HOKKAIDO UNIVERSITY

Title	Irreducible quotients of A-hypergeometric systems
Author(s)	Saito, Mutsumi
Citation	Compositio Mathematica, 147(2), 613-632 https:/doi.org/10.1112/S0010437X 10004987
Issue Date	2011-03
Dttp:/hdl.handle.net/2115/48486	
Rights	© Foundation Compositio Mathematica 2010.
Type	article
File Information	CM147-2_613-632.pdf

Instructions for use

COMPOSITIO MATHEMATICA

Irreducible quotients of A-hypergeometric systems

Mutsumi Saito

Compositio Math. 147 (2011), 613-632.
doi:10.1112/S0010437X10004987

Irreducible quotients of A-hypergeometric systems

Mutsumi Saito

Abstract

Gel'fand, Kapranov and Zelevinsky proved, using the theory of perverse sheaves, that in the Cohen-Macaulay case an A-hypergeometric system is irreducible if its parameter vector is non-resonant. In this paper we prove, using the theory of the ring of differential operators on an affine toric variety, that in general an A-hypergeometric system is irreducible if and only if its parameter vector is non-resonant. In the course of the proof, we determine the irreducible quotients of an A-hypergeometric system.

1. Introduction

Let K be a field of characteristic 0 , and let $A:=\left(a_{i j}\right)$ be a $d \times n$ integer matrix. We assume that \mathbb{Z}^{d} is generated by the column vectors of A as an abelian group. Given a parameter vector $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{d}\right)^{\mathrm{T}} \in K^{d}$, the A-hypergeometric (or GKZ) system $M_{A}(\boldsymbol{\beta})$ with parameter vector $\boldsymbol{\beta}$ is defined by

$$
\begin{equation*}
M_{A}(\boldsymbol{\beta}):=D\left(K^{n}\right) / D\left(K^{n}\right) I_{A}(\partial)+D\left(K^{n}\right)\langle A \theta-\boldsymbol{\beta}\rangle, \tag{1}
\end{equation*}
$$

where $D\left(K^{n}\right)$ is the nth Weyl algebra, i.e.

$$
\begin{equation*}
D\left(K^{n}\right)=K\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle, \tag{2}
\end{equation*}
$$

$I_{A}(\partial)$ is the toric ideal of $K\left[\partial_{1}, \ldots, \partial_{n}\right]$ defined by A, and $D\left(K^{n}\right)\langle A \theta-\boldsymbol{\beta}\rangle$ is the left ideal of $D\left(K^{n}\right)$ generated by $\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}-\beta_{i}, i=1, \ldots, d$.

The irreducibility of $M_{A}(\boldsymbol{\beta})$ is one of the most fundamental questions in the theory of A-hypergeometric systems. Gel'fand et al. proved, using the theory of perverse sheaves, that when the toric ring is Cohen-Macaulay, $M_{A}(\boldsymbol{\beta})$ is irreducible if its parameter vector $\boldsymbol{\beta}$ is nonresonant; see [GKZ90, Proposition 4.4 and Theorem 4.6]. Schulze and Walther have determined for which parameter vector $\boldsymbol{\beta}$ the Fourier transform of $M_{A}(\boldsymbol{\beta})$ is naturally isomorphic to the direct image of a simple object on the big torus of the affine toric variety defined by A (see [SW09, Corollary 3.7]), which sharpens [GKZ90, Theorem 4.6]. Walther proved in [Wal07, Theorem 3.13] that if $M_{A}(\boldsymbol{\beta})$ has irreducible monodromy representation, then so does $M_{A}(\boldsymbol{\gamma})$ for any $\gamma \in \boldsymbol{\beta}+\mathbb{Z}^{d}$, using homological tools developed in [MMW05]. Naturally, an irreducible $D\left(K^{n}\right)$-module has irreducible monodromy representation; see Proposition 6.8.

In this paper, using the theory of the ring of differential operators on an affine toric variety, we prove that $M_{A}(\boldsymbol{\beta})$ is irreducible if and only if $\boldsymbol{\beta}$ is non-resonant, without assuming that the toric ring is Cohen-Macaulay. Moreover, in the course of the proof, we determine the irreducible quotients of $M_{A}(\boldsymbol{\beta})$.

[^0]
M. Saito

Let ι be the anti-automorphism of $D\left(K^{n}\right)$ defined by $\iota\left(x_{j}\right)=\partial_{j}$ and $\iota\left(\partial_{j}\right)=x_{j}$ for $j=$ $1, \ldots, n$. Then ι gives rise to the equivalence between the category of left $D\left(K^{n}\right)$-modules and the category of right $D\left(K^{n}\right)$-modules; the left $D\left(K^{n}\right)$-module $M_{A}(\boldsymbol{\beta})$ corresponds to the right $D\left(K^{n}\right)$-module $M_{K^{n}}(\boldsymbol{\beta})$ (whose definition is given in (8)). Hence the irreducibility of $M_{A}(\boldsymbol{\beta})$ is equivalent to that of $M_{K^{n}}(\boldsymbol{\beta})$. In this paper, we work with the categories of right D-modules. This has two advantages: one is that the support of $M_{K^{n}}(\boldsymbol{\beta})$ is precisely the affine toric variety defined by A; the other is that we consider direct image functors of D-modules, and for this purpose, right D-modules work more naturally than left D-modules.

In § 2 we introduce the varieties considered in this paper, and in § 3 we briefly recall the rings of differential operators on these varieties and their \mathbb{Z}^{d}-gradings.

In §4, for each variety X introduced in $\S 2$ we consider the category \mathcal{O}_{X}, which is analogous to the category \mathcal{O} from the theory of highest-weight modules over semisimple Lie algebras defined in [BGG76] (cf. [MV98, Sai07]). We then recall the simple objects in \mathcal{O}_{X} for $X=X_{A}$, the affine toric variety defined by A (see Proposition 4.3), and for $X=T_{A}$, the big torus of X_{A} (see Proposition 4.2). Finally, we define Verma-type modules in \mathcal{O}_{X}. The right-module counterpart $M_{K^{n}}(\boldsymbol{\beta})$ of the A-hypergeometric system $M_{A}(\boldsymbol{\beta})$ is a Verma-type module in $\mathcal{O}_{K^{n}}$.

In $\S 5$, we explicitly describe the direct image functors of D-modules by inclusions between the varieties under consideration. Using this description, in $\S 6$ we show that the direct image of a simple object in $\mathcal{O}_{T_{A}}$ by the inclusion of T_{A} into K^{n} has a unique irreducible $D\left(K^{n}\right)$-submodule, and we describe it explicitly (see Theorem 6.4). We then show that each simple object in $\mathcal{O}_{K^{n}}$ is obtained in a similar way from a possibly smaller torus (Theorem 6.6).

In $\S 7$, we compute the pull-back of each simple object in $\mathcal{O}_{K^{n}}$ by the inclusion of X_{A} into K^{n} (Theorems 7.3 and 7.4). As a consequence, we determine the irreducible quotients of $M_{K^{n}}(\boldsymbol{\beta})$ (Corollaries 7.5 and 7.6). In $\S 8$, we prove that $M_{K^{n}}(\boldsymbol{\beta})$ is irreducible if and only if $\boldsymbol{\beta}$ is nonresonant (Theorem 8.3).

2. Varieties

Let $A:=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}$ be a finite set of column vectors in \mathbb{Z}^{d}. We will sometimes identify A with the matrix $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)=\left(a_{i j}\right)$. Let $\mathbb{Z} A$ and $\mathbb{R} \geqslant 0 A$ denote, respectively, the abelian group and the cone generated by A. Throughout this paper, we assume that $\mathbb{Z} A=\mathbb{Z}^{d}$ and that $\mathbb{R}_{\geqslant 0} A$ is strongly convex.

Let K denote a field of characteristic 0 . For a face τ of the cone $\mathbb{R}_{\geqslant_{0}} A$, we define the following varieties:

$$
\begin{aligned}
K^{\tau} & :=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: x_{j}=0 \text { when } \boldsymbol{a}_{j} \notin \tau\right\}, \\
\left(K^{\times}\right)^{\tau} & :=\left\{\boldsymbol{x} \in K^{\tau}: x_{j} \neq 0 \text { when } \boldsymbol{a}_{j} \in \tau\right\}, \\
X_{\tau} & :=\left\{\boldsymbol{x} \in K^{\tau}: x^{\boldsymbol{u}}-x^{\boldsymbol{v}}=0 \text { for } \boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n} \text { such that } A \boldsymbol{u}=A \boldsymbol{v}\right\}, \\
T_{\tau} & :=\left\{\boldsymbol{x} \in\left(K^{\times}\right)^{\tau}: x^{\boldsymbol{u}}-x^{\boldsymbol{v}}=0 \text { for } \boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n} \text { such that } A \boldsymbol{u}=A \boldsymbol{v}\right\} .
\end{aligned}
$$

Here we have used multi-index notation, where $x^{\boldsymbol{u}}$ stands for $x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}$, with $\boldsymbol{u}=$ $\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{\mathrm{T}}$. When τ is the whole cone $\mathbb{R}_{\geqslant 0} A$, we denote the above varieties by $K^{n},\left(K^{\times}\right)^{n}$, X_{A} and T_{A}, respectively. Then

$$
\begin{equation*}
X_{A}=\coprod_{\text {faces } \tau \text { of } \mathbb{R} \geqslant 0 A} T_{\tau} \tag{3}
\end{equation*}
$$

Irreducible quotients of A-hypergeometric systems

is the $\left(K^{\times}\right)^{d}$-orbit decomposition of the toric variety X_{A} (see, e.g., [Fu193]). Here ($\left.K^{\times}\right)^{d}$ acts on K^{n} by

$$
\left(K^{\times}\right)^{d} \times K^{n} \ni\left(t,\left(x_{1}, \ldots, x_{n}\right)\right) \mapsto\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right) \in K^{n},
$$

where $t^{\boldsymbol{a}}=t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{d}^{a_{d}}$ for $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{d}\right)^{\mathrm{T}}$.
Let $\mathbb{N} A$ denote the monoid generated by A. The semigroup algebra $K[\mathbb{N} A]=\bigoplus_{\boldsymbol{a} \in \mathbb{N} A} K t^{\boldsymbol{a}}$ is the ring of regular functions on the affine toric variety X_{A}. Then we have $K[\mathbb{N} A] \simeq K[x] / I_{A}$, where I_{A} is the ideal of the polynomial ring $K[x]:=K\left[x_{1}, \ldots, x_{n}\right]$ generated by all $x^{\boldsymbol{u}}-x^{\boldsymbol{v}}$ for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n}$ with $A \boldsymbol{u}=A \boldsymbol{v}$.

