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17th String Processing and Information Retrieval Symposium
(SPIRE2010)

Fast Bit-Parallel Matching for
Network and Regular Expressions

Yusaku Kaneta, Shin-ichi Minato, and Hiroki Arimura

Graduate School of Information Science and Technology
Hokkaido University, Japan

Background

® Regular expression matching problem
® Fundamental problem in string processing

® |ts new applications have emerged such as
m NIDS (Network Intrusion Detection Systems)
m ESP (Event Stream Processing)

® There are demands for large-scale pattern

matching systems
® However, these systems have to cope with ...
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Example of real regular expressions in NIDS applications
Three Perl compatible regular expressions (PCREs) in SNORT 2.8
within the class EXNET of extended network expressions of depth 1
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Example of real regular expressions in NIDS applications
Three Perl compatible regular expressions (PCREs) in SNORT 2.8
within the class EXNET of extended network expressions of depth 1

Massive
(hundreds to thousands)
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Example of real regular expressions in NIDS applications
Three Perl compatible regular expressions (PCREs) in SNORT 2.8
within the class EXNET of extended network expressions of depth 1

Massive
(hundreds to thousands)
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Background

® Large-scale pattern matching systems have to
cope with requirements
®m Massive (hundreds to thousands)
m Complex patterns (regular expressions)
m High-speed data streams (with 1 to 10 Gbps)
® Hardware-oriented matching algorithms
m DFA-based, NFA-based, CAM-based ...

m None of these satisfies all of the above three
requirements

Classes of regular expressions

® We study the regular expression matching problem
for the following subclasses of regular expressions
m Regular expressions (REG)
m Network expressions (NET):
The subclass of REG without Kleene-star [Myers, ‘96]
m Extended network expressions (EXNET): (our main target class)

Network expressions over the class EXT of extended strings
» which are concatenations of letter a, class of letters [ab...], optional
letter a?, bounded repeat a{lo, hi}, and unbounded repeats a* and a+.
m These subclasses are widely used in real world applications
such as NIDS and ESP

® In this research, we focus on % aY
bit-parallel methods for efficient Bxtended. ":mf;f)(xggeasfg)sc @, %3 et ‘, ‘
regular expression matching s\"e eviibniay e
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Bit-Parallel method :, .:, Related work
— O~ 9 0 O O —
SHIFT-AND approach Extended string R = A?B+.{1,3}C ® Bit-parallel Thompson [wu & Manber, ‘92]
® SHIFT-AND method [Baeza-Yates & Gonnet, ‘92] m Bit-parallel matching algorithm for the class REG
® Bit-parallel matching algorithm for the class STR of strings m Boolean (&, |) operations
m Boolean (&, |) operations only m Table-lookup
m Simple and efficient ® Myers’s algorithm [myers, 92]
® Extended SHIFT-AND method [Navarro & Raffinot, ‘01] m Matching algorithm for the class REG
m A nice extension to the class EXT of extended strings m Table-lookup
m Boolean (&, |, ~, ®) and arithmetic (-) operations m Module decomposition of Thompson NFA
m Still simple and efficient o Bille’s algorithm [sille, IcALP2006]
® Challenge: Expressiveness of matching patterns m Bit-parallel matching algorithm for the class REG
® Open problem: Can we extend Extended SHIFT-AND m Boolean (&, |) and arithmetic (-) operations
method to more general subclasses of REG? m Module decomposition of Thompson NFA
2010/11/29 B2 BEHBEIMERS VRS OA - By NP EERBVEEER) (F—RE - &F &E (UEBEAF) 9 2010/11/29 B2 BEHBEIMERS VRS OA - By MEFIFEEBVESER) (F—RE - &F &E (IUBEAF) 10

Our results

® We developed Extended? SHIFT-AND method

® Fast bit-parallel matching algorithm for extended
network expressions that runs in

