1$

Lemma 1. (Bi-monotonicity lemma) If there is an ε -path π from $\mathbf x$ to $\mathbf y$, then there also exists some bi-monotone ε -path $\pi' = (x_1 = x, \dots, x_n = y)$ from $\mathbf x$ to $\mathbf y$ in $\mathsf N_R$ such that $\mathsf d(x_1) \ge_1 \dots \ge_1 \mathsf d(x_k)$ and $\mathsf d(x_k) \le_1 \dots \le_1 \mathsf d(x_n)$ (Eq1)

Errata: There is a mistake in the definition of the bimonotonicity in Page 379 of the conference proceedings. The direction of inequality ≤₁ is opposite to the correct one :-)

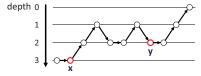
Please correct it as in the above (Eq1).

010/11/29 第2回 離散構造処理系シンボジウム: ピット並列計算を用いた高度なパターン照合 - 金田 悠作(北海道大学)

Bimonotonicity lemma

- Let x, y be any states in TNFA N_R for Expand(R)
- For any states x, y, define $d(x) \le_1 d(y)$ iff $d(x) d(y) \le 1$

Lemma 1. (Bi-monotonicity lemma) If there is an ε -path π from \mathbf{x} to \mathbf{y} , then there also exists some bi-monotone ε -path $\pi' = (x_1 = x, \dots, x_n = y)$ from \mathbf{x} to \mathbf{y} in N_R such that $d(x_1) \ge_1 \dots \ge_1 d(x_k)$ and $d(x_k) \le_1 \dots \le_1 d(x_n)$



Step 0. Suppose we have a TNFA N_R with an ϵ -path π from state x to state y

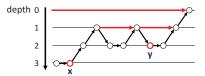
2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合 - 金田 悠作(北海道大学)

22

Bimonotonicity lemma

- Let x, y be any states in TNFA N_R for Expand(R)
- For any states x, y, define $d(x) \le_1 d(y)$ iff $d(x) d(y) \le 1$

Lemma 1. (Bi-monotonicity lemma) If there is an ε-path π from **x** to **y**, then there also exists some bi-monotone ε-path π' = $(x_1 = x, ..., x_n = y)$ from **x** to **y** in N_R such that $d(x_1) \ge_1 \cdots \ge_1 d(x_k)$ and $d(x_k) \le_1 \cdots \le_1 d(x_n)$



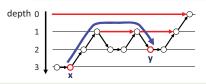
Step 1.
Applying bypassing transformation to the TNFA N_R

110/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Bimonotonicity lemma

- Let x, y be any states in TNFA N_R for Expand(R)
- For any states x, y, define $d(x) \le_1 d(y)$ iff $d(x) d(y) \le 1$

Lemma 1. (Bi-monotonicity lemma) If there is an ε-path π from \mathbf{x} to \mathbf{y} , then there also exists some bi-monotone ε-path $\pi' = (x_1 = x, \dots, x_n = y)$ from \mathbf{x} to \mathbf{y} in N_R such that $d(x_1) \ge_1 \dots \ge_1 d(x_k)$ and $d(x_k) \le_1 \dots \le_1 d(x_n)$

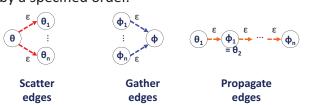


Step 2. There exists a bimonotone ε-path connecting x and y

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合 - 金田 悠作(北海道大学)

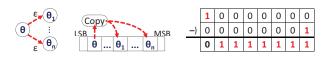
24

- Scatter simulates ε-moves by scatter edges.
- Gather simulates ε-moves by gather edges.
- Propagate simulates ε-closure by propagate edges.
- Operations are separately done for each depth by a specified order.