3. Rings of differential operators

Let R be a commutative K-algebra, and let M and N be R-modules. We briefly recall the module $D(M, N)$ of differential operators from M to N; for details, see [SS88]. For $k \in \mathbb{N}$, the subspaces $D^{k}(M, N)$ of $\operatorname{Hom}_{K}(M, N)$ are defined inductively by

$$
D^{0}(M, N):=\operatorname{Hom}_{R}(M, N)
$$

and

$$
D^{k+1}(M, N):=\left\{P \in \operatorname{Hom}_{K}(M, N):[f, P] \in D^{k}(M, N) \text { for all } f \in R\right\}
$$

where [,] denotes the commutator. Set $D(M, N):=\bigcup_{k=0}^{\infty} D^{k}(M, N)$ and $D(M):=D(M, M)$. Then $D(M)$ is a K-algebra, and $D(M, N)$ is a $(D(N), D(M)$)-bimodule.

The ring $D\left(K^{n}\right):=D(K[x])$ of differential operators on K^{n} is the nth Weyl algebra (2).
The ring $D\left(\left(K^{\times}\right)^{n}\right):=D\left(K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\right)$ of differential operators on $\left(K^{\times}\right)^{n}$ is given by

$$
\begin{aligned}
D\left(\left(K^{\times}\right)^{n}\right) & =K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle \\
& =\bigoplus_{\boldsymbol{u} \in \mathbb{Z}^{n}} x^{\boldsymbol{u}} K\left[\theta_{1}, \ldots, \theta_{n}\right],
\end{aligned}
$$

where $\theta_{j}=x_{j} \partial_{j}$.
The ring $D\left(T_{A}\right):=D\left(K\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\right)$ of differential operators on T_{A} is given by

$$
\begin{aligned}
D\left(T_{A}\right) & =K\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\left\langle\partial_{t_{1}}, \ldots, \partial_{t_{d}}\right\rangle \\
& =\bigoplus_{a \in \mathbb{Z}^{d}} t^{a} K\left[s_{1}, \ldots, s_{d}\right],
\end{aligned}
$$

where $s_{i}=t_{i} \partial_{t_{i}}$ and $\partial_{t_{i}}=\partial / \partial t_{i}$.
The ring $D\left(X_{A}\right):=D(K[\mathbb{N} A])$ of differential operators on X_{A} is a subalgebra of $D\left(T_{A}\right)$:

$$
D\left(X_{A}\right)=\left\{P \in D\left(T_{A}\right): P(K[\mathbb{N} A]) \subseteq K[\mathbb{N} A]\right\}
$$

Let X be $K^{n},\left(K^{\times}\right)^{n}, T_{A}$ or X_{A}. For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{d}\right)^{\mathrm{T}} \in \mathbb{Z}^{d}$, set

$$
D(X)_{\boldsymbol{a}}:=\left\{P \in D(X):\left[s_{i}, P\right]=a_{i} P \text { for } i=1, \ldots, d\right\},
$$

where $s_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}$ for $X=K^{n}$ or $\left(K^{\times}\right)^{n}$. Then

$$
D(X)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} D(X)_{\boldsymbol{a}}
$$

is a \mathbb{Z}^{d}-graded algebra.

Let τ be a face of the cone $\mathbb{R}_{\geqslant 0} A$. Let $\mathbb{Z}(A \cap \tau)$ and $\mathbb{N}(A \cap \tau)$ denote, respectively, the abelian group and the monoid generated by $A \cap \tau$. Set

$$
\mathbb{Z}^{\tau}:=\left\{\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{Z}^{n}: u_{j}=0 \text { when } \boldsymbol{a}_{j} \notin \tau\right\} .
$$

As in the case where τ is the whole cone $\mathbb{R}_{\geqslant 0} A$, for $K^{\tau},\left(K^{\times}\right)^{\tau}, T_{\tau}$ and X_{τ} we consider the following rings of differential operators:

$$
\begin{aligned}
D\left(K^{\tau}\right) & =D\left(K\left[x_{j}: \boldsymbol{a}_{j} \in \tau\right]\right)=K\left[x_{j}: \boldsymbol{a}_{j} \in \tau\right]\left\langle\partial_{j}: \boldsymbol{a}_{j} \in \tau\right\rangle, \\
D\left(\left(K^{\times}\right)^{\tau}\right) & =K\left[x_{j}^{ \pm 1}: \boldsymbol{a}_{j} \in \tau\right]\left\langle\partial_{j}: \boldsymbol{a}_{j} \in \tau\right\rangle=\bigoplus_{\boldsymbol{u} \in \mathbb{Z}^{\tau}} x^{\boldsymbol{u}} K\left[\theta_{j}: \boldsymbol{a}_{j} \in \tau\right], \\
D\left(T_{\tau}\right) & =\bigoplus_{\boldsymbol{a} \in \mathbb{Z}(A \cap \tau)} t^{\boldsymbol{a}} K\left[s_{1 \mid \tau}, \ldots, s_{d \mid \tau}\right], \\
D\left(X_{\tau}\right) & =\left\{P \in D\left(T_{\tau}\right): P\left(K\left[X_{\tau}\right]\right) \subseteq K\left[X_{\tau}\right]\right\},
\end{aligned}
$$

where $s_{i \mid \tau}$ is the operator s_{i} restricted to $K\left[T_{\tau}\right]=K\left[t^{ \pm \boldsymbol{a}_{j}}: \boldsymbol{a}_{j} \in \tau\right]$ and $K\left[X_{\tau}\right]$ is the subalgebra of $K\left[T_{\tau}\right]$ defined by

$$
K\left[X_{\tau}\right]=K[\mathbb{N}(A \cap \tau)]=K\left[t^{\boldsymbol{a}_{j}}: \boldsymbol{a}_{j} \in \tau\right] .
$$

These rings of differential operators are graded by $\mathbb{Z}(A \cap \tau)$, and since $\mathbb{Z}(A \cap \tau)$ is a subgroup of $\mathbb{Z} A=\mathbb{Z}^{d}$, they are also considered to be \mathbb{Z}^{d}-graded. Note that $s_{i \mid \tau}=\sum_{a_{j} \in \tau} a_{i j} \theta_{j}$ in x-coordinates.

4. The category \mathcal{O}_{X}

Take X to be $K^{n},\left(K^{\times}\right)^{n}, T_{A}$ or X_{A}. We shall define a full subcategory \mathcal{O}_{X} of the category of right $D(X)$-modules (cf. [MV98]). A right $D(X)$-module M is an object of \mathcal{O}_{X} if the support of M is contained in X_{A} and M has a weight decomposition $M=\bigoplus_{\boldsymbol{\lambda} \in K^{d}} M_{\boldsymbol{\lambda}}$, where

$$
M_{\boldsymbol{\lambda}}=\{x \in M: x . f(s)=f(-\boldsymbol{\lambda}) x \text { for all } f \in K[s]\}
$$

with $K[s]=K\left[s_{1}, \ldots, s_{d}\right]$.
Proposition 4.1. Let M be a simple object in \mathcal{O}_{X}. Then M is an irreducible right $D(X)$ module.

Proof. Let N be a right $D(X)$-submodule of M. Let $x \in N$, and write $x=\sum_{\boldsymbol{b} \in S} x_{\boldsymbol{b}}$ for $x_{\boldsymbol{b}} \in M_{\boldsymbol{b}}$, where S is a finite subset of K^{d}. For $\boldsymbol{b} \in S$, take $f(s) \in K[s]$ such that $f(-\boldsymbol{b}) \neq 0$ and $f(-\boldsymbol{c})=0$ for all $\boldsymbol{c} \in S \backslash\{\boldsymbol{b}\}$. Upon applying $f(s)$ to x, we see that $x_{\boldsymbol{b}} \in N$. Hence $N \in \mathcal{O}_{X}$. By the simplicity of M in \mathcal{O}_{X}, we have $N=0$ or $N=M$.

In the rest of this section, we define objects $L_{T_{A}}(\boldsymbol{\lambda})$ and $L_{X_{A}}(\boldsymbol{\lambda})$ which are simple in the categories $\mathcal{O}_{T_{A}}$ and $\mathcal{O}_{X_{A}}$, respectively. Then we define Verma-type modules $M_{X_{A}}(\boldsymbol{\beta}), M_{K^{n}}(\boldsymbol{\beta})$ and $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$.