® O(ndm/w) time . © . Zz
m O(dm/w) space g 9 E
m O(dm) preprocessing e ‘e s@.@%@

® Extension for regular expressions 7
® Experimental results on hardware implementation of our
algorithm
® Keys
m Bi-monotonicity lemma for Thompson NFA
m Bit-parallel operations Scatter, Gather, and Propagate for
simulating e-moves

m: size of R, n: size of T, d: depth of R, w: word length

2010/11/29 #5206 MEISSIMERS VRSO L By MISIFEZAVERER) (F—RE - &H 8F (UEEAY) 11

‘Comparison: Time & Space complexities

® Our Extended? SHIFT-AND method is the first
extension of SHIFT-AND and Extended SHIFT-AND
methods to the following classes:
m Extended network expressions (EXNET)
m Regular expressions (REG)

Algorithm Class Time Space (in words)
SHIFT-AND
[Baeza-Yates & Gonnet, ‘92] STR O(nm/w) O(m/w)
Extended SHIFT-AND
[Navarro & Raffinot, ‘01] EXT O(nm/w) O(m/w)
Extended? SHIFT-AND | EXNET |O(ndm/w) o(dm/w)
(in this talk) REG |O(ndlog(m)m/w) |O(dlog(m)m/w)

m: size of R, n: size of T, d: depth of T, w: word length

2010/11/29 5206 BEISSIMERS VRSO L By MBBIFTEZBAVERER) (F—RE - &E 8F (USEA%) 12

405




Hardware implementation

® Merit of our Extended? SHIFT-AND method

m Simple and Efficient: Our algorithm is particularly efficient for
expression of small depth and regular structure. Therefore, it
is suitable to applications such as NIDS and ESP.

m Hardware friendly: Our algorithm is suitable to modern
parallel hardwares, such as FPGA and GPGPU since it uses
only simple Boolean and arithmetic operations (+, —) avoiding
the heavy use of table-lookup.

® Implementation

m We implemented our algorithm on FPGA.

m The update formulae of bit-parallel matching are transformed
into a fixed circuitry on FPGA in advance.

m |n preprocessing, bitmasks are loaded to block RAMs on FPGA.

m In runtime, The NFA equivalent to a given expression is
simulated by the circuitry.

5200 BEISAVERS VRS OA : Ey NS EZAVERER) (- RE - &F BME (ILEEXY) 13

FPGA = Field Programmable Gate Array
GPGPU = General Purpose GPU

2010/11/29

Hardware implementation

® Experimantal settings

m Our circuit written in Verilog HDL is compiled and simulated
on Xilinx Virtex-5 FPGA LX330 (51,840 slices and 1 MB block
RAMs) using Xilinx ISE Design Suite and Synopsys VCS.

® Expertimental results
m 128 patterns of length 32 can be installed on the FPGA

m Our algorithm implemnted on the FPGA (0.6 GHz clock)
achieves the high throughput of 0.5 Gbps.

Algorithm Class #pat #op #add Throughput
Extended? SHIFT-AND
(in this talk) EXNET| 128| 20| 9|  0.5Gbps

#pat, #op, and #add are the number of input expressions,
32-bit Boolean-operaions, and 32-bit integer additions, respectively

2010/11/29 5206 MEISSIMERS VRSO L By MBIEEZBVERER) (F—RE - &H 8F (UEEA%) 14

Algorithms
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Our bit-parallel algorithm

® Outline of algorithm

Algorithm Extended? SHIFT-AND

Preprocessing

m Transform an input regular expression R to
the equivalent NFA N (Thompson NFA,
TNFA).

m Construct a set of bitmasks for TNFA.
Runtime:

m Simulate TNFA Ng on an input text by using
the bitmasks based on bit-parallel method.

