<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>BDD/ZDDを基盤とする種々の離散構造の演算処理と代数系(algebra)について</td>
</tr>
<tr>
<td>著者</td>
<td>湊 真一</td>
</tr>
<tr>
<td>発行日</td>
<td>2011-06</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>ERATOセミナ 2010 : No.22. 2010年10月22日</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
ERATO セミナ 2010 - No. 22
BDD/ZDD を基盤とする種々の離散構造の演算処理
と代数系 (algebra) について

湊 真一
北大情報科学研究科/JST ERATO 湊離散構造プロジェクト
2010/10/22

概要
本 ERATO プロジェクトでは、離散構造を統合的に扱う基本処理系として
BDD/ZDD を位置づけ、分野横断的な応用を持つ技術体系として再構築することを
目指して研究活動を開始している。本講演では、BDD/ZDD を基盤とする離散構造
とその演算処理の代数系 (algebra) の例として、BDD による論理関数処理系、ZDD
による組合せ集合の処理系、ZDD ベクトル表現による組合せ頻度表の演算処理系、
および Sequence BDD による系列集合の演算処理系を取り上げ、それらの代数系を
比較するとともに、今後の展望について述べる。
Recent Topics on Decision Diagrams and Discrete Structure Manipulation

Shin-ichi Minato
Graduate School of Information Science and Technology
Hokkaido University, Japan.

Sep. 17, 2010

Background

- BDD-based algorithms have been developed mainly in VLSI logic design area. (since early 1990’s.)
 - Equivalence checking for combinational circuits.
 - Symbolic model checking for logic / behavioral designs.
 - Logic synthesis / optimization.
 - Test pattern generation.
- Recently, BDDs are applied for not only VLSI design but also for more general purposes.
 - Data mining (Fast frequent itemset mining) [Minato2005,2008][Loekito,Bailey2006]
 - Computation of Bayesian networks for probabilistic system analysis.[Minato2007]

Contents of this talk

- BDD and ZDD for discrete structure manipulation
 - BDD and Boolean function algebra
 - ZDD and “Family algebra”
- Database analysis based on ZDD manipulation
 - Frequent itemset mining
 - ZDD vector and “Itemset-histogram algebra”
- Sequence BDD for set of sequences
 - Set of sequences and ZDD
 - Sequence BDD and “sequence family algebra”
- Our project for discrete structure manipulation system
 - JST “ERATO” project and current status

BDD (Binary Decision Diagram) [Bryant86]

- Graphical representation of Boolean function data.
 - Canonical form obtained by applying reduction rules to a binary tree with a fixed variable ordering.

BDD reduction rules

- Eliminate all redundant nodes.
- Share all equivalent nodes.

Gives a unique and compressed representation for a given Boolean function under a fixed variable ordering.
Effect of BDD reduction rules

- Exponential advantage can be seen in extreme cases.
- Depends on instances, but effective for many practical ones.

BDD-based logic operation algorithm

- If we generate BDDs from the binary tree: always requires exponential time & space. (→ impracticable for large number of variables)
- Innovative BDD synthesis algorithm
 - Proposed by R. Bryant in 1986.
 - Best cited paper for many years in EE&CS areas.

A BDD can be constructed from the two operands of BDDs. (Computation time is linear to BDD size.)

Boolean function and combinatorial itemset

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean function: \(F = (a \land \neg c) \lor (\neg b \land c) \)

Combinatorial itemset: \(F = \{ab, ac, c\} \)

- Operations of combinatorial itemsets can be done by BDD-based logic operations.
 - Union of sets \(\lor \) logical OR
 - Intersection of sets \(\land \) logical AND
 - Complement set \(\lnot \) logical NOT

Zero-suppressed BDD (ZDD) [Minato93]

- A variant of BDDs for combinatorial itemsets.
- Uses a new reduction rule different from ordinary BDDs.
 - Eliminate all nodes whose “1-edge” directly points to 0-terminal.
 - Share equivalent nodes as well as ordinary BDDs.
- If an item \(x \) does not appear in any itemset, the ZDD node of \(x \) is automatically eliminated.
 - When average appearance ratio of each item is 1%, ZDDs are more compact than ordinary BDDs, up to 100 times.