Let $\boldsymbol{\lambda} \in K^{d}$. We define a right $D\left(T_{A}\right)$-module $L_{T_{A}}(\boldsymbol{\lambda})$ by

$$
L_{T_{A}}(\boldsymbol{\lambda}):=D\left(T_{A}\right) /\langle s-\boldsymbol{\lambda}\rangle D\left(T_{A}\right):=D\left(T_{A}\right) / \sum_{i=1}^{d}\left(s_{i}-\lambda_{i}\right) D\left(T_{A}\right) .
$$

Let $K\left[t^{ \pm 1}\right]$ denote the Laurent polynomial ring $K\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]$. By taking formal adjoint operators, $D\left(T_{A}\right)$ acts on $K\left[t^{ \pm 1}\right] t^{-\boldsymbol{\lambda}} d T_{A}$ from the right as follows:

$$
\left(g(t) d T_{A}\right) \cdot P=P^{*}(g) d T_{A},
$$

where

$$
P^{*}=\sum_{\boldsymbol{a}} f_{\boldsymbol{a}}(-s) t^{\boldsymbol{a}}
$$

for $P=\sum_{\boldsymbol{a}} t^{\boldsymbol{a}} f_{\boldsymbol{a}}(s) \in \bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{\boldsymbol{a}} K[s]=D\left(T_{A}\right)$ and $d T_{A}$ is simply a formal symbol. Then $K\left[t^{ \pm 1}\right] t^{-\boldsymbol{\lambda}} d T_{A}$ is a realization of $L_{T_{A}}(\boldsymbol{\lambda})$, and we denote $K\left[t^{ \pm 1}\right] t^{-\boldsymbol{\lambda}} d T_{A}$ by $L_{T_{A}}(\boldsymbol{\lambda})$, so that

$$
\begin{equation*}
L_{T_{A}}(\boldsymbol{\lambda})=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} L_{T_{A}}(\boldsymbol{\lambda})_{-\boldsymbol{\lambda}+\boldsymbol{a}} \quad \text { with } L_{T_{A}}(\boldsymbol{\lambda})_{-\boldsymbol{\lambda}+\boldsymbol{a}}=K t^{-\boldsymbol{\lambda}+\boldsymbol{a}} d T_{A} . \tag{4}
\end{equation*}
$$

The following proposition is clear.
Proposition 4.2. Each $L_{T_{A}}(\boldsymbol{\lambda})$ is a simple object in $\mathcal{O}_{T_{A}}$. Each simple object in $\mathcal{O}_{T_{A}}$ is isomorphic to $L_{T_{A}}(\boldsymbol{\lambda})$ for some $\boldsymbol{\lambda} \in K^{d}$, and $L_{T_{A}}(\boldsymbol{\lambda}) \simeq L_{T_{A}}(\boldsymbol{\mu})$ if and only if $\boldsymbol{\lambda}-\boldsymbol{\mu} \in \mathbb{Z}^{d}$.

Recall that the ring $D\left(X_{A}\right)$ is described as follows (see [Mus87, Theorem 2.3]):

$$
D\left(X_{A}\right)_{\boldsymbol{a}}=t^{a} \mathbb{I}(\Omega(\boldsymbol{a})) \quad \text { for } \boldsymbol{a} \in \mathbb{Z}^{d},
$$

where

$$
\begin{align*}
\Omega(\boldsymbol{a}) & :=\Omega_{A}(\boldsymbol{a}):=\mathbb{N} A \backslash(-\boldsymbol{a}+\mathbb{N} A), \tag{5}\\
\mathbb{I}(\Omega(\boldsymbol{a})) & :=\{f(s) \in K[s]: f(\boldsymbol{c})=0 \text { for all } \boldsymbol{c} \in \Omega(\boldsymbol{a})\} .
\end{align*}
$$

Recall also the preorder \preceq defined in [MV98] (see also [ST01]):

$$
\begin{equation*}
\text { for } \boldsymbol{\alpha}, \boldsymbol{\beta} \in K^{d}, \quad \boldsymbol{\alpha} \preceq \boldsymbol{\beta} \Longleftrightarrow \mathbb{I}(\Omega(\boldsymbol{\beta}-\boldsymbol{\alpha})) \nsubseteq \mathfrak{m}_{\boldsymbol{\alpha}} \tag{6}
\end{equation*}
$$

where $\mathfrak{m}_{\boldsymbol{\alpha}}$ is the maximal ideal of $K[s]$ at $\boldsymbol{\alpha}$. We define an equivalence relation \sim by setting $\boldsymbol{\alpha} \sim \boldsymbol{\beta}$ if and only if $\boldsymbol{\alpha} \preceq \boldsymbol{\beta}$ and $\boldsymbol{\alpha} \succeq \boldsymbol{\beta}$. We write $\boldsymbol{\alpha} \prec \boldsymbol{\beta}$ if $\boldsymbol{\alpha} \preceq \boldsymbol{\beta}$ and $\boldsymbol{\alpha} \nsim \boldsymbol{\beta}$.

Since the ring $D\left(X_{A}\right)$ is a subalgebra of $D\left(T_{A}\right)$, the right $D\left(T_{A}\right)$-module

$$
L_{T_{A}}(\boldsymbol{\lambda})=K\left[t^{ \pm 1}\right] t^{-\boldsymbol{\lambda}} d T_{A}=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} K t^{-\boldsymbol{\lambda}+\boldsymbol{a}} d T_{A}
$$

is also a right $D\left(X_{A}\right)$-module. Then the subquotient

$$
\begin{equation*}
L_{X_{A}}(\boldsymbol{\lambda}):=\bigoplus_{\boldsymbol{\mu} \preceq \boldsymbol{\lambda}} K t^{-\boldsymbol{\mu}} d T_{A} / \bigoplus_{\boldsymbol{\mu} \prec \boldsymbol{\lambda}} K t^{-\boldsymbol{\mu}} d T_{A} \tag{7}
\end{equation*}
$$

is a right $D\left(X_{A}\right)$-module (see [ST01, Proposition 4.1.5]). We have the following proposition.
Proposition 4.3. Each $L_{X_{A}}(\boldsymbol{\lambda})$ is a simple object in $\mathcal{O}_{X_{A}}$. Each simple object in $\mathcal{O}_{X_{A}}$ is isomorphic to $L_{X_{A}}(\boldsymbol{\lambda})$ for some $\boldsymbol{\lambda} \in K^{d}$. Moreover, $L_{X_{A}}(\boldsymbol{\lambda}) \simeq L_{X_{A}}(\boldsymbol{\mu})$ if and only if $\boldsymbol{\lambda} \sim \boldsymbol{\mu}$.
(See [MV98, Proposition 3.1.7], [ST01, Theorem 4.1.6] or [Sai07, Proposition 3.6(4)].)
For $\boldsymbol{\beta} \in K^{d}$, we define a right $D\left(X_{A}\right)$-module $M_{X_{A}}(\boldsymbol{\beta})$, a right $D\left(K^{n}\right)$-module $M_{K^{n}}(\boldsymbol{\beta})$ and a right $D\left(\left(K^{\times}\right)^{n}\right)$-module $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$ by

$$
\begin{align*}
M_{X_{A}}(\boldsymbol{\beta}) & :=D\left(X_{A}\right) /\langle s-\boldsymbol{\beta}\rangle D\left(X_{A}\right), \\
M_{K^{n}}(\boldsymbol{\beta}) & :=D\left(K^{n}\right) /\left(I_{A} D\left(K^{n}\right)+\langle s-\boldsymbol{\beta}\rangle D\left(K^{n}\right)\right), \tag{8}\\
M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta}) & :=D\left(\left(K^{\times}\right)^{n}\right) /\left(I_{A} D\left(\left(K^{\times}\right)^{n}\right)+\langle s-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)\right) .
\end{align*}
$$

Recall that $s_{i}=t_{i} \partial_{t_{i}}$ in t-coordinates and that $s_{i}=\sum_{j=1}^{n} a_{i j} \theta_{j}$ with $\theta_{j}=x_{j} \partial_{j}$ in x-coordinates. Clearly, $M_{X_{A}}(\boldsymbol{\beta}) \in \mathcal{O}_{X_{A}}, M_{K^{n}}(\boldsymbol{\beta}) \in \mathcal{O}_{K^{n}}$ and $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta}) \in \mathcal{O}_{\left(K^{\times}\right)^{n}}$.

Let τ be a face of the cone $\mathbb{R}_{\geqslant_{0}} A$. Similarly to the case where τ is the whole cone $\mathbb{R}_{\geqslant_{0}} A$, for $Y=K^{\tau},\left(K^{\times}\right)^{\tau}, T_{\tau}$ or X_{τ} we consider \mathcal{O}_{Y}, replacing $\mathbb{Z} A=\mathbb{Z}^{d}, K A=K^{d}$ and $f(s) \in K[s]$
by $\mathbb{Z}(A \cap \tau), K(A \cap \tau)$ and $f(s)_{\mid \tau}$, respectively, where $f(s)_{\mid \tau}$ is the operator $f(s)$ restricted to $K\left[T_{\tau}\right]=K\left[t^{ \pm \boldsymbol{a}_{j}}: \boldsymbol{a}_{j} \in \tau\right]$.

5. Direct image functors

In this section, we describe direct image functors explicitly. Using them, we link some of the modules defined in §4.