2010/11/29 5206 BEEIBSIMERS DRSO L By MBS EZAVEBER) (F—RE - &H 5F (UEEAY) 16

Th 0 m pSOﬂ N FA [Thompson, CACM1968]

(b) N(a): (c) N(a?):

a

a-edge a-edge u-e';ig N

Qe Geas?
£

(fIN((R | ... | R)): (8) N((R,)): _

(a) N(g):

OF=0

(e) N((R, ... R))):

® A NFA equivalent to a regular expression R
m The source 0 and the sink ¢
® Depths d(S) and d(x) of subexpressions S and states x
m The number of nesting of Union “|”
©® TNFA for EXNET has three types of e-edges
m Scatter edges, Gather edges, and Propagate edges
® TNFA for REG has one more type of e-edges
m Back edges

2010/11/29 #5206 MEISSIMERS VRSO L By MISIFEZAVERER) (F—RE - &H 8F (UEEAY) 17

Simulation of Thompson NFA

® We use bit-parallel method
m Encode a state set of TNFA in a bitmask D
® Procedure RUNTNFA:
® Simulates a-moves Move(D, a) in the same way as SHIFT-
AND approaches [Baeza-Yates & Gonnet, ‘92][Navarro & Raffinot, ‘01]
m Simulates e-closure EpsClo,(D) by combining bit-parallel
operations Scatter, Gather, and Propagate [This talk]

( Move, (D, a)

Procedure RunTNFA(T = t, ... t,: input text)

1. D <€ Inity; =D ¢« (((D « 1) & CHR[a]) | 1)

2. D ¢ EpsCloy(D); \ | (D &REP[t]); |

3. fort<t,..,t,do

4. if D & Accepty # 0 then ( Inity = 0™11;

5. output matchi-1; .

6. D ¢ Movey(D, t); | Accepty =10m%;

7. D € EpsCloy(D);

8. end for In the following, we assume that

9. returnD; a constant alphabet %, where |Z| = O(1)
201011729 28 MEIBUERS SRS : £y MIBIFTEERLV =B (5 — RA - R B (UBEAT) 18
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Our bit-parallel algorithm

® Key: Computation of e-closure EpsClo, (D)

® Consists of two components:
1. Bi-monotonicity lemma for Thompson NFA

2. Bit-parallel implementation of three e-move
operations: Scatter, Gather, and Propagate

o) (@52,
ol BORROHC R
Lo o

Scatter Gather Propagate

2010/11/29 5206 MEISSIMERS VRSO L By MBIFEZAVERER) (F—RE - &H 8F (UEEA%) 19

Bimonotonicity lemma
® Let Np = (V, E, 6, d) be a TNFA with source 6 and sink ¢

Procedure Bypassing

1. Visit every sub-TNFA N’ of N whose source
0" and sink ¢’ are connected by an e-path t

2. Add an e-edge directly connecting 8" and ¢’

® Bypassing can be done in O(m) time in preprocessing
® Expand(R) denotes the NFA obtained from N by bypassing

2010/11/29 5206 MEISSIMERS VRSO L By MBIEEZBVERER) (F—RE - &H 8F (UEEA%) 20

Bimonotonicity lemma

® Let x, y be any states in TNFA N for Expand(R)
® For any states X, y, define d(x) <; d(y) iff d(x) - d(y) <1

Lemma 1. (Bi-monotonicity lemma)

If there is an e-path it from x to y, then there
also exists some bi-monotone e-path i’ = (x; =
X, ..., X, =y) from x toy in Ng such that

d(x;) 2, -+ 2, d(x,) and d(x,) <, -+ <, d(x,) (Eql)

2=

Errata: There is a mistake in the definition of the bimonotonicity
in Page 379 of the conference proceedings. The direction of
inequality <, is opposite to the correct one :-)

Please correct it as in the above (Eq1).

2010/11/29  EB20E BEIBEIMERS DRSO L By MBS EZAVEBER) (F—RE - £H EF (UEEAY) 21

Bimonotonicity lemma

® Let x, y be any states in TNFA N, for Expand(R)
® For any states x, y, define d(x) <; d(y) iff d(x) - d(y) <1

Lemma 1. (Bi-monotonicity lemma)

