<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>πDD: Permutation Decision Diagram based on Permutation Family Algebra</td>
</tr>
<tr>
<td>著者</td>
<td>Minato, Shin-ichi</td>
</tr>
<tr>
<td>発表日</td>
<td>2011-06</td>
</tr>
<tr>
<td>項目</td>
<td>Doc URL: http://hdl.handle.net/2115/48359</td>
</tr>
<tr>
<td>項目</td>
<td>Type: conference presentation</td>
</tr>
<tr>
<td>項目</td>
<td>Note: ERATO湊離散構造処理系プロジェクト: 2010年度初冬のワークショップ（札幌北広島クラッセホテル）11月29日(月)～12月1日(水).</td>
</tr>
<tr>
<td>備考</td>
<td>未定</td>
</tr>
</tbody>
</table>
Direction of our research

Current
ZDDs

Applications
in asymmetric world
- Data mining, Machine learning
- Advanced searching etc.

Further outputs
- Multisets
- Sequences
- Permutations
- Partitions
- Trees, DAGs
- Networks
- etc.

Still many applications remains where ZDDs would be effective.

Applications with higher data model
- Sequence data analysis
- Numerical data processing
- Processing of trees or semi-structured data

Develop special new algebraic operations.

Family of permutations

Family of sets:
- Don’t consider order and duplication of items
- “abcc” and “bca” are the same.

Family of sequences:
- Distinguishes all finite sequences.
- \(\varphi, \{ \}, \{ \text{ab}, \text{aba}, \text{bbc} \}, \{ \text{a}, \text{aa}, \text{aaa}, \text{aaaa} \}, \text{etc.} \)

Family of permutations:
- Set of orders in a fixed number of items.
- \(\varphi, \{ 123 \}, \{ 12, 21 \}, \{ 123456, 132456, 246135 \} \)

Applications

Rubik’s cube: Let \(P = \{ \pi \} \) any primitive move of cube.)
- \(P \) includes 12 (= 2 ways \(\times \) 6 faces) permutations.
- Cartesian product \(P \times P \) represents all possible patterns obtained by twice of primitive moves.
- \(P^n \) will have all possible patterns. (but maybe too large.)

15 puzzle, Tower of Hanoi
- Optimization of packing / arranging strategy
- “Amida-drawing” (rudder-style swapping graph)
- One-to-one matching problems between two parties.
- A permutation corresponds to a bijective relation.
- Design of loss-less codes.
- Analysis of reversible logic. (related to quantum logic circuit.)

Permutations

Notation of permutation is often confusing.
(ex.) \(\pi = “246135” \quad (\neq “415263”) \)

\[
\begin{array}{ccc}
\pi & x & x^2 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6 \\
\end{array}
\]

\[
\begin{array}{cc}
x & x^2 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
5 & 5 \\
6 & 6 \\
\end{array}
\]

\[
\begin{array}{cc}
x & x^2 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
5 & 5 \\
6 & 6 \\
\end{array}
\]
Required properties for πDDs

- Empty set \(\varnothing \) should be 0-terminal node.
- Singleton set of the identical permutation: \{ “123456789…” \} should be 1-terminal node.
 - We may write \{ e \} since we don’t have to consider the dimension (number of items) for the identical relation.
- \{ “132”, “321” \} and \{ “132456789”, “321456789” \} had better be represented in a same DD.
 - “Dimension of permutation” \(\dim(\pi) \) is defined as the largest ID relevant to the permutation. (We put \(\dim(e) = 0 \).)
 - “Dimension of family of permutations” \(\dim(P) \) is the largest dimension of permutation in the family. (We put \(\dim(\varnothing) = 0 \).)
- \(\pi \rightarrow \dim(P) \) should be the top-ID of πDD for \(P \).

Decomposition of permutation by \(\tau_{xy} \)

\[\pi = "35214" \]

\[\tau_{xy} \text{ (transposition)} \]

\[\begin{array}{c}
\tau_{32} \\
\tau_{41} \\
\tau_{41} \\
\end{array} \]

\[\begin{array}{c}
5 \\
5 \\
5 \\
\end{array} \]

\[\begin{array}{c}
4 \\
4 \\
4 \\
\end{array} \]

\[\begin{array}{c}
2 \\
2 \\
2 \\
\end{array} \]

\[\begin{array}{c}
1 \\
1 \\
1 \\
\end{array} \]

\(\pi = "35214" = e \tau_{32} \tau_{41} \tau_{41} \tau_{54} \)