BDDs/ZDDs in the Knuth’s book

- The latest Knuth’s book fascicle (Vol. 4-1) includes a BDD section with 140 pages and 236 exercises.
- In this section, Knuth used 30 pages for ZDDs, including more than 70 exercises.
 - I honored to serve proofreading of the draft version of his article.
 - Knuth recommended to use “ZDD” instead of “ZBDD.”
 - He reorganized ZDD operations and named “Family Algebra.”
- 2010/05, I visited Knuth’s home and discussed the direction of future work.

Algebraic operations for ZDDs

- Knuth evaluated not only the data structure of ZDDs, but more interested in the algebra on ZDDs.
 - \(\phi, \{1\} \) Empty and singleton set, \(\{0\} \) 1-terminial
 - \(P, \top \) Returns the item-ID at the top node of \(P \).
 - \(P, \text{offset()} \) Selects the subset of items including or excluding \(v \).
 - \(P, \text{change(v)} \) Switching \(v \) (add / delete) on each itemset.
 - \(P, \cup, \cap \) Returns union, intersection, and difference set.
 - \(P, \text{count} \) Counts number of combinations in \(P \).
 - \(P \times Q \) Cartesian product set of \(P \) and \(Q \).
 - \(P \div Q \) Quotient set of \(P \) divided by \(Q \).
 - \(P \% Q \) Reminder set of \(P \) divided by \(Q \).

Useful for many practical applications.

Formerly I called this “unate cube set algebra,” but Knuth reorganized as “Family algebra.”
Principles for performance improvement

- General principles:
 - Data compression & Pruning search space.
- Two basic techniques for data compression:
 - Dictionary-based coding
 - Run-length coding

Computability without decompression.

Comparison of BDDs and ZDDs

- Many of real-life problems are likely asymmetric.

BDD and ZDD for discrete structure manipulation

- BDD and Boolean function algebra
- ZDD and “Family algebra”

Database analysis based on ZDD manipulation

- Frequent itemset mining
- ZDD vector and “Itemset-histogram algebra”

Sequence BDD for set of sequences

- Set of sequences and ZDD
- Sequence BDD and “sequence family algebra”
- Our project for discrete structure manipulation system
 - JST “ERATO” project and current status

Contents of this talk

Frequent itemset mining

- Basic and well-known problem in database analysis.

Existing itemset mining algorithms

- Frequent itemset mining is one of the fundamental data mining problems.
- Previous work:
 - Apriori [Agrawal1993]
 - First efficient method of enumerating all frequent patterns.
 - Breadth-first search with dynamic programming.
 - Eclat [Zaki1997]
 - Depth-first search algorithm. Less memory consuming.
 - In some cases, faster than Apriori.
 - FP-growth [Han2000]
 - Depth-first search using “FP-tree,” graph-based data structure.
 - LCM (Linear time Closed itemset Miner) [Uno2003]
 - with a theoretical bound as output linear time.
 - known as one of the fastest implementation.

"LCM over ZDDs" [Minato et al. 2008]

- LCM: [Uno2003]
 - Output-linear time algorithm of frequent itemset mining.
- ZDD: [Minato93]
 - A compact graph-based representation for large-scale sets of combinations.

Combination of the two techniques

Generates large-scale frequent itemsets on the main memory, with a very small overhead from the original LCM.

→ Sub-linear time and space to the number of solutions when ZDD compression works well.

Frequent itemset mining

<table>
<thead>
<tr>
<th>Record ID</th>
<th>Tuple</th>
<th>Frequency threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a b c</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>a b c</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>b c</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>a b</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>a b c</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>c</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>a b c</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>a b c</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>a b</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>b c</td>
<td>1</td>
</tr>
</tbody>
</table>
LCM over ZDDs: An example

The results of frequent itemsets are obtained as ZDDs on the main memory. (not generating a file.)

