
 

Instructions for use

Title Architectural exploration of embedded systems

Author(s) Watanabe, Yosinori

Citation 2010年度科学技術振興機構ERATO湊離散構造処理系プロジェクト講究録. p.345-347.

Issue Date 2011-06

Doc URL http://hdl.handle.net/2115/48378

Type conference presentation

Note ERATO 湊離散構造処理系プロジェクト春のワークショップ（キックオフシンポジウム）. 2010年5月28日
（金）～29日（土）. ERATO湊プロジェクト研究室.

File Information 25.watanabe.yosinori_06.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


IN
V

E
N

T
I

CONFIDENTIAL

Architectural exploration of embedded 
systems

Yosinori Watanabe
Research Scientist
Cadence Research LaboratoriesV

E

Cadence Research Laboratories
Berkeley, CA, USA 

������������������������

����

• 1988� ��	
���� B.Eng

• 1994� �������
������� Ph.D
– �������	
��������	

• 1994-1998� Digital Equipment Corporation����� 
– Alpha���������
����

• 1998-2001� !�"#$%&'ESPRIT�()�� 
�� �!"#$%&'()*�+&'(,-
��.�%$/��– �� �!"#$%&'()*�+&'(,-
��.�%$/��

• 2001-2003� Cadence Research Labs������ 
– �� �!"#$%&'()*�+&'(,-
��.�%$/��

• 2003-2008� Cadence Research Labs*+
– 0��%(��12345�� �!"�
�6��789:;
�<=>�?@AB

• 2008�- Cadence Research Labs,-
– �� �!"#$%&'()*�+&'(CD)
�9:

./(0��

• 123456758�9:6;< 
• 	=>?@ABC

2

iPhone

3

iPhone - PCB

4

iPhone - SoC

5

System verification and analysis

Processor coresInterfacesPeripheral IPs

PV functional Transaction based Instruction based

Memory coherence

Processor coresInterfacesPeripheral IPs

PV functional Transaction based Instruction based

Memory coherence

Middl

Application 
SW

Middl

Application 
SW

Interconnects

6

I/O cycle accurate Bus cycle accurate Cycle accurate

RTL
Physical Board

I/O cycle accurate Bus cycle accurate Cycle accurate

RTLRTL
Physical BoardPhysical Board

Drivers

Firmware

OS

Middleware

Drivers

Firmware

OS

Middleware

ISX + IES + ACCEL

ISX + IES

2010年度 ERATO湊離散構造処理系プロジェクト講究録

 345



Organization of the verification environment and DUT

Design under test 
Hardware

MemoryCPU

Peripheral
(b)

Peripheral
(a) firmware/software

software uVC

Mon BFM
BFM Mon

Peripheral Peripheral

main()
init(x, y)
do_msg()

isr() cback(a,b)

7

Design and testbench on simulator or accelerator
Verification Environment on host 
workstation

p
Driver (a)

p
Driver (b)

CPU Memory

verification software

software uVC

Mon BFM
BFM Mon

main()
a_send()
b_send()

Interactions between ISX and the DUT

Design under test 
Hardware

MemoryCPU

Peripheral
(b)

Peripheral
(a) firmware/software

cback(a,b)

software eVC

Mon BFM
BFM Mon

Peripheral Peripheral

main()
init(x, y)
do_msg()

isr()

8

Design and testbench running on emulator
Verification Environment on host 
workstation

p
BFM (a)

p
BFM (b)

CPU Memory

verification software

software eVC

Mon BFM
BFM Mon

main()
a_send()
b_send()

Simulation timeTime 0

At time 0 we can fill the 
testbench RAM with data

Interactions between ISX and the DUT

Design under test 
Hardware

MemoryCPU

Peripheral
(b)

Peripheral
(a) firmware/software

cback(a,b)

software eVC

Mon BFM
BFM Mon

Peripheral Peripheral

main()
init(x, y)
do_msg()

isr()

As simulation progresses the
verification Env commands

9

Design and testbench running on emulator
Verification Environment on host 
workstation

p
BFM (a)

p
BFM (b)

CPU Memory

verification software

software eVC

Mon BFM
BFM Mon

main()
a_send()
b_send()