If there is an e-path it from x to y, then there
also exists some bi-monotone e-path i’ = (x; =
X, ..., X, =y) from x toy in Ng such that

d(x;) 2, -+ 2, d(x) and d(x,) <; - <, d(x,)
depth 0 Step 0.
1 Q a Suppose we have a TNFA
, N with an e-path it from
y state x to statey
} X
2010/11/29 B2l BEMIEIERS VARTOA : By M EZAVEERER) (F—RE - H BF (ILEEAF) 2

Bimonotonicity lemma

® Let x, y be any states in TNFA N, for Expand(R)
® For any states x, y, define d(x) <; d(y) iff d(x) - d(y) <1

Lemma 1. (Bi-monotonicity lemma)

If there is an e-path it from x to y, then there
also exists some bi-monotone e-path i’ = (x; =
X, ..., X, =y) from x toy in Ng such that

d(x;) 2; -+ 2; d(x,) and d(x,) <; -+ <, d(x,)

depth 0
1 O
2
y
3
X

2010/11/29 #5206 MEISSIMERS VRSO L By MISIFEZAVERER) (F—RE - &H 8F (UEEAY) 23

Step 1.

Applying bypassing
transformation to the
TNFA N,

Bimonotonicity lemma

® Let x, y be any states in TNFA N, for Expand(R)
® For any states x, y, define d(x) <; d(y) iff d(x) - d(y) <1

Lemma 1. (Bi-monotonicity lemma)

If there is an e-path it from x to y, then there
also exists some bi-monotone e-path 1’ = (x; =
X, ..., X, =y) from x toy in Ng such that

d(x;) 2, -+ 2, d(x) and d(x,) <; - <, d(x,)
depth 0 Step 2.
1 There exists a bimonotone
5 e-path connecting x and y
y
3
X
2010/11/29 B2 BEHBEIMERS VAR OA - By MEFIFEEBVESER) (F—RE - & &E (UBEAF) 24
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Bit-parallel implementation

® Scatter simulates e-moves by scatter edges.
® Gather simulates e-moves by gather edges.

® Propagate simulates e-closure by propagate
edges.

® Operations are separately done for each depth
by a specified order.

o) (o,
(o] Y ()
0N . o o)

Scatter Gather Propagate
edges edges edges
2010/11/29 B2 BESIEIERS DARTOA : By NS EZAVEERER) (F—RE - F BMF (UEEAY) 25

Scatter operation

® Basic idea: carry propagation of integer subtraction
(The origin of using carry propagation is due to [Navarro & Raffinot, ‘01])

o
o
o
[y

€4(8,) Copimn- 1[o]ofo]o]o]o]o
@\ {1y Sy wss )[0]ojojojojo
=y [

Y
[ [el.]e]...]8,
Preprocess: for depth k, we construct the following bitmasks
m BLK[k]: the state j=0,+1
® SRC,[k]: the source j=0
m DST,[k]: the destinations j € {0, ...

o
[
[
[
=

» B}

Runtime: for state set D and depth k, we perform
m Scatter(D, k) ={ D ¢« D | ((BLK[k] = (D & SRC[k])) & DST[k]; }

2010/11/29 5206 BEEIBESIMERS DRSO L By MBS EZAVEBER) (F—VRE - &E 5F (UEEAY) 26

Gather operation

® Basic idea: carry propagation of integer addition
(The origin of using carry propagation is due to [Navarro & Raffinot, ‘01])

(@8 —gT)
i (9 e d
(e »

, I JMsB
] (@[ 0] ]
Preprocess: for depth k, we construct the following bitmasks
m BLK[Kk]: the states j in interval [@,..®D-1]
m SRC[k]: the sources j € {®,, ..., D}
m DST,[k]: the destination j = ®

+)

o
-
-
-
-
-

-
o
=
-
-

Runtime: for state set D and depth k, we perform
m Gather(D, k) ={ D « D | ((BLK[k] + (D & SRC[k])) & DST,[Kk]; }

2010/11/29 206 BEIBEIMERS DRSO L By MBS EZAVEBER) (F—RE - £H 5F (UEEAY) 27

Propagate operation

® Basic idea: Propagate operation of Extended SHIFT-AND
for the e-closure of a set of e-blocks [Navarro & Raffinot, ‘01]
m An e-block is a maximal consecutive sequence of e-edges.