5.1 From $\mathcal{O}_{T_{A}}$ to $\mathcal{O}_{\left(K^{\times}\right)^{n}}$

We shall write $D\left(\left(K^{\times}\right)^{n}, T_{A}\right)$ instead of $D\left(K\left[x^{ \pm 1}\right], K\left[t^{ \pm 1}\right]\right)$, where $K\left[x^{ \pm 1}\right]$ stands for the Laurent polynomial ring $K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Since T_{A} is closed in $\left(K^{\times}\right)^{n}$, the direct image functor

$$
\int_{T_{A} \rightarrow\left(K^{\times}\right)^{n}}^{0}: M \mapsto M \otimes_{D\left(T_{A}\right)} D\left(\left(K^{\times}\right)^{n}, T_{A}\right)
$$

gives a category equivalence between $\mathcal{O}_{T_{A}}$ and $\mathcal{O}_{\left(K^{\times}\right)^{n}}$, known as Kashiwara's equivalence (see, e.g., [Kas03, Theorem 4.30] or [HTT08, Theorem 1.6.1]). From [SS88, §1.3, (e) and (f)], we have

$$
\begin{align*}
D\left(\left(K^{\times}\right)^{n}, T_{A}\right) & =D\left(\left(K^{\times}\right)^{n}\right) / I_{A} D\left(\left(K^{\times}\right)^{n}\right) \\
& =\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{\boldsymbol{a}} K\left[\theta_{1}, \ldots, \theta_{n}\right] . \tag{9}
\end{align*}
$$

By definition,

$$
\begin{equation*}
M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})=\int_{T_{A} \rightarrow\left(K^{\times}\right)^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta}) . \tag{10}
\end{equation*}
$$

Hence, by Kashiwara's equivalence, Proposition 4.2 leads to the following result.
Proposition 5.1. For each $\boldsymbol{\beta} \in K^{d}, M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$ is a simple object in $\mathcal{O}_{\left(K^{\times}\right)^{n}}$. Each simple object in $\mathcal{O}_{\left(K^{\times}\right)^{n}}$ is isomorphic to some $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$. Moreover, $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta}) \simeq M_{\left(K^{\times}\right)^{n}}\left(\boldsymbol{\beta}^{\prime}\right)$ if and only if $\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime} \in \mathbb{Z}^{d}$.

5.2 From $\mathcal{O}_{X_{A}}$ to $\mathcal{O}_{K^{n}}$

Again from $[\mathrm{SS} 88, \S 1.3$, (e) and (f)], we have

$$
\begin{equation*}
D\left(K^{n}, X_{A}\right):=D(K[x], K[\mathbb{N} A])=D\left(K^{n}\right) / I_{A} D\left(K^{n}\right) \tag{11}
\end{equation*}
$$

Since I_{A} is \mathbb{Z}^{d}-homogeneous, $D\left(K^{n}, X_{A}\right)$ inherits the \mathbb{Z}^{d}-grading from $D\left(K^{n}\right)$.
The algebra $D\left(X_{A}\right)$ can be identified with

$$
\left\{P \in D\left(K^{n}\right): P I_{A} \subseteq I_{A} D\left(K^{n}\right)\right\} / I_{A} D\left(K^{n}\right)
$$

(see, e.g., [MR87, Theorem 5.13]). We may therefore consider $D\left(X_{A}\right)$ as being contained in $D\left(K^{n}, X_{A}\right)$.

Let $\int_{X_{A} \rightarrow K^{n}}^{0}$ denote the functor from $\mathcal{O}_{X_{A}}$ to $\mathcal{O}_{K^{n}}$ defined by

$$
\int_{X_{A} \rightarrow K^{n}}^{0} M:=M \otimes_{D\left(X_{A}\right)} D\left(K^{n}, X_{A}\right) .
$$

Irreducible quotients of A-hypergeometric systems

Note that, in general, X_{A} is singular and $\int_{X_{A} \rightarrow K^{n}}^{0}$ does not give a category equivalence. By definition, we have

$$
\begin{equation*}
M_{K^{n}}(\boldsymbol{\beta})=\int_{X_{A} \rightarrow K^{n}}^{0} M_{X_{A}}(\boldsymbol{\beta}) \tag{12}
\end{equation*}
$$

For the following result, see [Sai07, Proposition 4.1 and Corollary 4.2].
Proposition 5.2.

$$
D\left(K^{n}, X_{A}\right)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} D\left(K^{n}, X_{A}\right)_{\boldsymbol{a}} \quad \text { with } D\left(K^{n}, X_{A}\right)_{\boldsymbol{a}}=t^{\boldsymbol{a}} \mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})),
$$

where

$$
\begin{align*}
\widetilde{\Omega}(\boldsymbol{a}) & :=\widetilde{\Omega}_{A}(\boldsymbol{a}):=\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \notin-\boldsymbol{a}+\mathbb{N} A\right\}, \\
\mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})) & =\{f(\theta) \in K[\theta]: f(\boldsymbol{u})=0 \text { for all } \boldsymbol{u} \in \widetilde{\Omega}(\boldsymbol{a})\} \tag{13}
\end{align*}
$$

and $K[\theta]:=K\left[\theta_{1}, \ldots, \theta_{n}\right]$.

5.3 From $\mathcal{O}_{K^{\tau}}$ to $\mathcal{O}_{K^{n}}$

Let τ be a face of the cone $\mathbb{R}_{\geqslant 0} A$. We consider the direct image functor $\int_{K^{\tau} \rightarrow K^{n}}^{0}$ from $\mathcal{O}_{K^{\tau}}$ to $\mathcal{O}_{K^{n}}$. Given $M \in \mathcal{O}_{K^{\tau}}$, we define $\int_{K^{\tau} \rightarrow K^{n}}^{0} M \in \mathcal{O}_{K^{n}}$ by

$$
\int_{K^{\tau} \rightarrow K^{n}}^{0} M:=M \otimes_{D\left(K^{\tau}\right)} D\left(K^{n}, K^{\tau}\right),
$$

where

$$
D\left(K^{n}, K^{\tau}\right):=D\left(K[x], K\left[x_{j}: \boldsymbol{a}_{j} \in \tau\right]\right) .
$$

Put

$$
\begin{aligned}
K^{\tau^{c}} & :=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: x_{j}=0 \text { when } \boldsymbol{a}_{j} \in \tau\right\}, \\
\mathbb{N}^{\tau^{c}} & :=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}: a_{j}=0 \text { when } \boldsymbol{a}_{j} \in \tau\right\}, \\
\mathbb{Z}^{\tau^{c}} & :=\left\{\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{j}=0 \text { when } \boldsymbol{a}_{j} \in \tau\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
D\left(K^{n}, K^{\tau}\right) & =D\left(K^{n}\right) /\left\langle x_{j}: \boldsymbol{a}_{j} \notin \tau\right\rangle D\left(K^{n}\right) \\
& =D\left(K^{\tau}\right) \boxtimes D\left(K^{\tau^{c}}\right) /\left\langle x_{j}: \boldsymbol{a}_{j} \notin \tau\right\rangle D\left(K^{\tau^{c}}\right) .
\end{aligned}
$$

Since, as right $D\left(K^{\tau^{c}}\right)$-modules,

$$
D\left(K^{\tau^{c}}\right) /\left\langle x_{j}: \boldsymbol{a}_{j} \notin \tau\right\rangle D\left(K^{\tau^{c}}\right) \simeq \bigoplus_{\boldsymbol{b} \in \mathbb{Z}^{\tau^{c}}} K x^{-\boldsymbol{b}} d\left(K^{\times}\right)^{\tau^{c}} / \bigoplus_{\boldsymbol{b} \notin \mathbb{N}^{\tau^{c}}} K x^{-\boldsymbol{b}} d\left(K^{\times}\right)^{\tau^{c}}
$$

we have

$$
\begin{equation*}
D\left(K^{n}, K^{\tau}\right) \simeq D\left(K^{\tau}\right) \boxtimes \bigoplus_{b \in \mathbb{N}^{c}} K x^{-\boldsymbol{b}} d\left(K^{\times}\right)^{\tau^{c}} \tag{14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{K^{\tau} \rightarrow K^{n}}^{0} M \simeq M \boxtimes \bigoplus_{b \in \mathbb{N}^{\tau}} K x^{-b} d\left(K^{\times}\right)^{\tau^{c}} \tag{15}
\end{equation*}
$$

6. Simple objects in $\mathcal{O}_{K^{n}}$

In this section, we describe the simple objects in $\mathcal{O}_{K^{n}}$ explicitly.
By (9), (10) and the realization (4), we have the following realization of $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$.
Lemma 6.1. Let $\boldsymbol{\beta} \in K A=K^{d}$. Then

$$
M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} K t^{-\boldsymbol{\beta}+\boldsymbol{a}} d T_{A} \otimes_{K[s]} K[\theta] .
$$

The $D\left(K^{n}\right)$-module $\int_{T_{A} \rightarrow K^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta})$ is defined to be the $D\left(\left(K^{\times}\right)^{n}\right)$-module

$$
\begin{equation*}
\int_{T_{A} \rightarrow\left(K^{\times}\right)^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta})=M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta}), \tag{16}
\end{equation*}
$$

considered as a $D\left(K^{n}\right)$-module.
Definition 6.2. Let $\boldsymbol{\beta} \in K A=K^{d}$. In $\boldsymbol{\beta}+\mathbb{Z} A=\boldsymbol{\beta}+\mathbb{Z}^{d}$ there exists a unique minimal equivalence class with respect to \preceq (see Remark 6.3), which we denote by $\boldsymbol{\beta}^{\text {empty }}$. Any fixed element belonging to the class is also denoted by $\boldsymbol{\beta}^{\text {empty }}$.
Remark 6.3. In [Sai01] we defined, for a face τ and a parameter vector $\boldsymbol{\alpha} \in K A=K^{d}$, a finite set

$$
\begin{equation*}
E_{\tau}(\boldsymbol{\alpha})=\{\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau): \boldsymbol{\alpha}-\boldsymbol{\lambda} \in \mathbb{N} A+\mathbb{Z}(A \cap \tau)\} \tag{17}
\end{equation*}
$$