Simulation timeTime 0

verification Env commands
data to be sent in

a_send()
b_send()

Interactions between ISX and the DUT

Design under test 
Hardware

MemoryCPU

Peripheral
(b)

Peripheral
(a) firmware/software

cback(a,b)

software eVC

Mon BFM
BFM Mon

Peripheral Peripheral

main()
init(x, y)
do_msg()

isr()ISX can react to software or
hardware events and send

specific data

10

Design and testbench running on emulator
Verification Environment on host 
workstation

p
BFM (a)

p
BFM (b)

CPU Memory

verification software

software eVC

Mon BFM
BFM Mon

main()
a_send()
b_send()

Simulation timeTime 0

a_send()
b_send()

Interactions between ISX and the DUT

Design under test 
Hardware

MemoryCPU

Peripheral
(b)

Peripheral
(a) firmware/software

cback(a,b)

software eVC

Mon BFM
BFM Mon

Peripheral Peripheral

main()
init(x, y)
do_msg()

isr()

ISX can let DUT trigger callbacks

ISX can react to software or
hardware events and send

specific data

11

Design and testbench running on emulator
Verification Environment on host 
workstation

p
BFM (a)

p
BFM (b)

CPU Memory

verification software

software eVC

Mon BFM
BFM Mon

main()
a_send()
b_send()

Simulation timeTime 0

At time 0 we can fill the 
testbench RAM with data

a_send()
b_send()

cback(x)

for coverage/checking/reactive
generation

Example Low Power System Overview

Line Active Intr

Power 
Mgr 

Device 
Driver

Hibernate Intr

Firmware

System Controller provides autonomous 
power management of the HW. It is the SW 

management of the HW power state

Ethernet Switch Application SW, 
has high-level power 

management State Machine

Hardware

12 June 3, 2010 Cadence Confidential: Cadence Internal Use Only12

Driver

MAC 
Device 
Driver

System
Controller Application

Line Idle Intr

Device Driver Layer
8 Switchable Power Domains, 4 Switchable Clock Speeds

=> 35 HW Power Modes

 346



Power Control
Module Line Active

A li ti

Hibernate
Hibernate 

Button

ISX

Power 
Mgr 

Hibernation
Memory
Storage

Example Software Platform - Details

ISX enables layered SW stimulus 
generation in order to hit all potential 

HW/SW power management scenarios 
and capture coverage

Stub out real hibernation memory 
backup with back-door ISX 

memory backup. 

13 June 3, 2010 Cadence Confidential: Cadence Internal Use Only13

SoftwareHardware

Ethernet
MAC

Module

Ethernet
Frame

Memory

GMII 
Tx/Rx

Line 
Active

Line Idle

SleepSleep

MAC 
Device 
Driver

System
Controller

ApplicationDevice 
Driver

There are 4 MACs in this simple system, hence there are a multitude of 
power-down/power-up states and state transitions

System verification and analysis

Processor coresInterfacesPeripheral IPs

PV functional Transaction based Instruction based

Memory coherence

Processor coresInterfacesPeripheral IPs

PV functional Transaction based Instruction based

Memory coherence

Middl

Application 
SW

Middl

Application 
SW

Interconnects

14

I/O cycle accurate Bus cycle accurate Cycle accurate

RTL
Physical Board

I/O cycle accurate Bus cycle accurate Cycle accurate

RTLRTL
Physical BoardPhysical Board

Drivers

Firmware

OS

Middleware

Drivers

Firmware

OS

Middleware

ISX + IES + ACCEL

ISX + IES

Collecting simulation data, for different architectures

Currently, we fix the architecture, and then simulate the design with many 
stimuli representing various scenarios. Repeat this for different 
architectures.

• Can we efficiently collect simulation data over multiple architectures, 
and then issue various queries to the database?
Examples of the queries:
– Which architectures have the number of thread activations less than X?
– For given transactions, which architectures have cache misses less than X 

on those transactions?

• If we create such a database for some set of architectures, then can 
we ask such questions for other architectures, without doing the 
simulations for those architectures?

15

Cadence Research Labs
University of California, Berkeley

Cadence Research Labs

Cadence Research Labs

 347