E,i _5.

Preprocess: for depth k, we construct the following bitmasks
u BLK[k]: the states j in e-block B ={8,, ®, = 0,,--, ®,}
m SRC,[k]: the least significant state j = min(B) = 8, in e-block B
m DST,[k]: the most significant state j = min(B) = @, in e-block B

Runtime: for state set D and depth k, we perform
m Propagate(D, k) = { A ¢ (D & BLK[k]) | DST,[k];
D ¢ D | (BLKp[K] & ((~(A - SRC,[K])) @ A)); }

2010/11/29 5206 BEEIBSIMERS DRSO L By MBS EZAVEBER) (F—RE - &H 5F (UEEAY) 28

Putting them together

® Scatter, Gather, and Propagate can be computable in O(m/w)
time using O(m/w) space and O(m) preprocessing.

® The following procedure correctly computes the e-closure
EpsCloy(D) in O(dm/w) time using O(dm/w) space and O(dm)
preprocessing, where d = d(R).

Procedure EpsCloy(D: a state set of TNFA Ng)

for k < d(R), ..., 1 do
D & Propagate(D, k);
D ¢ Gather(D, k-1);

end for

D ¢ Propagate(D, 0);

fork < d(R), ..., 1do
D & Scatter(D, k-1);
D & Propagate(D, k);

end for

10. return D;

5206 BERBSIVERS VRSO A By MIBISTEZBVEBER) (¥ —VRE - &H BF (UHBEAF) 29
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Main result for the class EXNET

® Combining Move, and EpsClo, with our algorithm
Extended? SHIFT-AND, we have:

Theorem 1. Our bit-parallel algorithm for EXNET
solves the regular expression matching problem
for EXNET in

mO(ndm/w) time

m O(dm/w) space

mO(dm) preprocessing

m: size of R, n: size of T, d: depth of T, w: word length

depth(; f, E . . .
: L o @@y @)
; ﬁ o) E:.

x

2010/11/29 5206 BEISSIMERS VRSO L By MBBIFTEZBAVERER) (F—RE - &E 8F (USEA%) 30
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Extension to the class REG

® For an extension of our algorithm for REG by the
barrel shifter technique in VLSI design, we have:

Theorem 2. Our modified algorithm for REG
solves the regular expression matching problem
for REG of general regular expressions in
m O(ndlog(m)m/w) time
m O(dlog(m)m/w) space
m O(dlog(m)m) preprocessing
m: size of R, n: size of T, d: depth of T, w: word length

« If there are at most constant number of back edges with mutually
distinct lengths, then we can replace the O(log m) term with O(1)

« If the O(1)-bit-reversal operation is available, then we can also replace
the O(log m) term with O(1)

2010/11/29 B2 BESIEIERS DARTOA : By NS EZAVEERER) (F—RE - F BMF (UEEAY)

Note:

Conclusion

® Fast bit-parallel matching algorithm for
extended network expressions that runs in
® O(ndm/w) time
m O(dm/w) space
® O(dm) preprocessing
® Extension for regular expressions
® We implemented our algorithm on FPGA, and
achieves the high throughtput of 0.5 Gbps

® Future works:
m Tree and XML matching

m: size of R, n: size of T, d: depth of R, w: word length
2010/11/20 B2 HIIBESMERS SRS : B MIIIETIE AU (5— SIS - S S (LBEA)

Thank you
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21st International Workshop on Combinatorial Algorithms (IWOCA’10)

Faster Bit-Parallel Algorithms for
Unordered Pseudo-Tree Matching
and Tree Homeomorphism

Yusaku Kaneta and Hiroki Arimura

Graduate School of Information Sci. and Tech.
Hokkaido University, Japan

Background: Tree matching problem

® Problem of finding an embedding ¢ from a
pattern tree Pto a text tree T

® Fundamental problem in computer science
[Kilpelainen & Mannila, ‘94]