Freq. thres. \(\alpha = 7 \)

\{ ab, bc, a, b, c \}

Performance of LCM over ZDDs

Post Processing after LCM over ZDDs

Itemset-histograms for DB analysis

ZDD Vectors and Multi-Terminal BDD
ZDD vector for itemset-histogram

- A ZDD distinguishes only existence of each tuple in the transaction data. (cannot count frequency.)
- We use a binary encoded method with ZDD vectors:
 - Encode frequency numbers into m-bit binary code, and represent each bit of combination set using a ZDD.

Example:

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>5 (101)</td>
</tr>
<tr>
<td>ab</td>
<td>3 (011)</td>
</tr>
<tr>
<td>bc</td>
<td>2 (010)</td>
</tr>
<tr>
<td>c</td>
<td>1 (001)</td>
</tr>
</tbody>
</table>

$F_0 = \{abc, ab, c\}$
$F_1 = \{ab, bc\}$, $F_2 = \{abc\}$

Algebra for itemset-histograms

- Primitive operations:
 - Factoring into two parts by an item.
 - Attaching an item.
 - Sum of two histograms.
 - Counting lines in the table.

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

$H = H_1 \cdot 1 + H_0 \cdot 0$

The result can be analyzed flexibly using itemset-histogram operations.
- Extracting long/short frequent patterns.
- Comparison of two sets of frequent patterns.
- Calculating statistical data (e.g. confidence, support)
- Finding disjoint sub-factors in frequent patterns.

Sets of sequences (sets of strings)

- Sets of combinations:
 - Don’t consider order and duplication of items
 - “abcc” and “bca” are the same.
- Sets of sequences:
 - Distinguishes all finite sequences.
 - \(\{a\}, \{ab, aba, bbc\}, \{a, aa, aaa, aaaa\} \), etc.
 - Here we exclude infinite sequences such as \(a^*\).
- So many real-life applications.
 - Text search and indexing
 - Web (html/xml) data mining
 - Bioinformatics
Encoded ZDDs for Sets of sequences

- Pair of (item - position) is considered different symbol.
 - “aaa” → “a1 a2 a3”
 - “aba” → “a1 b2 a3”
- Alphabet size: |Σ|
- Maximum length of sequences: n
- Total encoded symbols: |Σ| × n
- Not very efficient.
 - Many symbols needed.
 - We need to put a fixed maximum length of sequences.

Sequence BDD (SeqBDD)

- Loekito, Bailey, and Pei (2009)
 - Same as ZDD reduction rule.
 - Only 0-edges keep variable ordering.
 - 1-edges has no restriction.
 - Still unique representation for a given set of sequences.
 - Each path from root to 1-terminal corresponds to a sequence.

Basic operations of sequence family algebra

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns empty set (0-terminal node)</td>
</tr>
<tr>
<td>(x)</td>
<td>Returns set of only null combination. (1-terminal node)</td>
</tr>
<tr>
<td>P[0]</td>
<td>Returns item 0 at root node of P</td>
</tr>
<tr>
<td>Ponset(x)</td>
<td>Selects the subset of sequences that begin with letter x, and then removes x from the head of each sequence.</td>
</tr>
<tr>
<td>P.offset(x)</td>
<td>Selects the subset of sequences that do not begin with letter x.</td>
</tr>
<tr>
<td>P.push(x)</td>
<td>Appends x to the head of every sequence in P.</td>
</tr>
<tr>
<td>P U Q</td>
<td>Returns union set.</td>
</tr>
<tr>
<td>P \ Q</td>
<td>Returns intersection set.</td>
</tr>
<tr>
<td>P \ Q</td>
<td>Returns difference set. (in P but not in Q.)</td>
</tr>
<tr>
<td>P x Q</td>
<td>Counts number of combinations.</td>
</tr>
<tr>
<td>P x Q</td>
<td>Cartesian product of P and Q. (Concatenations of all pairs in P and in Q)</td>
</tr>
</tbody>
</table>

- ZDD-like algebraic operations.
 - onSet, offset, and push operations are different.
 - Other operations are almost same.