The class $\boldsymbol{\beta}^{\text {empty }}$ is given by

$$
E_{\tau}\left(\boldsymbol{\beta}^{\text {empty }}\right)= \begin{cases}E_{\mathbb{R} \geqslant 0} A(\boldsymbol{\beta}) & \text { if } \tau=\mathbb{R} \geqslant 0 A, \tag{18}\\ \emptyset & \text { if } \tau \neq \mathbb{R} \geqslant 0 A .\end{cases}
$$

Theorem 6.4. Let $\boldsymbol{\beta} \in K A / \mathbb{Z} A=K^{d} / \mathbb{Z}^{d}$, and fix an element $\boldsymbol{e}:=\boldsymbol{\beta}^{\text {empty }}$. Then

$$
\begin{aligned}
L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) & :=\left(t^{-\boldsymbol{e}} d T_{A} \otimes 1\right) D\left(K^{n}\right) \\
& =\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} K t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes_{K[s]} \mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})) \\
& \simeq D\left(K^{n}\right) /\left(I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle s-\boldsymbol{e}\rangle D\left(\left(K^{\times}\right)^{n}\right)\right)
\end{aligned}
$$

is a unique simple $D\left(K^{n}\right)$-submodule of $\int_{T_{A} \rightarrow K^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta})$.
Moreover, $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) \simeq L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)$ if and only if $\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime} \in \mathbb{Z}^{d}$.
Proof. Recall that $\int_{T_{A} \rightarrow K^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta})$ is the module $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$ regarded as a $D\left(K^{n}\right)$-module (16). Hence $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ is isomorphic to $D\left(K^{n}\right) /\left(I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle s-\boldsymbol{e}\rangle D\left(\left(K^{\times}\right)^{n}\right)\right)$ by the definition of $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})=M_{\left(K^{\times}\right)^{n}}(\boldsymbol{e})$. The first equation is clear from (11) and Proposition 5.2.

Let $y \in M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})_{\gamma}$ be non-zero. We prove that $y D\left(K^{n}\right) \supseteq L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$. By multiplying a suitable $x^{\boldsymbol{u}}$ from the right, we may assume that

$$
\begin{equation*}
y=t^{-\boldsymbol{\beta}^{\prime}} d T_{A} \otimes f(\theta) \quad \text { for some } \boldsymbol{\beta}^{\prime} \sim \boldsymbol{e} . \tag{19}
\end{equation*}
$$

Here $f(\theta) \notin\left\langle A \theta-\boldsymbol{\beta}^{\prime}\right\rangle K[\theta]$ since $y \neq 0$. We shall use the symbols s and $A \theta$ interchangeably. We claim that

$$
\begin{equation*}
t^{-\boldsymbol{\beta}^{\prime \prime}} d T_{A} \otimes 1 \in y D\left(K^{n}\right) \quad \text { for some } \boldsymbol{\beta}^{\prime \prime} \sim \boldsymbol{e} \tag{20}
\end{equation*}
$$

We take an element of type (19) in $y D\left(K^{n}\right)$ such that the total degree $\operatorname{deg}(f)$ of f is as small as possible, and we call this element y again. If $f(\theta) \in K[s]$, then clearly we have the claim (20). Suppose $f(\theta) \notin K[s]$. Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n}$ satisfy $A \boldsymbol{u}=A \boldsymbol{v}$. Since

$$
f(\theta)\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right)=\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right) f(\theta+\boldsymbol{u})+x^{\boldsymbol{v}}(f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v})),
$$

we have

$$
y .\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right)=t^{-\boldsymbol{\beta}^{\prime}+A \boldsymbol{v}} d T_{A} \otimes(f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v})) .
$$

By the minimality of $\operatorname{deg}(f)$,

$$
f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v}) \in\left\langle A \theta-\left(\boldsymbol{\beta}^{\prime}-A \boldsymbol{v}\right)\right\rangle K[\theta] .
$$

Hence, for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n}$ with $A \boldsymbol{u}=A \boldsymbol{v}$,

$$
f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v}) \in\left\langle A \theta-\left(\boldsymbol{\beta}^{\prime}-A \boldsymbol{v}\right)\right\rangle K[\theta] .
$$

Since $f(\theta) \notin\left\langle A \theta-\boldsymbol{\beta}^{\prime}\right\rangle K[\theta]$, there exists $\boldsymbol{z} \in K^{n}$ with $A \boldsymbol{z}=\boldsymbol{\beta}^{\prime}$ such that $f(\boldsymbol{z}) \neq 0$. By Lemma 6.5 below, we have

$$
f(\theta) \in f(\boldsymbol{z})+\left\langle A \theta-\boldsymbol{\beta}^{\prime}\right\rangle K[\theta] .
$$

Hence $y=t^{-\boldsymbol{\beta}^{\prime}} d T_{A} \otimes f(\boldsymbol{z})$. We have thus proved claim (20).
Since $\boldsymbol{\beta}^{\prime \prime} \sim \boldsymbol{e}$, there exists $p(s) \in \mathbb{I}\left(\Omega\left(\boldsymbol{\beta}^{\prime \prime}-\boldsymbol{e}\right)\right)$ such that $p\left(\boldsymbol{\beta}^{\prime \prime}\right) \neq 0$. Hence $t^{\boldsymbol{\beta}^{\prime \prime}-\boldsymbol{e}} p(s) \in$ $D\left(X_{A}\right) \subseteq D\left(K^{n}\right) / I_{A} D\left(K^{n}\right)$, and

$$
\left(t^{-\boldsymbol{\beta}^{\prime \prime}} d T_{A} \otimes 1\right) t^{\boldsymbol{\beta}^{\prime \prime}-\boldsymbol{e}} p(s)=p\left(\boldsymbol{\beta}^{\prime \prime}\right) t^{-\boldsymbol{e}} d T_{A} \otimes 1
$$

We have thus proved that $y D\left(K^{n}\right) \supseteq L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ and that $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ is a unique simple $D\left(K^{n}\right)$ submodule of $\int_{T_{A} \rightarrow K^{n}}^{0} L_{T_{A}}(\boldsymbol{\beta})$.

Next, we prove the second statement. If $\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime} \in \mathbb{Z}^{d}$, then $\boldsymbol{\beta}^{\text {empty }}=\boldsymbol{\beta}^{\text {'empty }}$. Hence $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)=L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)$ by definition. If $\boldsymbol{\beta}-\boldsymbol{\beta}^{\prime} \notin \mathbb{Z}^{d}$, then $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ and $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}^{\prime}\right)$ have distinct weight sets and hence are not isomorphic.

Lemma 6.5. Let $f(\theta) \in K[\theta]$ satisfy

$$
f(\theta+\boldsymbol{l})-f(\theta) \in\langle A \theta-\boldsymbol{c}\rangle K[\theta]
$$

for all \boldsymbol{l} with $A \boldsymbol{l}=0$. Take $\boldsymbol{\gamma} \in K^{n}$ such that $A \boldsymbol{\gamma}=\boldsymbol{c}$. Then

$$
f(\theta) \in f(\boldsymbol{\gamma})+\langle A \theta-\boldsymbol{c}\rangle K[\theta] .
$$

Proof.

$$
\begin{aligned}
& f(\theta+\boldsymbol{l})-f(\theta) \in\langle A \theta-\boldsymbol{c}\rangle K[\theta] \text { for all } \boldsymbol{l} \text { such that } A \boldsymbol{l}=\mathbf{0} \\
& \quad \Longrightarrow f(\boldsymbol{l}+\boldsymbol{\gamma})-f(\boldsymbol{\gamma})=0 \text { for all } \boldsymbol{l} \text { such that } A \boldsymbol{l}=\mathbf{0} \\
& \quad \Longleftrightarrow f(\theta+\boldsymbol{\gamma}) \in f(\boldsymbol{\gamma})+\langle A \theta\rangle K[\theta] \\
& \quad \Longleftrightarrow f(\theta) \in f(\gamma)+\langle A \theta-\boldsymbol{c}\rangle K[\theta] .
\end{aligned}
$$

Let τ be a face of $\mathbb{R}_{\geqslant 0} A$, and let $\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau)$. We define a right $D\left(K^{\tau}\right)$-module $L_{K^{\tau}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ in the same way as we defined $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$ in Theorem 6.4. By Theorem 6.4, $L_{K^{\tau}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ is a simple $D\left(K^{\tau}\right)$-module. By Kashiwara's equivalence,

$$
\begin{equation*}
L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right):=\int_{K^{\tau} \rightarrow K^{n}}^{0} L_{K^{\tau}}\left(T_{\tau}, \boldsymbol{\lambda}\right) \tag{21}
\end{equation*}
$$

is a simple $D\left(K^{n}\right)$-module.

TheOrem 6.6. Each simple object in $\mathcal{O}_{K^{n}}$ is isomorphic to $L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ for some face τ and some $\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau)$.

