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Organization of the verification environment and DUT
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Example Low Power System Overview
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There are 4 MACs in this simple system, hence there are a multitude of 
power-down/power-up states and state transitions
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Collecting simulation data, for different architectures

Currently, we fix the architecture, and then simulate the design with many 
stimuli representing various scenarios. Repeat this for different 
architectures.

• Can we efficiently collect simulation data over multiple architectures, 
and then issue various queries to the database?
Examples of the queries:
– Which architectures have the number of thread activations less than X?
– For given transactions, which architectures have cache misses less than X 

on those transactions?

• If we create such a database for some set of architectures, then can 
we ask such questions for other architectures, without doing the 
simulations for those architectures?
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