<table>
<thead>
<tr>
<th>Title</th>
<th>SLIDESORT: Developing an exact method to find similar pairs with small edit-distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shimizu, Kana; Tsuda, Koji</td>
</tr>
<tr>
<td>Citation</td>
<td>2010年度科学技術振興機構ERATO湊離散構造処理系プロジェクト講究録. p.376.</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-06</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/48368</td>
</tr>
<tr>
<td>Type</td>
<td>conference presentation</td>
</tr>
<tr>
<td>Note</td>
<td>ERATO 湊離散構造処理系プロジェクトシンポジウム（第1回）「第1回情報科学技術フォーラム イベント企画セッション」2010年9月8日（水）九州大学伊都キャンパス</td>
</tr>
<tr>
<td>File Information</td>
<td>04.FIT_tsuda.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
SLIDESORT: Developing an exact method to find similar pairs with small edit-distance

Kana Shimizu, Koji Tsuda
Computational Biology Research Center, National Institute of Advanced Science and Technology, Japan

Contact: shimizu-kana@aist.go.jp

ABSTRACT: In this study, we propose an exact method that finds all similar pairs from a string pool in terms of edit distance without any duplication on small memory in O(N). Using an efficient pattern growth algorithm, our method discovers chains of common k-mers to narrow down the search. Compared to existing methods based on single k-mer, our method is more effective in reducing the number of edit distance calculations. In large short read datasets, our method was 20-3000 times faster than the state-of-the-art method, BWA.

Motivation
Due to the dramatic improvement of DNA sequencing, it is required to evaluate sequence similarity among a huge amount of fragment sequences such as short reads. Finding similar pairs from a string pool is an important first step for many biological sequence analyses. In this study, we would like to address the problem of choosing all neighbor pairs in a large string pool in terms of edit distance. This problem is conventionally called “all pairs similarity search”, that will help...

- Short read analyses
- Preprocess of de novo assembly
- Clustering reads (e.g. online tree construction, greedy clustering etc...)
- Genome analyses
- Repeat analyses
- Sequence pattern analyses etc...

Problem setting
Given r; strings of similar length (maximal length: minimal length=d), \(S_1, \ldots, S_N \), the task is to find all pairs whose edit distance is at most d,

\[E = \{ (i, j) | EditDist(S_i, S_j) \leq d \} \]

Input: Stringpool \(S_1, \ldots, S_N \)
Output: similar pairs \(\{ (S_1, S_2), (S_1, S_3), \ldots \} \)

Algorithm of SLIDESORT
A pattern corresponds to a sequence of substrings. The space of all patterns is organized as a tree and systematically traversed. SLIDESORT uses radix sort to find equivalent strings in pattern growth.

Theory of SLIDESORT
How SLIDESORT can find common substrings? Given two sequences that are divided into k+2 blocks, if edit distance of the two sequences is at most d, there exist at least k blocks that are the same string patterns between the two within slide width d/2. Based on this theory, SLIDESORT regards concatenation of k-blocks as a common substring.

SLIDESORT is available from
www.cbrc.jp/~shimizu/slidesort/