Moreover, $L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right) \simeq L_{K^{n}}\left(T_{\tau^{\prime}}, \boldsymbol{\lambda}^{\prime}\right)$ if and only if $\tau=\tau^{\prime}$ and $\boldsymbol{\lambda}-\boldsymbol{\lambda}^{\prime} \in \mathbb{Z}(A \cap \tau)$.
Proof. Let L be a simple object in $\mathcal{O}_{K^{n}}$. Suppose that $\operatorname{supp}(L)=\overline{T_{A}}=X_{A}$. There exists the following exact sequence in $\mathcal{O}_{K^{n}}$:

$$
0 \rightarrow \Gamma_{K^{n} \backslash\left(K^{\times}\right)^{n}}(L) \rightarrow L \rightarrow \Gamma_{\left(K^{\times}\right)^{n}}(L),
$$

where $\Gamma_{K^{n} \backslash\left(K^{\times}\right)^{n}}(L)=\left\{y \in L: \operatorname{supp}(y) \subseteq K^{n} \backslash\left(K^{\times}\right)^{n}\right\}$ and $\Gamma_{\left(K^{\times}\right)^{n}}(L)$ is the localization of L at the multiplicatively closed set $\left\{x_{j}^{m}: j=1, \ldots, n ; m \in \mathbb{N}\right\}$. By the simplicity of $L, \Gamma_{K^{n} \backslash\left(K^{\times}\right)^{n}}(L)=0$. Hence L is a simple submodule of $\Gamma_{\left(K^{\times}\right)^{n}}(L)$, and then $\Gamma_{\left(K^{\times}\right)^{n}}(L)$ is simple in $\mathcal{O}_{\left(K^{\times}\right)^{n}}$. Indeed, let y be a non-zero element of $\Gamma_{\left(K^{\times}\right)^{n}}(L)$; then there exists $\boldsymbol{u} \in \mathbb{N}^{n}$ such that $y . x^{\boldsymbol{u}} \in L$. Since L is a simple $D\left(K^{n}\right)$-module, we have $y \cdot D\left(K^{n}\right) \supseteq L$. Since $\Gamma_{\left(K^{\times}\right)^{n}}(L)$ is generated by L as a $D\left(\left(K^{\times}\right)^{n}\right)$ module, we obtain $y \cdot D\left(\left(K^{\times}\right)^{n}\right)=\Gamma_{\left(K^{\times}\right)^{n}}(L)$, and hence $\Gamma_{\left(K^{\times}\right)^{n}}(L)$ is simple in $\mathcal{O}_{\left(K^{\times}\right)^{n}}$. Then, by Proposition 5.1, $\Gamma_{\left(K^{\times}\right)^{n}}(L) \simeq M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$ for some $\boldsymbol{\beta} \in K A / \mathbb{Z} A$. Since $M_{\left(K^{\times}\right)^{n}}(\boldsymbol{\beta})$ has the unique simple submodule $L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$, we conclude that $L \simeq L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$.

By the simplicity of L, the support of L is the closure of T_{τ} for some face τ. By the same argument as in the previous paragraph, we obtain $L \simeq L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ for some $\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau)$.

The second statement is clear from the second statement of Theorem 6.4.
Example 6.7. Let $A=(1)$. In this case, the cone $\mathbb{R}_{\geqslant 0} A=\mathbb{R}_{\geqslant 0}$ has only two faces: $\{0\}$ and $\mathbb{R}_{\geqslant 0}$. Then

$$
L_{K}\left(T_{\{0\}}, 0\right)=\int_{\{0\} \rightarrow K}^{0} K \simeq D / x D,
$$

where D is the first Weyl algebra.
Let $\beta \in K$. If $\beta \notin \mathbb{Z}=\mathbb{Z} A$, then $\beta=\beta^{\text {empty }}$. If $\beta \in \mathbb{Z}$, then $\beta=\beta^{\text {empty }}$ if and only if $\beta \in \mathbb{Z}_{\leqslant-1}$. The simple module $L_{K}\left(T_{A}, \beta\right)$ is the unique simple submodule of $x^{-\beta} K\left[x, x^{-1}\right] d T_{A}$ generated by $x^{-\beta^{\text {empty }}} d T_{A}$. Hence

$$
\begin{aligned}
& L_{K}\left(T_{A}, \beta\right)=x^{-\beta} d T_{A} \cdot D \simeq D /(x \partial-\beta) D \text { for } \beta \notin \mathbb{Z} \\
& L_{K}\left(T_{A}, \beta\right)=L_{K}\left(T_{A},-1\right)=x d T_{A} \cdot D \simeq D / \partial D \quad \text { for } \beta \in \mathbb{Z} .
\end{aligned}
$$

A left $D\left(K^{n}\right)$-module M is said to have irreducible monodromy representation if $D\left(K^{n}\right)(x) \otimes_{D\left(K^{n}\right)} M$ is an irreducible left $D\left(K^{n}\right)(x)$-module, where $D\left(K^{n}\right)(x)=K(x) \otimes_{K[x]}$ $D\left(K^{n}\right)$ with $K(x)=K\left(x_{1}, \ldots, x_{n}\right)$ being the field of rational functions (cf. [Wal07]). We naturally have the following proposition.

Proposition 6.8. Let M be an irreducible left $D\left(K^{n}\right)$-module. Suppose that $D\left(K^{n}\right)(x) \otimes_{D\left(K^{n}\right)}$ $M \neq 0$. Then M has irreducible monodromy representation.

Proof. We can write $M=D\left(K^{n}\right) / I$ with I a maximal left ideal of $D\left(K^{n}\right)$. Then

$$
D\left(K^{n}\right)(x) \otimes_{D\left(K^{n}\right)} M=D\left(K^{n}\right)(x) / D\left(K^{n}\right)(x) I .
$$

Let J be a left ideal of $D\left(K^{n}\right)(x)$ containing $D\left(K^{n}\right)(x) I$. Since $J \cap D\left(K^{n}\right)$ is a left ideal of $D\left(K^{n}\right)$ containing I, we have $J \cap D\left(K^{n}\right)=D\left(K^{n}\right)$ or I. If $J \cap D\left(K^{n}\right)=D\left(K^{n}\right)$, then $1 \in J$ and thus $J=D\left(K^{n}\right)(x)$.

Suppose that $J \cap D\left(K^{n}\right)=I$. Let $P \in J$. Then there exists a non-zero polynomial $f \in K[x]$ such that $f P \in J \cap D\left(K^{n}\right)=I$. Hence $P \in D\left(K^{n}\right)(x) I$, and we have $J=D\left(K^{n}\right)(x) I$.

Irreducible quotients of A-hypergeometric systems

7. Pull-back of $L_{K^{n}}\left(T_{\tau}, \lambda\right)$

Let i^{\natural} denote the functor from $\mathcal{O}_{K^{n}}$ to $\mathcal{O}_{X_{A}}$ defined by

$$
\begin{align*}
i^{\natural}(N) & :=\operatorname{Hom}_{D\left(K^{n}\right)}\left(D\left(K^{n}, X_{A}\right), N\right) \\
& =\left\{x \in N: x \cdot I_{A}=0\right\} . \tag{22}
\end{align*}
$$

The following adjointness property holds:

$$
\begin{equation*}
\operatorname{Hom}_{D\left(K^{n}\right)}\left(\int_{X_{A} \rightarrow K^{n}}^{0} M, N\right) \simeq \operatorname{Hom}_{D\left(X_{A}\right)}\left(M, i^{\natural}(N)\right) . \tag{23}
\end{equation*}
$$

In this section, we compute the pull-back of $L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ by $i^{\text {h }}$. As a consequence, we determine the irreducible quotients of $M_{K^{n}}(\boldsymbol{\beta})$.

Before considering $i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\lambda}\right)\right)$, we present two preparatory lemmas.
Lemma 7.1. Let $\boldsymbol{c} \in \mathrm{ZC}(\Omega(\boldsymbol{a}))$, where $\Omega(\boldsymbol{a})$ is as defined in (5) and ZC stands for the Zariski closure in K^{d}. Then there exist $\boldsymbol{b} \in \Omega(\boldsymbol{a})$ and a face τ such that $\boldsymbol{b}+\mathbb{N}(A \cap \tau) \subseteq \Omega(\boldsymbol{a})$ and $\boldsymbol{c} \in \boldsymbol{b}+K(A \cap \tau)$.

Proof. This follows from [ST04, Proposition 5.1].
Lemma 7.2. Suppose that

$$
\mathbb{I}(\Omega(\boldsymbol{a})) \subseteq\langle s-\boldsymbol{c}\rangle K[s] .
$$

Then

$$
\begin{equation*}
\left\{f \in \mathbb{I}(\widetilde{\Omega}(\boldsymbol{a})): f(\boldsymbol{\gamma})=f\left(\boldsymbol{\gamma}^{\prime}\right) \text { if } A \boldsymbol{\gamma}=A \boldsymbol{\gamma}^{\prime}=\boldsymbol{c}\right\} \subseteq\langle A \theta-\boldsymbol{c}\rangle K[\theta], \tag{24}
\end{equation*}
$$

where $\widetilde{\Omega}(\boldsymbol{a})$ is as defined in (13).
Proof. Since $\mathbb{I}(\Omega(\boldsymbol{a})) \subseteq\langle s-\boldsymbol{c}\rangle K[s]$, we have $\boldsymbol{c} \in \mathrm{ZC}(\Omega(\boldsymbol{a}))$. By Lemma 7.1 there exist $\boldsymbol{b} \in \Omega(\boldsymbol{a})$ and a face τ such that $\boldsymbol{b}+\mathbb{N}(A \cap \tau) \subseteq \Omega(\boldsymbol{a})$ and $\boldsymbol{c} \in \boldsymbol{b}+K(A \cap \tau)$. Take $\boldsymbol{u} \in \mathbb{N}_{\tilde{n}}$ such that $A \boldsymbol{u}=\boldsymbol{b}$. Then there exists $\gamma^{\prime} \in \boldsymbol{u}+K^{\tau}$ such that $A \boldsymbol{\gamma}^{\prime}=\boldsymbol{c}$. Observe that $\gamma^{\prime} \in \mathrm{ZC}(\widetilde{\Omega}(\boldsymbol{a}))$, since $\boldsymbol{u}+\mathbb{N}^{\tau} \subseteq \widetilde{\Omega}(\boldsymbol{a})$.

