<table>
<thead>
<tr>
<th>Title</th>
<th>SketchSort: An Efficient Nearest Neighbor Graph Construction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tabei, Yasuo</td>
</tr>
<tr>
<td>Citation</td>
<td>2010年度科学技術振興機構 ERATO湊離散構造処理系プロジェクト講究録 p.382-385.</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-06</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/48360</td>
</tr>
<tr>
<td>Type</td>
<td>conference presentation</td>
</tr>
<tr>
<td>Note</td>
<td>ERATO 湊離散構造処理系プロジェクトシンポジウム（第1回）「第9回情報科学技術フォーラム・イベント企画セッション」を開催 2010年9月8日（水）九州大学伊都キャンパス</td>
</tr>
<tr>
<td>File Information</td>
<td>10.FIT_tabei.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
SketchSort: An Efficient Nearest Neighbor Graph Construction Method

Yasuo Tabei
JST Minato Project, Sapporo, Japan

Outline
- Motivation
- Method
- Experiments and Results

Data represented as vector
- Text
 \(x_t = (1, 0, 1, 0, 0, \ldots) \)
- Image
 \(x_i = (0.2, -0.3, -1.3, 1.2, 2.2, \ldots) \)

Locality Sensitive Hashing (Gionis et al, 99)
- Mapping vector to binary string (sketch)
- Conserve the distance in the original space
 - Enable to store gigascale data in main memory
 - Speed up learning algorithms
 \(x = (0.2, -0.3, -1.3, 1.2, 2.2, \ldots) \)
 \(s = 10101011101010101 \)

All Pairs Similarity Search
- Finding all neighbor pairs from sketches
 - Find all pairs \((i, j), i < j, \Delta(x_i, x_j) \leq \epsilon \)
- Enable to build a neighborhood graph
 - Semi-supervised learning, spectral clustering, ROI detection in images, retrieval of protein sequences

Single Sorting Method (SSM)
- Find neighbors by sorting sketches
 - Various applications ex) google news

(a) Input data

(b) Sort

(c) Scan neighbors

\[\begin{array}{c|c}
\text{Input data} & \text{Sort} \\
\hline
1:101111 & 7:000000 \\
2:110101 & 4:010000 \\
3:110010 & 8:010110 \\
4:010000 & 10:100100 \\
5:101000 & 5:101000 \\
6:111100 & 1:101111 \\
7:000000 & 3:110010 \\
8:010110 & 2:110101 \\
9:110110 & 9:110110 \\
10:100100 & 6:111100 \\
\end{array} \]
Drawbacks of Single Sorting

- Need a large number of distance calculation for achieving reasonable accuracy.
- Can not derive an analytic estimate of the fraction of missing neighbors.

Overview of SketchSort

- Employ the multiple sorting method (MSM) as a building block
 - Enumerate all pairs within Hamming distance \(d \) from a string pool \(S=(s_1, \ldots, s_n) \)
 - A number of distance calculation is significantly reduced
 - A bound of the expected fraction of missing neighbors can be obtained.

Special case: Finding identical strings \((d=0)\)

- Radix sort, and partition the strings into equivalence classes: \(O(n) \)
- Build edges between all pairs in equivalent classes: \(O(m) \)
- Complexity: \(O(n+m) \)

Multiple sorting method \((d>0)\)

- Mask \(d \) characters in all possible ways
- Perform radix sort \(\binom{l}{d} \) times
- Time exponential to \(d \), polynomial to the string length
- Still linear to the number of strings!!
- \(\text{Ex}) d=2 \)

Blockwise masking

- Mask \(d \) blocks in all possible ways
- The number of sorting operations reduced
- Non-neighbors might be detected
 - Filtered out by calculating actual Hamming distances
 - \(\text{Ex}) d=2 \)

Recursive Algorithm

Figure 5: Updating equivalence classes in block concatenation. Strings in a block are sorted and equivalence classes (shown as square frames) are detected. A next block is concatenated to each equivalence class and sorted again.
SketchSort

• Basic idea: Map vectors to strings and apply MSM
• Not good: Create long strings and apply MSM at once
• Replication:
 - Create Q independent string pools of length l
 - apply MSM to each string pool
 - Report the pairs less than a threshold ε
 \[\Delta(x_i, x_j) \leq \varepsilon \]

Duplication Checks

• Block-level duplication check
 - Define dictionary order of blocks, and take only minimum combinations of blocks.
 - ex) $d=2$
 \[(1, 2) < (1, 3) < (1, 4) < (2, 3) < (2, 4) < (3, 4) \]
• Chunk-level duplication check
 - Take only minimum chunks.

Two types of errors

• True edges E^*, Our results E
• Type-I error (false positive): A non-neighbor pair has a Hamming distance within d in at least one replicate
 \[F_1 = \{(i, j) | (i, j) \in E, (i, j) \notin E^* \}. \]
• Type II-error (false negative): A neighbor pair has a Hamming distance larger than d in all replicates
 \[F_2 = \{(i, j) | (i, j) \notin E, (i, j) \in E^* \}. \]

Bound of type-II error: Missing edge ratio

• Basically, type-II error is more crucial
 - Type-I errors are filtered out by distance calculations
 - Missing edge ratio (type-II error) is bounded as
 \[E \left[\frac{|F_2|}{|E^*|} \right] \leq \left(1 - \sum_{k=0}^{d} \binom{\ell}{k} p^k (1-p)^{\ell-k} \right)^Q, \]
 where p is an upper bound of the non-collision probability of neighbors
 \[p = \frac{\arccos(1 - \varepsilon)}{\pi}. \]

Results for All Pairs Similarity Search

Faster and more accurate than recent methods

Results for 5-nearest neighbor search

Error rate for 5-nearest neighbor search on MNIST and TinyImage datasets
All Pairs Similarity Search in 1.6 Million Images

- Set parameters so as to keep missing edge ratio no more than 1.0×10^{-6}
- Enable to detect similar pairs nearly exactly
- Take only 4.3 hours for 1.6 million images

Near duplication detection in up to 1.6 million images at threshold 0.05\(\Pi\) (left), 0.10\(\Pi\) (middle) and 0.15\(\Pi\) (right)

A C++ implementation of SketchSort is available from
http://code.google.com/p/sketchsort/