Scatter operation

 Basic idea: carry propagation of integer subtraction (The origin of using carry propagation is due to [Navarro & Raffinot, '01])



Preprocess: for depth k, we construct the following bitmasks

- BLK_s[k]: the state $j = \theta_n + 1$
- $SRC_s[k]$: the source $j = \theta$
- DST_s[k]: the destinations $j \in \{\theta_1, ..., \theta_n\}$

Runtime: for state set D and depth k, we perform

■ Scatter(D, k) = { D \leftarrow D | ((BLK_S[k] – (D & SRC_S[k])) & DST_S[k]; }

第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバターン照合-金田悠作(北海道大学

Gather operation

 Basic idea: carry propagation of integer addition (The origin of using carry propagation is due to [Navarro & Raffinot, '01])

Preprocess: for depth k, we construct the following bitmasks

- BLK_G[k]: the states j in interval $[\Phi_1..\Phi-1]$
- $SRC_G[k]$: the sources $j \in \{\Phi_1, ..., \Phi_n\}$
- DST_G[k]: the destination $\mathbf{j} = \mathbf{\Phi}$

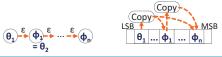
Runtime: for state set D and depth k, we perform

■ Gather(D, k) = { D \leftarrow D | ((BLK_G[k] + (D & SRC_G[k])) & DST_G[k]; }

第2回 離散構造処理系シンポジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学)

Propagate operation

- Basic idea: Propagate operation of Extended SHIFT-AND for the ε-closure of a set of ε-blocks [Navarro & Raffinot, '01]
 - An ε-block is a maximal consecutive sequence of ε-edges.



Preprocess: for depth k, we construct the following bitmasks

- BLK_p[k]: the states j in ε -block B = { θ_1 , Φ_1 = θ_2 ,..., Φ_n }
- $SRC_p[k]$: the least significant state $j = min(B) = \theta_1$ in ϵ -block B
- DST_p[k]: the most significant state $j = min(B) = \Phi_n$ in ϵ -block B

Runtime: for state set D and depth k, we perform

■ Propagate(D, k) \equiv { A \leftarrow (D & BLK_p[k]) | DST_p[k]; $D \leftarrow D \mid (BLK_p[k] \& ((^(A - SRC_p[k])) \oplus A));$

第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学

Putting them together

- Scatter, Gather, and Propagate can be computable in O(m/w) time using O(m/w) space and O(m) preprocessing.
- The following procedure correctly computes the ε-closure EpsClo_N(D) in O(dm/w) time using O(dm/w) space and O(dm) preprocessing, where d = d(R).

Procedure EpsClo_N(D: a state set of TNFA N_R) 1. for $k \leftarrow d(R), ..., 1$ do $D \leftarrow Propagate(D, k);$ $D \leftarrow Gather(D, k-1);$ end for $D \leftarrow Propagate(D, 0);$ for k ← d(R), ..., 1 do D ← Scatter(D, k-1); $D \leftarrow Propagate(D, k);$ end for 10. return D; 第2回 離散構造処理系シンボジウム: ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学

Main result for the class EXNET

• Combining Move_N and EpsClo_N with our algorithm Extended² SHIFT-AND, we have:

Theorem 1. Our bit-parallel algorithm for **EXNET** solves the regular expression matching problem for **EXNET** in

- O(ndm/w) time
- O(dm/w) space
- O(dm) preprocessing

m: size of R, n: size of T, d: depth of T, w: word length

Extension to the class REG

 For an extension of our algorithm for REG by the barrel shifter technique in VLSI design, we have:

Theorem 2. Our modified algorithm for **REG** solves the regular expression matching problem for **REG** of general regular expressions in

- ■O(ndlog(m)m/w) time
- ■O(dlog(m)m/w) space
- O(dlog(m)m) preprocessing

m: size of R, n: size of T, d: depth of T, w: word length

Note: • If there are at most constant number of back edges with mutually distinct lengths, then we can replace the O(log m) term with O(1)

• If the O(1)-bit-reversal operation is available, then we can also replace the $O(\log m)$ term with O(1)

2010/11/29 第2回 離散構造処理系シンボジウム: ビット並列計算を用いた高度なパターン昭合 - 余田 悠作 (北海道大学)

