SketchSort: An Efficient Nearest Neighbor Graph Construction Method

Yasuo Tabei
JST Minato Project, Sapporo, Japan

Outline
- Motivation
- Method
- Experiments and Results

Data represented as vector

Text
Vector
\[x_t = (1, 0, 1, 0, 0, \ldots) \]

Image
Vector
\[x_i = (0.2, -0.3, -1.3, 1.2, 2.2, \ldots) \]

Chemical Compound, Protein, DNA/RNA etc

Locality Sensitive Hashing
(Gionis et al, 99)

- Mapping vector to binary string (sketch)
- Conserve the distance in the original space
 - Enable to store gigascale data in main memory
 - Speed up learning algorithms

\[x = (0.2, -0.3, -1.3, 1.2, 2.2, \ldots) \]
\[s = 10101011101010101 \]

All Pairs Similarity Search

- Finding all neighbor pairs from sketches
 - Find all pairs \((i, j), i < j, \Delta(x_i, x_j) \leq \epsilon\)
- Enable to build a neighborhood graph
 - semi-supervised learning, spectral clustering, ROI detection in images, retrieval of protein sequences

Single Sorting Method (SSM)

- Find neighbors by sorting sketches
 - Various applications ex) google news

\[
\begin{array}{cccc}
(a) & (b) & (c) \\
1:101111 & 1:101111 & 4:010000 \\
2:110101 & 7:000000 & 8:010110 \\
3:110010 & 8:010110 & 10:100100 \\
4:010000 & 10:100100 & 5:101000 \\
5:101000 & 5:101000 & 1:101111 \\
6:111100 & 1:101111 & 3:110010 \\
7:000000 & 3:110010 & 2:110101 \\
8:010110 & 2:110101 & 1:101111 \\
9:110110 & 9:110110 & 9:110110 \\
10:100100 & 6:111100 & 6:111100 \\
\end{array}
\]
Drawbacks of Single Sorting

- Need a large number of distance calculation for achieving reasonable accuracy.
- Can not derive an analytic estimate of the fraction of missing neighbors.

Overview of SketchSort

- Employ the multiple sorting method (MSM) as a building block
 - Enumerate all pairs within Hamming distance \(d \) from a string pool \(S = \{s_1, \ldots, s_n\} \)
 - A number of distance calculation is significantly reduced
 - A bound of the expected fraction of missing neighbors can be obtained.

Special case: Finding identical strings (\(d = 0 \))

- Radix sort, and partition the strings into equivalence classes: \(O(n) \)
- Build edges between all pairs in equivalent classes: \(O(m) \)
- Complexity: \(O(n+m) \)

Multiple sorting method (\(d > 0 \))

- Mask \(d \) characters in all possible ways
- Perform radix sort \(\binom{l}{d} \) times
- Time exponential to \(d \), polynomial to the string length
- Still linear to the number of strings!!
- Ex) \(d = 2 \)

Blockwise masking

- Mask \(d \) blocks in all possible ways
- The number of sorting operations reduced
- Non-neighbors might be detected
 - Filtered out by calculating actual Hamming distances
- Ex) \(d = 2 \)

Recursive Algorithm

Figure 5: Updating equivalence classes in block concatenation. Strings in a block are sorted and equivalence classes (shown as square frames) are detected. A next block is concatenated to each equivalence class and sorted again.
SketchSort

- Basic idea: Map vectors to strings and apply MSM
- Not good: Create long strings and apply MSM at once
- Replication:
 - Create Q independent string pools of length l
 - apply MSM to each string pool
- Report the pairs less than a threshold ϵ
 $$\Delta(x_i, x_j) \leq \epsilon$$

Duplication Checks

- Block-level duplication check
 - Define dictionary order of blocks, and take only minimum combinations of blocks. ex) $d=2$
 $$(1,2) < (1,3) < (1,4) < (2,3) < (2,4) < (3,4)$$
- Chunk-level duplication check
 - Take only minimum chunks.

Two types of errors

- True edges E^*, Our results E
- Type-I error (false positive): A non-neighbor pair has a Hamming distance within d in at least one replicate
 $$F_1 = \{(i, j) \mid (i, j) \in E, (i, j) \notin E^*\}.$$
- Type II-error (false negative): A neighbor pair has a Hamming distance larger than d in all replicates
 $$F_2 = \{(i, j) \mid (i, j) \notin E, (i, j) \in E^*\}.$$

Bound of type-II error: Missing edge ratio

- Basically, type-II error is more crucial
- Type-I errors are filtered out by distance calculations
- Missing edge ratio (type-II error) is bounded as
 $$E \left[\frac{|F_2|}{|E^*|} \right] \leq \left(1 - \sum_{k=0}^{[d/\ell]} \binom{\ell}{k} p^k (1-p)^{\ell-k} \right)^Q,$$
 where p is an upper bound of the non-collision probability of neighbors
 $$p = \frac{\arccos(1 - \epsilon)}{\pi}.$$

Results for All Pairs Similarity Search

- Faster and more accurate than recent methods

Results for 5-nearest neighbor search

- Error rate for 5-nearest neighbor search on MNIST and TinyImage datasets
All Pairs Similarity Search in 1.6 Million Images

- Set parameters so as to keep missing edge ratio no more than 1.0×10^{-6}
- Enable to detect similar pairs nearly exactly
- Take only 4.3 hours for 1.6 million images

Near duplication detection in up to 1.6 million images at threshold 0.05Π (left), 0.10Π (middle) and 0.15Π (right)

A C++ implementation of SketchSort is available from http://code.google.com/p/sketchsort/