® |t has many applications

® We consider unordered tree matching and
its variants (for labeled, rooted tree)

Embedding®  (A)Texttree T

Pattern tree P (p)? (E0) @ is one-to-one

eoe 9 Q 9 (E1) ¢ preserves

the node labels
(E2) ¢ preserves
the parent-child relation

2010/11/29 #5206 MEISSIMERS VRSO A By MIBIFEZAVERER) (F—RE - &H 8F (UEEAY) 38

Background: Many-to-one matching

® |n original theoretical studies:
Tree matching with one-to-one mapping has
been mainly studied so far

® |n recent practical studies: Tree maching with
many-to-one mapping attracts much attention

® Goal: To develop efficient algorithms for
two tree matching problems with many-to-
one mappings
®m Unordered pseudo-tree matching problem (UPTM)
< XPath queries with child axis only
m Unordered tree homeomorphism problem (UTH)
& XPath queries with descendant axis only
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Definition
® Unorderd pseudo-tree matching problem (UPTM)

m A pattern tree P matches a text tree T if there is
a many-to-one mapping ¢: V(P) = V(T) from P into T satisfying the conditions
(E1) and (E2)

m An occurrence of P in T is the image of the root of P

m The problem is to find all occurrences of Pin T

® Unorderd tree homeomorphism problem (UTH)

m is defined similarly, where many-to-one mapping satisfying (E1) and (E3) is
used.

Pattern tree P Text tree T

& preserves:

(E1) the node labels

(E2) the parent-child
relation

(E3) the ancestor-
descendant relation

Related work

® Many studies for tree matching with
one-to-one mappings
m [Kilpelainen, Mannila, SIAM J’'95]:
The unordered tree matching and inclusion problems
m Corresponds to the subgraph isomorphism problem

® Few studies for tree matching with many-to-
one mappings
® [Yamamoto, Takenouchi, WADS’09] UPTM problem
e O(nr-leaves(P)-depth(P)/w) = O(nm3/w) time
e O(n-leaves(P)-depth(P)/w) = O(nm?2/w) space
® [Gotz, Koch, Martens, DBPL'07] UTH problem
e O(nm-depth(P)) = O(nm?) time
e O(depth(T)-branch(T)) = O(n?) space

m: the size of P, n: the size of T, h: the height of T, w: the word length, and
r: the maximum number of the same label on paths in P
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Our results Summary
® New decomposition formula for unordered Algorithm for UPTM Time Space (in words)

pseudo-tree matching problem (UPTM)

® Bit-parallel algorithm for UPTM that runs in
® O(nmlog(w)/w) time
® O(hm/w + mlog(w)/w) space
m O(mlog(wy)) preprocessing time
® Key: Fast bit-parallel computation of
Tree aggregation in O(log m) time
e Improves a naive implementation in O(m) time
® Modified algorithm for UTH with the same
complexity

m: the size of P, n: the size of T, h: the height of T, w: the word length
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BP-MatchUPTM (this work) O(nmlog(w)/w) |O(hm/w + mlog(w)/w)
O(nm3/w) O(nm?/w)

® Our algorithm improves the algorithm by [YT'09] (by O(m?/log(w)))

[Yamamoto, Takenouchi, WADS’09]

Algorithm for UTH
BP-MatchUTH (this work)

Time Space (in words)
O(nmlog(w)/w) |O(hm/w + mlog(w)/w)

O(hn)

[Gotz, Koch, Martens, DBPL'07] |O(nm?)

® Our algorithm improves the algorithm by [Gotz et al’07]
® This is the first bit-parallel algorithm for UTH (by O(mw/log(w)))

m: the size of P, n: the size of T, h: the height of T, w: the word length

[Yamamoto, Takenouchi, WADS’09] H. Yamamoto and D. Takenouch, Bit-parallel tree pattern matching
algorithms for unordered labeled trees, In Proc. WADS’09, 554-565, 2009.