Conclusion

- Fast bit-parallel matching algorithm for extended network expressions that runs in
 - O(ndm/w) time
 - O(dm/w) space
 - O(dm) preprocessing
- Extension for regular expressions
- We implemented our algorithm on FPGA, and achieves the high throughtput of 0.5 Gbps
- Future works:
 - Tree and XML matching

m: size of R, n: size of T, d: depth of R, w: word length

010/11/20 第2回 離散構造処理系シンボジウム・ビット並列計算を用いた高度なパターン紹合。全田 修作(北海道大学

21st International Workshop on Combinatorial Algorithms (IWOCA'10)

Faster Bit-Parallel Algorithms for Unordered Pseudo-Tree Matching and Tree Homeomorphism

Yusaku Kaneta and Hiroki Arimura

Graduate School of Information Sci. and Tech. Hokkaido University, Japan

Thank you

010/11/29 第2回 離散構造処理系シンボジウム:ピット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Background: Tree matching problem

- Problem of finding an embedding φ from a pattern tree P to a text tree T
- Fundamental problem in computer science [Kilpelainen & Mannila, '94]
- It has many applications
- We consider unordered tree matching and its variants (for labeled, rooted tree)

Pattern tree P

(C) A B

(E0) \$\phi\$ is one-to-one
(E1) \$\phi\$ preserves
the node labels
(E2) \$\phi\$ preserves
the parent-child relation

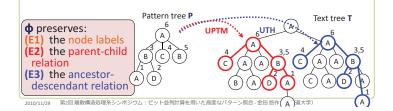
Background: Many-to-one matching

- In original theoretical studies:
 Tree matching with one-to-one mapping has been mainly studied so far
- In recent practical studies: Tree maching with many-to-one mapping attracts much attention
- Goal: To develop efficient algorithms for two tree matching problems with many-toone mappings
 - Unordered pseudo-tree matching problem (UPTM) ⇔ XPath queries with child axis only
 - Unordered tree homeomorphism problem (UTH)
 ⇔ XPath queries with descendant axis only

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学)

Definition

- Unorderd pseudo-tree matching problem (UPTM)
 - A pattern tree P matches a text tree T if there is a many-to-one mapping $\phi: V(P) \rightarrow V(T)$ from P into T satisfying the conditions (E1) and (E2)
 - An occurrence of P in T is the image of the root of P
- The problem is to find all occurrences of P in T
- Unorderd tree homeomorphism problem (UTH)
 - is defined similarly, where many-to-one mapping satisfying (E1) and (E3) is



Related work

- Many studies for tree matching with one-to-one mappings
 - [Kilpelainen, Mannila, SIAM J'95]:
 - The unordered tree matching and inclusion problems
 - Corresponds to the subgraph isomorphism problem
- Few studies for tree matching with many-toone mappings
 - [Yamamoto, Takenouchi, WADS'09] UPTM problem
 - O(nr·leaves(P)·depth(P)/w) = O(nm³/w) time
 - O(n·leaves(P)·depth(P)/w) = O(nm²/w) space
 - [Gotz, Koch, Martens, DBPL'07] UTH problem
 - O(nm·depth(P)) = O(nm2) time
 - O(depth(T)·branch(T)) = O(n²) space

m: the size of P, n: the size of T, h: the height of T, w: the word length, and r: the maximum number of the same label on paths in P

Our results

- New decomposition formula for unordered pseudo-tree matching problem (UPTM)
- Bit-parallel algorithm for UPTM that runs in
 - O(nmlog(w)/w) time
 - O(hm/w + mlog(w)/w) space
 - O(mlog(w)) preprocessing time
- Key: Fast bit-parallel computation of Tree aggregation in O(log m) time
 - Improves a naïve implementation in O(m) time
- Modified algorithm for UTH with the same complexity

 \mathbf{m} : the size of P, \mathbf{n} : the size of T, \mathbf{h} : the height of T, \mathbf{w} : the word length