\(\pi \rightarrow \) canonical form

Main idea of πDDs

- Using a pair of IDs for each decision node.
 - Let \(x \) as \(\dim(P) \), and \(x > y > 0 \)
 - \(P = P_0 \cup P_1 \tau_{xy} \)
 - \(P_0 = \{ \pi \in P \mid x \pi \neq y \} \)
 - \(P_1 = \{ \pi \in (P \tau_{xy}) \mid x \pi = x \} \)
 - \(\dim(P_0) \leq \dim(P) \)
 - \(\dim(P_1) < \dim(P) \)

Rule of variable ordering in πDDs

- General rule \(x > y > 0 \)
- Rules for 0-edge side
 - if \((x \geq x_0, y < y_0) \)
- Rule for 1-edge side \(x > x_1 \)

Node reduction rules for πDDs

- Same reduction rules as ZDDs.
 - Ordinary BDD rules don’t work.

πDDs of single permutation

\[\begin{align*}
\varnothing & \{e\} \\
2 & 1 \\
\{21\} & \{132\} & \{312\} & \{321\} & \{231\}
\end{align*} \]

\[\begin{align*}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 & 5 \\
\end{align*} \]

πDDs for sets of permutations

\[\begin{align*}
\{21\} & \{213,312,321,231\} & \{e,213,132,321,231\} \\
\{213,312\} & \{e,213,132,312\} \\
\{21\} & \{e,21\} \\
\{21\} & \{e,21\} \\
\end{align*} \]

Related work in Knuth-book

Generating all permutations.

(Vol. 4. Fascicle 2)

πDDs of single permutation

\[\begin{align*}
(35214) & \\
\{5,4\} & \{2,1\} \\
\{5\} & \{\varnothing\} \\
\end{align*} \]

Related work in Knuth-book (cont.)

```
7.2.1.2. Generating all permutations.
```

Algebraic operations for πDDs

- **"Permutation family algebra"**
 - \(\psi \{ e \} \): Empty and identical permutation. (0/1-terminal)
 - \(P; \varphi \): Returns the dimension of \(P \). (Item ID \(\varphi \) of the root node)
 - \(P; \rho \): Returns the largest ID with \(P; \varphi \). (Item ID \(\rho \) of the root node)
 - \(P; \text{factor}(x, y) \): Returns \(\{ \varnothing \in P \mid x = x \} \)
 - \(P; \text{top}(x) \): Returns \(P; \varphi \).
 - \(P; \text{top}(x) \): Returns union, intersection, and difference set.
 - \(P; \text{count} \): Counts number of combinations in \(P \).
 - \(P \times Q \): Cartesian product set of \(P \) and \(Q \).
 - \(P \div Q \): Quotient set of \(P \) divided by \(Q \). (Right-side division)
 - \(P \div Q \): Remainder set of \(P \) divided by \(Q \). (Right-side division)

\(\varnothing \) and \(\{ e \} \) have a strong relationship with Knuth’s tree structure for generating all permutations.

Nov 29, 2010 Shin-ichi Minato 15

Nov 29, 2010 Shin-ichi Minato 16

Nov 29, 2010 Shin-ichi Minato 17

Nov 29, 2010 Shin-ichi Minato 18
Synthesis of πDDs by algebraic operations

- $P \times Q = \{ (p,q) | \forall p \in P, \forall q \in Q \}$.
- Not independent of τ_y operation.

$P \times Q = (P_0 \cup P_1 \tau_{xy}) \times (Q_0 \cup Q_1 \tau_{xy})$

$= (P_0 \times Q_0) \cup (P_0 \times Q_1 \tau_{xy})$

$\cup (P_1 \times Q_0) \cup (P_1 \times Q_1 \tau_{xy})$

$= (P_0 \times Q_0) \cup (P_0 \times Q_1 \tau_{xy})$

$\cup (P_1 \times Q_0) \cup (P_1 \times Q_1 \tau_{xy})$

τ_{xy} operation

Let $\pi = (35214) = \tau_{12} \tau_{32} \tau_{41} \tau_{54}$

τ_{xy} union

Swap of cascaded $\tau_{xy} \tau_{uv}$

If $x > u > y = v$

$y' = u$

$u' = u$

$y' = v$

We can keep canonical form: $u' < x$

Rules to swap $\tau_{xy} \tau_{uv}$ to $\tau_{u'y} \tau_{xy}'$

- if $(u < v)$ (consider $\tau_{r_{u'y}}$)
 - if $(x < u$ or $u = v)$ (no swap needed)
 - if $(x > u > y = v)$
 - $y' = u$
 - $u' = u$
 - if $(x = u > y > v)$
 - $y' = u$
 - $u' = v$
 - if $(x = u > y > v)$
 - $y' = u$
 - $u' = y$