[Gotz, Koch, Martens, DBPL'07] M. Gotz, C. Koch, and W. Martens, Efficient algorithms for tree
homeomorphism problem, In Proc. DBPL'07, 17-31, 2007.
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Algorithm

for the UPTM problem
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Our algorithm MatchUPTM

Consists of two components:

1. New decomposition formula for bottom-up
computataion

2. Bit-parallel implementation of five set operations:
Constant, Union , Member , LabelMatch, , and TreeAggr,

W Especiallly, O(log m) time bit-parallel implementation of
TreeAggr operation

Embedding ¢ Q Text tree T
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Decomposition formula for UPTM

® The embedding set EmbPT(v) of text node v € V(T)
m is the set of pattern node xeV(P) such that P(x), the subtree of P
rooted at x, occurs in T at node v

Lemma 1 (decomposition formula): For any xeV(P), veV(T),
X€EmbPT(v)
< (i) Label matching: labely(x) = label;(v) and

(ii) Tree aggregation: children(x) < U, 4 EMbPT(v[j])

® From Lemmal, we can develop a bottom-up algorithm for UPTM
in O(nm) time and O(hm) space, where h is the height of T

{ Pattern tree P

Branchmgcomponents of P

i 125

®’ “ ’ ©10203@4

2,31 {1}
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Bit-parallel implementation

® To obtain further speed-up, we use bit-parallelism
® Encoding an embedding set Emb(v) < {1,...,m} for each
node v by a bitmask X € {0,1}™ of length m.
m By implementing the five set operations by using Bit-wise
Boolean operations &, |, ~ and integer addition + [BGY’92]

® Key: Bit-parallel implementation of TreeAggr,

Operation Original impl. Bit-parallel impl.

Constant(S) 0O(m) time O(m/w) time

Union(R, S) 0O(m) time O(m/w) time

Member(R, x) 0O(m) time O(m/w) time Easy
. O(m/w) time
LabelMatch,(R, a) O(m) time (From [BYG92])
. O(m log(w)/w) time Hard to
TreeAggry(R, S) O(m) time (This work) implement

[BYG’92] R. Baeza-Yates and G. H. Gonnet, CACM, 35(10), 74-82, 1992.

m: the size of P, n: the size of T, w: the word length
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Bit-parallel tree aggregation

® Computes the parent value as the logical AND of the
children values

® Preprocess: Build the following bitmasks
m DST: the position of parent x
® SRC: the positions of children children(x)
m SEED: the lowest position of component C,
m INT: the interval of C, except for x and children(x)

® Runtime: Simulate tree aggregation by bit-operations

High Low
Branching 8 7 6 5 4 3 2 1

Component C, X | X |(—1x[3]|(—|—|x[2]|(—|X[1]|

@

Branching omponent C,: the connected component
consisting of parent x and its children children(x)

children(x) x[1] x2] x3]
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Bit-parallel tree aggregation

® Basic idea: Using the carry  Runtime:

propergation by integer
addition
= Line2: Compute the PATH mask. We
fill the “holes” at the children
positions in INT with the children
values in the input mask Y.

1. COMP <Y & SRC;

2.PATH & COMP | INT;
3. AGGR ¢ PATH + SEED;
4. RESULT € AGGR & DST;

T e A T , High Low
: x _x[3] x[2] x[1] ' 8 7 6 5 4 3 2 1
v COMP|0 010 r holes!
' 1) INTfolifoli{ifol1{0 i [ fepa 2]
\ ~ PATH[O[L[1[1[1[1[1[1 !
m Line3: Compute the AGGR mask. If all D e bl :
the “holes” in PATH are filled then the tlnput: - x x[3]  x[2] X1 |
parent value is set ! Y[0o[1]1]o]1]1]0]1] |
:’"'"'"“;("'x'[g"",'(['z']';(ﬁ] """ ) iBltmas cH :
: PATH[O|1|1]1]1(1]1]1 b DST(1/0/0]|0]{0|0[0|O] !
1 +) SEeD[ofo[olofolo[o[l] i i SRC[0[0[1]0]0J1]0[1]:
' AGGR[L}© [6fofo[0]criest ¢+ SEED|01010/0101010]1f,
' INT|0]1]0]1]1]0]1[0],
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Separator tree-based decomposition