Let $f(\theta)$ belong to the set on the left-hand side of (24). If $A \boldsymbol{\gamma}=\boldsymbol{c}\left(=A \gamma^{\prime}\right)$, then we have $f(\boldsymbol{\gamma})=f\left(\boldsymbol{\gamma}^{\prime}\right)=0$ since $\boldsymbol{\gamma}^{\prime} \in \mathrm{ZC}(\widetilde{\Omega}(\boldsymbol{a}))$. Hence $f \in\langle A \theta-\boldsymbol{c}\rangle K[\theta]$.

Theorem 7.3.

$$
i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right)=L_{X_{A}}\left(\boldsymbol{\beta}^{\mathrm{empty}}\right) .
$$

Proof. Fix $\boldsymbol{e}:=\boldsymbol{\beta}^{\text {empty }}$. By Theorem 6.4,

$$
\begin{aligned}
L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) & =\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes_{K[s]}(\mathbb{I}(\tilde{\Omega}(\boldsymbol{a})) / \mathbb{I}(\tilde{\Omega}(\boldsymbol{a})) \cap\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[\theta]) \\
& \subseteq \bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes_{K[s]} K[\theta] /\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[\theta] .
\end{aligned}
$$

First, we claim that

$$
\begin{equation*}
i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right) \subseteq \bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} K t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} . \tag{25}
\end{equation*}
$$

M. Saito

Let $f(\theta) \in K[\theta]$, and fix $\boldsymbol{\gamma} \in K^{n}$ with $A \boldsymbol{\gamma}=\boldsymbol{e}-\boldsymbol{a}$. Then

$$
\begin{aligned}
& t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(\theta) \cdot I_{A}=0 \\
& \quad \Longleftrightarrow t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(\theta) \cdot\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right)=0 \text { for all } \boldsymbol{u} \text { and } \boldsymbol{v} \text { with } A \boldsymbol{u}=A \boldsymbol{v} \\
& \quad \Longleftrightarrow t^{-\boldsymbol{e}+\boldsymbol{a}+A \boldsymbol{u}} d T_{A} \otimes(f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v}))=0 \text { for all } \boldsymbol{u} \text { and } \boldsymbol{v} \text { with } A \boldsymbol{u}=A \boldsymbol{v} \\
& \quad \Longleftrightarrow f(\theta+\boldsymbol{u})-f(\theta+\boldsymbol{v}) \in\langle A \theta-\boldsymbol{e}+\boldsymbol{a}+A \boldsymbol{u}\rangle K[\theta] \text { for all } \boldsymbol{u} \text { and } \boldsymbol{v} \text { with } A \boldsymbol{u}=A \boldsymbol{v} \\
& \quad \Longleftrightarrow f(\theta+\boldsymbol{u}-\boldsymbol{v})-f(\theta) \in\langle A \theta-\boldsymbol{e}+\boldsymbol{a}\rangle K[\theta] \quad \text { for all } \boldsymbol{u} \text { and } \boldsymbol{v} \text { with } A \boldsymbol{u}=A \boldsymbol{v} .
\end{aligned}
$$

Hence, by Lemma 6.5, $t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(\theta) \in i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right)$ implies

$$
f(\theta) \in f(\boldsymbol{\gamma})+\langle A \theta-\boldsymbol{e}+\boldsymbol{a}\rangle K[\theta] .
$$

Therefore $t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(\theta)=f(\gamma) t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes 1$ and the claim (25) is proved.
Recall that

$$
\begin{align*}
\boldsymbol{e}-\boldsymbol{a} \nsucc \boldsymbol{e} & \Longleftrightarrow \boldsymbol{e}-\boldsymbol{a} \npreceq \boldsymbol{e} \\
& \Longleftrightarrow \mathbb{I}(\Omega(\boldsymbol{a})) \subseteq\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[s] . \tag{26}
\end{align*}
$$

Suppose $\boldsymbol{e}-\boldsymbol{a} \sim \boldsymbol{e}$. Then there exists $f(s) \in \mathbb{I}(\Omega(\boldsymbol{a}))$ such that $f(s) \notin\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[s]$. Hence, for $\gamma \in K^{n}$ with $A \gamma=\boldsymbol{e}-\boldsymbol{a}$, we have $f(\gamma)=f(A \gamma) \neq 0$. Then

$$
i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right) \ni t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(A \theta)=f(\boldsymbol{\gamma}) t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes 1 \neq 0,
$$

and thus the weight $-\boldsymbol{e}+\boldsymbol{a}$ appears in $i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right)$.
Next, suppose $\boldsymbol{e}-\boldsymbol{a} \nsucc \boldsymbol{e}$. Then $\mathbb{I}(\Omega(\boldsymbol{a})) \subseteq\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[s]$. By the proof of (25), if $t^{-\boldsymbol{e}+\boldsymbol{a}} d T_{A} \otimes f(\theta) \in i^{\natural}\left(L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)\right)$, then $f(\boldsymbol{\gamma})=f\left(\boldsymbol{\gamma}^{\prime}\right)$ for any $\boldsymbol{\gamma}, \boldsymbol{\gamma}^{\prime} \in K^{n}$ with $A \boldsymbol{\gamma}=A \boldsymbol{\gamma}^{\prime}=$ $\boldsymbol{e}-\boldsymbol{a}$. Hence, by (7), it suffices to prove the inclusion

$$
\left\{f \in \mathbb{I}(\tilde{\Omega}(\boldsymbol{a})): f(\boldsymbol{\gamma})=f\left(\boldsymbol{\gamma}^{\prime}\right) \text { if } A \boldsymbol{\gamma}=A \boldsymbol{\gamma}^{\prime}=\boldsymbol{e}-\boldsymbol{a}\right\} \subseteq\langle A \theta-\boldsymbol{e}+\boldsymbol{a}\rangle K[\theta]
$$

assuming that $\mathbb{I}(\Omega(\boldsymbol{a})) \subseteq\langle s-\boldsymbol{e}+\boldsymbol{a}\rangle K[s]$. We finish the proof by invoking Lemma 7.2.

Given faces τ and τ^{\prime} of $\mathbb{R}_{\geqslant 0} A, \boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau)$ and $\boldsymbol{\lambda}^{\prime} \in K\left(A \cap \tau^{\prime}\right) / Z\left(A \cap \tau^{\prime}\right)$, set

$$
\begin{equation*}
\left(\tau^{\prime}, \boldsymbol{\lambda}^{\prime}\right) \prec(\tau, \boldsymbol{\lambda}) \stackrel{\text { def }}{\Longleftrightarrow} \tau^{\prime} \prec \tau \quad \text { and } \quad \boldsymbol{\lambda}-\boldsymbol{\lambda}^{\prime} \in \mathbb{Z}(A \cap \tau) . \tag{27}
\end{equation*}
$$

Theorem 7.4. Let $\boldsymbol{\lambda} \in K(A \cap \tau) / \mathbb{Z}(A \cap \tau)$. Then

$$
\operatorname{dim}_{K} i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)_{-\boldsymbol{c}}= \begin{cases}1 & \text { if } \boldsymbol{c} \in C_{K^{n}}(\tau, \boldsymbol{\lambda}), \\ 0 & \text { otherwise },\end{cases}
$$

where

$$
C_{K^{n}}(\tau, \boldsymbol{\lambda})=\left\{\boldsymbol{c} \in K^{d}: \begin{array}{l}
E_{\tau}(\boldsymbol{c}) \ni \boldsymbol{\lambda} \text { and } E_{\tau^{\prime}}(\boldsymbol{c}) \nexists \boldsymbol{\lambda}^{\prime} \tag{28}\\
\text { whenever }\left(\tau^{\prime}, \boldsymbol{\lambda}^{\prime}\right) \prec(\tau, \boldsymbol{\lambda})
\end{array}\right\} .
$$

Proof. By (15),

$$
L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right) \simeq L_{K^{\tau}}\left(T_{\tau}, \boldsymbol{\lambda}\right) \boxtimes\left(\bigoplus_{\tilde{\boldsymbol{b}} \in \mathbb{N}^{c}} K x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}}\right)
$$

By the definition of i^{\natural},

$$
\begin{aligned}
i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right) & =\left\{f \in L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right): f . I_{A}=0\right\} \\
& \subseteq\left\{f \in L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right): f .\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right)=0 \text { for } \boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{\tau} \text { with } A \boldsymbol{u}=A \boldsymbol{v}\right\} .
\end{aligned}
$$

Hence, by Theorem 7.3,

$$
i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right) \subseteq\left(\bigoplus_{\boldsymbol{a} \sim \boldsymbol{\lambda}^{\text {empty }}} K t^{-\boldsymbol{a}} d T_{\tau}\right) \boxtimes\left(\bigoplus_{\tilde{\boldsymbol{b}} \in \mathbb{N}^{c}} K x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}}\right) .
$$

Note that for $\boldsymbol{a} \in K(A \cap \tau), \boldsymbol{a} \sim \boldsymbol{\lambda}^{\text {empty }}$ if and only if $\boldsymbol{a} \in C_{K^{n}}(\tau, \boldsymbol{\lambda}) \cap K(A \cap \tau)=: C_{K^{\tau}}(\tau, \boldsymbol{\lambda})$. Let

$$
\begin{equation*}
f=\sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}) \in C} f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}} \tag{29}
\end{equation*}
$$

where $C=C_{K^{\tau}}(\tau, \boldsymbol{\lambda}) \times \mathbb{N}^{\tau^{c}}$. Note that the set of $(\boldsymbol{a}, \tilde{\boldsymbol{b}}) \in C$ with a fixed $\boldsymbol{a}+A \tilde{\boldsymbol{b}}$ is finite, since $\boldsymbol{a} \in \boldsymbol{\lambda}+\mathbb{Z}(A \cap \tau), \tilde{\boldsymbol{b}} \in \mathbb{N}^{\tau^{c}}$ and $\mathbb{R} \geqslant 0(A \backslash \tau) \cap \mathbb{R} \tau=\{\mathbf{0}\}$.