Summary

Algorithm for UPTM	Time	Space (in words)
BP-MatchUPTM (this work)	O(nmlog(w)/w)	O(hm/w + mlog(w)/w)
[Yamamoto, Takenouchi, WADS'09]	O(nm³/w)	O(nm²/w)

Our algorithm improves the algorithm by [YT'09] (by O(m²/log(w)))

Algorithm for UTH	Time	Space (in words)
BP-MatchUTH (this work)	O(nmlog(w)/w)	O(hm/w + mlog(w)/w)
[Gotz, Koch, Martens, DBPL'07]	O(nm²)	O(hn)

- Our algorithm improves the algorithm by [Gotz et al.'07]
- This is the first bit-parallel algorithm for UTH (by O(mw/log(w)))

m: the size of P, n: the size of T, h: the height of T, w: the word length [Yamamoto, Takenouchi, WADS'09] H. Yamamoto and D. Takenouch, Bit-parallel tree pattern matching algorithms for unordered labeled trees, In *Proc.* WADS'09, 554-565, 2009. [Gotz, Koch, Martens, DBPL'07] M. Gotz, C. Koch, and W. Martens, Efficient algorithms for tree homeomorphism problem, In *Proc.* DBPL'07, 17-31, 2007.

Algorithm

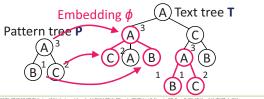
for the UPTM problem

第2回 離散構造処理系シンボジウム:ピット並列計算を用いた高度なパターン昭合-金田 悠作(北海道大学)

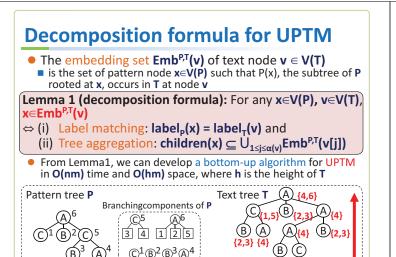
Our algorithm MatchUPTM

Consists of two components:

- 1. New decomposition formula for bottom-up computataion
- **2. Bit-parallel implementation** of five set operations: Constant, Union, Member, LabelMatch, and TreeAggr,
 - **Especially, O(log m)** time bit-parallel implementation of TreeAggr operation



第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なバタ



Bit-parallel implementation

- To obtain further speed-up, we use bit-parallelism
- Encoding an embedding set $Emb(v) \subseteq \{1,...,m\}$ for each node **v** by a bitmask $X \in \{0,1\}^m$ of length **m**.
- By implementing the five set operations by using Bit-wise Boolean operations &, |, ~ and integer addition + [BGY'92]
- Key: Bit-parallel implementation of TreeAggr.

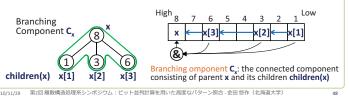
Operation	Original impl.	Bit-parallel impl.
Constant(S)	O(m) time	O(m/w) time
Union(R, S)	O(m) time	O(m/w) time
Member(R, x)	O(m) time	O(m/w) time
LabelMatch _p (R, α)	O(m) time	O(m/w) time (From [BYG92])
TreeAggr _P (R, S)	O(m) time	O(m log(w)/w) time (This work)

[BYG'92] R. Baeza-Yates and G. H. Gonnet, CACM, 35(10), 74-82, 1992.

m: the size of P, n: the size of T, w: the word length

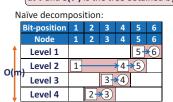
Bit-parallel tree aggregation

- Computes the parent value as the logical AND of the children values
- Preprocess: Build the following bitmasks
 - DST: the position of parent x
 - SRC: the positions of children children(x)
 - SEED: the lowest position of component C
 - INT: the interval of C_x except for x and children(x)
- Runtime: Simulate tree aggregation by bit-operations



Separator tree-based decomposition By using the separator tree-based decomposition

technique, we can implement Pattern tree P Tree Aggregation in O(log(m)) time 6 using O(mlog m) preprocessing time Lemma (Jordan, 1869). Let S be a binary tree. Then, there exists a node in S such that $|S(v)| \le (2/3)|S|$ and $|S(v')| \le (2/3)|S|$, where S(v) is the subtree of S rooted at v and S(v') is the tree obtained by pruning S(v) from S.