Contents of this talk

- BDD and ZDD for discrete structure manipulation
 - BDD and Boolean function algebra
 - ZDD and “Family algebra”
- Database analysis based on ZDD manipulation
 - Frequent itemset mining
 - ZDD vector and “Itemset-histogram algebra”
- Sequence BDD for set of sequences
 - Set of sequences and ZDD
 - Sequence BDD and “sequence family algebra”
- Our project for discrete structure manipulation system
 - JST “ERATO” project and current status

ERATO Projects

- Top projects for scientific research in Japan.
 - Executed by JST (Japan Science and Technology Agency).
 - 5 projects / Year are accepted from all scientific subjects. (Computer Science: 0 or 1 project / Year.)
 - 100 projects have been accepted in 30 years.
 - Each project has 5 years long, total 1 billion Yen about 10 PD researchers and 3 admin staffs.
- This project is accepted on Oct. 2009.
 - Research activities started from April 2010, until March 2015.
Many problems solved by computers can be decomposed as a type of **discrete structures** using simple primitive operations. → Often needs a huge amount of enumerative operations.

Discrete structures and applications

- design automation
- data mining / knowledge discovery
- fault analysis
- bio informatics
- machine learning / classification
- constraint satisfaction problem
- web data analysis

→ So many applications → Great effects for the society.

Our main subject

- Discrete structure manipulation system
- set theory
- symbolic logic
- inductive proof
- Combinatorics
- graph theory
- probabilistic theory

→ Foundational materials for C.S. and math.

Technical stance of our project

- Application-specific technical areas.
- Our objective layer: - Not only concept / theory, but also efficiency of implementation. - Beauty of simplicity / universality.

Discrete structure manipulation system

- Computation theory (Science / Mathematics)
- Application (Engineering)
- Knowledge discovery & data mining
- Statistical Analysis & modeling

→ Digital system optimization & verification
→ Application (Engineering)
→ Application (Engineering)

Direction of our research

- Current ZDDs
- (Combinatorial)

Primary output

- Applications in asymmetric world
- Data mining, Machine learning
- Advanced searching etc.

Further output

- Develop special new algebraic operations.

→ Applications with higher data model
- Advanced ZDD-like structure
- Sequence data analysis
- Numerical data processing
- Processing of trees or semi-structured data

Location of laboratories

- Main lab located in Hokkaido Univ.
 → Center of attractive city: Sapporo.
 → 300m² space devoted for the project.
 → Convenient access from the airport and the station.
 → Good environment for the members to concentrate into research.

- Satellite labs located in Tokyo and Osaka.
 → Collaboration with many Univ and companies.
 → Connecting by high-quality tele-conf. system.

Visit to Knuth’s home

- May, 2010, during my trip to US for attending SIAM Data Mining Conference
- Visited Knuth’s home in Stanford Univ. campus.
 → Greetings and thanks for personal check giving for me and our students who found error of the Book.
 → Discussion on future work on BDD/ZDD and other discrete structures.

Outside of Knuth’s house

- In the faculty’s house area of Stanford campus on an 80 years’ lease (1968〜2048)
 → He has a room in Univ., but he mainly works in his home.
 → No educational work. Only attends annual special lecture. And weekly faculty’s lunch.
Sequence BDD and applications.
- He is very interested in the new data structure.
- I told him that I got too busy to manage the project since ZDD is written in Knuth book.
- He recognizes his writing may have significant effect, and he said:
 “I’m partly responsible to make your life change. So, let’s discuss future work of your project.”
- Knuth’s proposals have same direction as our ERATO project: “Finding and organizing higher-level algebraic structures based on BDD/ZDD.”

Discussion with Prof. Knuth

Focus on “discrete structure manipulation system.”
- Fundamentals for various practical applications.
- Based on BDDs/ZDDs.
 - Representing “logic” and “set,” primitive models of discrete structures.
 - We will consider higher-level algebraic structures.
- Technical stance of the project.
 - Producing “Art” to connect Science and Engineering.
- Two objectives of the project.
 - Organizing new algebraic structures / operations.
 - Providing implementation with deep knowhow.
- Best use of ERATO framework
 - Organize an active research group with synergistic effect.
 - Contribution to the society to provide good research results as well as good researchers.

Summary