Otherwise:

$y' = y$

We can keep canonical form: $u' < x$
Algorithm of \((P \tau_{uv})\)

\[P \tau_{uv} = \begin{cases} P_0 & \text{if } u = v \\ P_1 \tau_{uv} & \text{if } u < v \end{cases} \]

\[P \tau_{uv} = (P_0 \bigcup P_1 \tau_{uv}) \tau_{uv} \]

if \((x \leq u)\)

\[P \tau_{uv} = P_0 \tau_{uv} \bigcup P_1 (\tau_{xy} \tau_{uv}) = (P_0 \tau_{uv}) \bigcup (P_1 \tau_{uv}) \tau_{xy} \]

Recursive calls with cache.

Cartesian product operation

\[P * Q = \{ (p, q) \mid p \in P, q \in Q \} \]

Now we got a recursive algorithm using operation \((P \tau_{uv})\).

\[P * Q = (P * Q_0) \bigcup (P * Q_1) \tau_{xy} \]

Recursive calls with cache.

Product operation for disjoint permutations

\[\{3,2\} \times \{2,1\} \rightarrow \{3,2,1\} \]

Product operation seems difficult.

- Less nodes shared.
- Product operation seems difficult.

Procedure of Factor operation

\[P.\text{factor}(u, v) = (P_0 \bigcup P_1 \tau_{uv}).\text{factor}(u, v) \]

if \((x < u \text{ or } x < v)\)

\[P.\text{factor}(u, v) = P \tau_{uv} \]

if \((x = u \text{ or } v)\)

\[P.\text{factor}(u, v) = P_0.\text{factor}(u, v) \]

if \((x < u \text{ and } x < v)\)

\[P.\text{factor}(u, v) = P_1.\text{factor}(u, v) \]

if \((x = u \text{ and } x = v)\)

\[P.\text{factor}(u, v) = P \]

If we use SeqBDDs for permutations

- Less nodes shared.
- Product operation seems difficult.
πDDs for sets of permutations

\{21\}
\begin{align*}
\pi & \rightarrow 2 \rightarrow 1 \rightarrow e \\
& \left\{21, 312, 321, 231\right\} \\
& \left\{e, 213, 132, 312, 231\right\}
\end{align*}
\begin{align*}
\pi & \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow e \\
& \left\{21, 312, 321\right\} \\
& \left\{e, 213, 132\right\}
\end{align*}
\begin{align*}
\pi & \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow e \\
& \left\{21, 312\right\} \\
& \left\{21, 3, 2\right\}
\end{align*}
\begin{align*}
\pi & \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow e \\
& \left\{3, 2, 1\right\} \\
& \left\{3, 2, 1\right\}
\end{align*}

Upper bound of πDD sizes

- Number of Families of permutations up to \(n\) items: \(2^n!\)
 - \(n!\): 1, 1, 2, 6, 24, 120, …
 - \(2^n!\): 2, 2, 4, 64, 16777216, 1329227995784915872903807060280344576, …
- At least \(\log n\) bit needed to distinguish \(n\) objects.
 - Thus, πDD size can be \(O(n!)\) bit.

πDD sizes for typical cases

- \(\phi, \{e\}\): \(O(1)\) nodes
- Sets of a single permutation with \(n\) items: \(O(n)\) nodes
- Sets of any \(k\) permutations with \(n\) items: \(O(kn)\) nodes
- Sets of all \(n\) rotations with \(n\) items: \(O(n^2)\) nodes
- Sets of all \(n!\) permutations with \(n\) items: \(O(n^2)\) nodes

- Nodes for each permutation is bounded by “swap distance” from identical permutation.
- πDD can be compact for representing the family consists of many similar sub-permutations.

TODO

- Implementation of the algorithms.
- Determine complexity of operations.
- Applying to interesting problems.
 - Performance evaluation.
- Variable ordering problem.
- Relationship to permutation group theory.
 - If \(P * P = P\), then \(P\) forms a permutation group.
- Variations.
 - Histogram (multiset) of permutations.
 - Permutations of \(k\) out of \(n\) items. (allows lack of items)
 - Permutations of multiset items. (allows duplication of items)