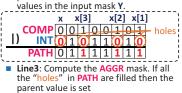


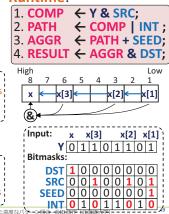
Separator tree-based decomposition: Bit-position 1 2 3 4 5 Level 1 O(log m) Level 2 3+4 5+6 Bit-assignment also differs

{2,3} {1}

from naïve decomposition

Bit-parallel tree aggregation Basic idea: Using the carry Runtime: propergation by integer 1. COMP addition 2. **PATH** ■ Line2: Compute the PATH mask. We 3. AGGR fill the "holes" at the children positions in INT with the children





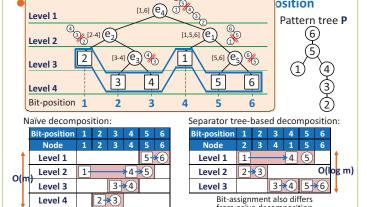
osition

Easy

Hard to

implement

Separator tree-based decomposition



from naïve decomposition

Main result for the **UPTM** problem

 By appying the module decomposition techniques of [Myers '92] and [Bille '06], we have:

Theorem 1. (complexity of the **UPTM** problem)

The algorithm **BP-MatchUPTM** solves the unordered pseudo-tree matching problem in

- O(nmlog(w)/w) time, using
- O(hm/w + mlog(w)/w) space and
- O(mlog(w)) preprocessing time

m: the size of P, n: the size of T, h: the height of T, w: the word length

Note: This improves the time complexity $O(nm^3/w)$ of the previous bit-parallel algorithm by [Yamamoto &Takenouchi, WADS'09] with a factor of $O(m^2/log(w))$

[Bille'06] P. Bille, New algorithms for regular expression matching, In Proc. ICALP'06, 643-654, 2006. [Myers'92] E. W. Myers, A four-russian algorithm for regular expression pattern matching, JACM, 39(2), 430-448, 1992. 2010/11/29 第2回 離散構造処理系シンボジウム: ピット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学) s

Main result for the UTH problem

- Modified Bit-parallel algorithm BP-MatchUTH:
- Based on a similar decomposition formula
- The code is same as VisitUPTM except line 9

Theorem 2. (complexity of the UTH problem)

The algorithm **BP-MatchUTH** solves the unordered tree homeomorphism problem in Pattern tree P Text tree

- O(nmlog(w)/w) time
- O(hm/w + mlog(w)/w) space
- O(mlog(w)) preprocessing time

 $\mathbf{m}:$ the size of P, $\mathbf{n}:$ the size of T, $\mathbf{h}:$ the height of T, $\mathbf{w}:$ the word length

Note: This seems the first bit-parallel algorithm for UTH problem as far as we know, and It slightly improves the time complexity O(nm²) of the algorithm by [Gotz, Koch, Martens, DBPL'07] with a factor of O(mw/log(w))

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合-金田 悠作(北海道大学)

Conclusion

- Tree matching with many-to-one mapping
 - UPTM: unordered pseudo-tree matching
 - UTH: unordered tree homeomorphism
- Bit-parallel algorithms for UPTM and UTH that run in
 - O(nmlog(w)/w) time
 - O(hm/w + mlog(w)/w) space
 - O(mlog(w)) preprocessing
- Future works
 - Extension of this technique for tree matching and inclusion with one-to-one mappings (seems difficult)
 - Applications to practical subclasses of XPath and XQuery languages

010/11/29 第2回 離散構造処理系シンボジウム: ピット並列計算を用いた高度なパターン照合-金田悠作(北海道大学)

Thank you

2010/11/29 第2回 離散構造処理系シンボジウム:ビット並列計算を用いた高度なパターン照合・金田 悠作(北海道大学)