® By using the separator tree-based decomposition
technique, we can implement Pattern tree P
Tree Aggregation in O(log(m)) time

using O(mlog m) preprocessing time (5)
Lemma (Jordan, 1869). Let S be a binary tree. Then, G o
there exists a node in S such that |S(v)| < (2/3)|S]| and 9
|S(v’)] < (2/3)|S|, where S(v) is the subtree of S rooted
at v and S(v’) is the tree obtained by pruning S(v) from S. 9

Naive decomposition:
Bit-position 1

Separator tree-based decomposition:
Bit-position 1 2 3 4 5 6

3 4 5 6
3 4

Node 1 2 Node 3 4 1 5 6
Level 1 Level 1 —JE] @
olhh Level 2 H435) Level2 [[2£3) O(log m)
" Level 3 || Level 3 |
Level 4 |l Bit-assignment also differs
from naive decomposition.
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ased decomposition
Pattern tree P

5.6 (Ec ©
@

Lemma (Jor 5 i |
§ig existsla nod 3 Su 4 gL is(vH
LE’}E g\l = (A1 === P P P R i

/35T, Where S(vj s thet
Iyppaﬂmslu]_) is the Pree ohtBined bydoruningss(v) fr f_ 961
Naive decomposition:

Bit-position 1 2
Node

Separator tree-based decomposition:
Bit-position 1 2 3 4 5 6
Node 2 3 4 1 5 6

Level 1 Level 1 —JE] @
olhh Level 2 Level2 |[29£3) O(log m)
U
Level 3 Level 3 |
Level 4 Bit-assignment also differs
from naive decomposition.
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Main result for the UPTM problem

® By appying the module decomposition techniques
of [Myers ‘92] and [Bille ‘06], we have:

(- . N
Theorem 1. (complexity of the UPTM problem)
The algorithm BP-MatchUPTM solves the unordered

pseudo-tree matching problem in
® O(nmlog(w)/w) time, using
m O(hm/w + mlog(w)/w) space and

m O(mlog(w)) preprocessing time
m: the size of P, n: the size of T, h: the height of T, w: the word length

(S
Note: This improves the time complexity O(nm3/w) of the previous bit-parallel
algorithm by [Yamamoto &Takenouchi, WADS’09] with a factor of O(m?/log(w))

[Bille’06] P. Bille, New algorithms for regular expression matching, In Proc. ICALP’06, 643-654, 2006.
[Myers’92] E. W. Myers, A four-russian algorithm for regular expression pattern matching, JACM, 39(2), 430-448, 1992.
) 52
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Main result for the UTH problem

® Modified Bit-parallel algorithm BP-MatchUTH:

m Based on a similar decomposition formula
m The code is same as VisitUPTM except line 9

Theorem 2. (complexity of the UTH problem)
The algorithm BP-MatchUTH solves the unordered

tree homeomorphism problem in Fattemteer -
= O(nmlog(w)/w) time Q\g Uo | AN
= O(hm/w + mlog(w)/w) space @;” Gl
©)

m O(mlog(w)) preprocessing time
m: the size of P, n: the size of T, h: the height of T, w: the word length

oo

)

(.

Note: This seems the first bit-parallel algorithm for UTH problem as far as we
know, and It slightly improves the time complexity O(nm?) of the algorithm by
[Gotz, Koch, Martens, DBPL'07] with a factor of O(mw/log(w))
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Conclusion
® Tree matching with many-to-one mapping
B UPTM: unordered pseudo-tree matching
m UTH: unordered tree homeomorphism
® Bit-parallel algorithms for UPTM and UTH

that runin

® O(nmlog(w)/w) time

® O(hm/w + mlog(w)/w) space
m O(mlog(w)) preprocessing

® Future works
m Extension of this technique for tree matching and inclusion
with one-to-one mappings (seems difficult)
m Applications to practical subclasses of XPath and XQuery

Thank you
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