Let $\boldsymbol{u}=\boldsymbol{u}_{\tau}+\boldsymbol{u}_{\tau^{c}}$ and $\boldsymbol{v}=\boldsymbol{v}_{\tau}+\boldsymbol{v}_{\tau^{c}}$, with $\boldsymbol{u}_{\tau}, \boldsymbol{v}_{\tau} \in \mathbb{N}^{\tau}$ and $\boldsymbol{u}_{\tau^{c}}, \boldsymbol{v}_{\tau^{c}} \in \mathbb{N}^{\tau^{c}}$, satisfy $A \boldsymbol{u}=A \boldsymbol{v}$. We claim that for f as in (29),

$$
f \in i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right) \Longleftrightarrow \begin{cases}\text { (i) } & f_{\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{c}}}=f_{\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau^{c}}} \tag{30}\\
\text { for }(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{c}}\right),\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau^{c}}\right) \in C, \\
\text { (ii) } \begin{array}{l}
f_{\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{c}}}=0 \\
\text { for }(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{c}}\right) \in C,\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau^{c}}\right) \notin C .
\end{array}\end{cases}
$$

We have

$$
\begin{aligned}
f .\left(x^{\boldsymbol{u}}-x^{\boldsymbol{v}}\right)= & \sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}) \in C} f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}} \tilde{b}^{-\boldsymbol{a}+A \boldsymbol{u}_{\tau}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c} d\left(K^{\times}\right)^{\tau^{c}} \\
& -\sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}) \in C} f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}} t^{-\boldsymbol{a}+A \boldsymbol{v}_{\tau}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau} c} d\left(K^{\times}\right)^{\tau^{c}} \\
= & \sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau} c\right) \in C} f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}} t^{-\boldsymbol{a}+A \boldsymbol{u}_{\tau}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c} d\left(K^{\times}\right)^{\tau^{c}} \\
& -\sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}-A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{v}_{\tau} c\right) \in C} f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}^{-\boldsymbol{a}+A \boldsymbol{v}_{\tau}}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau} c} d\left(K^{\times}\right)^{\tau^{c}} \\
= & \sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c\right) \in C} f_{\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}} \\
& -\sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau} c\right) \in C} f_{\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau c}} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{\substack{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{b}+\boldsymbol{u}_{\tau^{c}}\right) \in C \\
\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau} c\right) \in C}}\left(f_{\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{c}}}-f_{\left.\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau^{c}}\right)}\right) t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}} \\
& +\sum_{\substack{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c\right) \in C \\
\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau^{c} c}\right) \notin C}} f_{\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau} c} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}} \\
& -\sum_{\substack{(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}+A \boldsymbol{v}_{\tau} \tau, \tilde{\boldsymbol{b}}+\boldsymbol{v}_{\tau} c\right) \in C \\
\left(\boldsymbol{a}+A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}+\boldsymbol{u}_{\tau^{\prime}} c\right) \notin C}} f_{\boldsymbol{a + A \boldsymbol { v } _ { \tau } , \tilde { \boldsymbol { b } } + \boldsymbol { v } _ { \tau } c} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}},}
\end{aligned}
$$

so (30) is established.
Let us keep $f \in i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)$ as in (29) and take $(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}^{\prime}, \tilde{\boldsymbol{b}}^{\prime}\right) \in C$ with $\boldsymbol{a}+A \tilde{\boldsymbol{b}}=\boldsymbol{a}^{\prime}+A \tilde{\boldsymbol{b}}^{\prime}$. We claim that then

$$
\begin{equation*}
f_{\boldsymbol{a}, \tilde{b}}=f_{\boldsymbol{a}^{\prime}, \tilde{b}^{\prime}} \tag{31}
\end{equation*}
$$

Indeed, let $\boldsymbol{w} \in K^{\tau}$ and $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{a}}^{\prime} \in \mathbb{Z}^{\tau}$ satisfy $\boldsymbol{\lambda}=A \boldsymbol{w}, \boldsymbol{a}=A(\boldsymbol{w}+\tilde{\boldsymbol{a}})$ and $\boldsymbol{a}^{\prime}=A\left(\boldsymbol{w}+\tilde{\boldsymbol{a}}^{\prime}\right)$. Put $\boldsymbol{u}_{\tau}:=\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{+} \in \mathbb{N}^{\tau}, \boldsymbol{v}_{\tau}:=\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{-} \in \mathbb{N}^{\tau}, \boldsymbol{u}_{\tau^{c}}:=\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)_{+} \in \mathbb{N}^{\tau^{c}}$ and $\boldsymbol{v}_{\tau^{c}}:=\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)_{-} \in \mathbb{N}^{\tau^{c}}$. Here, $\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{+}$is the non-negative part of $\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}$, and $\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{-}$is the negative of the non-positive part of $\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}$. Then $A\left(\boldsymbol{u}_{\tau}+\boldsymbol{u}_{\tau^{c}}\right)=A\left(\boldsymbol{v}_{\tau}+\boldsymbol{v}_{\tau^{c}}\right)$ and $\tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}=\tilde{\boldsymbol{b}}^{\prime}-\boldsymbol{v}_{\tau^{c}} \in \mathbb{N}^{\tau^{c}}$. Furthermore, $\boldsymbol{a}-\boldsymbol{A} \boldsymbol{u}_{\tau}=\boldsymbol{a}^{\prime}-A \boldsymbol{v}_{\tau} \in C_{K^{\tau}}(\tau, \boldsymbol{\lambda})$, since $\boldsymbol{a} \sim \boldsymbol{a}^{\prime} \sim \boldsymbol{\lambda}^{\text {empty }}$ is the minimal class (see [Sai01, Proposition 2.2(5)]). Hence, from (30)(i) we obtain (31).

We can rewrite (30)(ii) as

$$
\begin{equation*}
f_{\boldsymbol{a}, \tilde{\boldsymbol{b}}}=0 \tag{32}
\end{equation*}
$$

for $(\boldsymbol{a}, \tilde{\boldsymbol{b}}),\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}\right) \in C$ and $\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}+\boldsymbol{v}_{\tau^{c}}\right) \notin C$.
We prove next that (32) is equivalent to the following condition:
if there exists $\left(\tau^{\prime}, \boldsymbol{\lambda}^{\prime}\right) \prec(\tau, \boldsymbol{\lambda})$ such that $E_{\tau^{\prime}}(\boldsymbol{a}+A \tilde{\boldsymbol{b}}) \ni \boldsymbol{\lambda}^{\prime}$, then $f_{a, \tilde{b}}=0$.

For this purpose, when $(\boldsymbol{a}, \tilde{\boldsymbol{b}}) \in C$ we prove the equivalence

$$
\begin{equation*}
\text { there exists }\left(\tau^{\prime}, \boldsymbol{\lambda}^{\prime}\right) \prec(\tau, \boldsymbol{\lambda}) \text { such that } E_{\tau^{\prime}}(\boldsymbol{a}+A \tilde{\boldsymbol{b}}) \ni \boldsymbol{\lambda}^{\prime} \tag{34}
\end{equation*}
$$

\Longleftrightarrow there exist $\boldsymbol{u}_{\tau}, \boldsymbol{v}_{\tau} \in \mathbb{N}^{\tau}$ and $\boldsymbol{u}_{\tau^{c}}, \boldsymbol{v}_{\tau^{c}} \in \mathbb{N}^{\tau^{c}}$ such that

$$
\begin{align*}
& A\left(\boldsymbol{u}_{\tau}+\boldsymbol{u}_{\tau^{c}}\right)=A\left(\boldsymbol{v}_{\tau}+\boldsymbol{v}_{\tau^{c}}\right),\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}\right) \in C \tag{35}\\
& \text { and }\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}+\boldsymbol{v}_{\tau^{c}}\right) \notin C .
\end{align*}
$$

First, suppose that (35) holds. Then $\tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}} \in \mathbb{N}^{\tau^{c}}$, and there exists $\left(\tau^{\prime}, \boldsymbol{\lambda}^{\prime}\right) \prec(\tau, \boldsymbol{\lambda})$ such that $E_{\tau^{\prime}}\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}\right) \ni \boldsymbol{\lambda}^{\prime}$. It follows from $\tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}} \in \mathbb{N}^{\tau^{c}}$ and $A\left(\boldsymbol{u}_{\tau}+\boldsymbol{u}_{\tau^{c}}\right)=A\left(\boldsymbol{v}_{\tau}+\boldsymbol{v}_{\tau^{c}}\right)$ that $A \boldsymbol{v}_{\tau}-A \boldsymbol{u}_{\tau} \in A\left(\tilde{\boldsymbol{b}}-\mathbb{N}^{\tau^{c}}\right)$. Hence $E_{\tau^{\prime}}(\boldsymbol{a}+A \tilde{\boldsymbol{b}}) \ni \boldsymbol{\lambda}^{\prime}(\mathrm{cf}$. [Sai01, Proposition 2.2(5)]).

Conversely, suppose that (34) holds. Then $\boldsymbol{a}+A \tilde{\boldsymbol{b}}-\boldsymbol{\lambda}^{\prime} \in \mathbb{N} A+\mathbb{Z}\left(A \cap \tau^{\prime}\right)$. Let $\boldsymbol{w}^{\prime} \in K^{\tau^{\prime}}$, $\tilde{\boldsymbol{a}} \in \mathbb{Z}^{\tau}, \quad \tilde{\boldsymbol{b}}^{\prime} \in \mathbb{N}^{\tau^{c}}$ and $\tilde{\boldsymbol{a}}^{\prime} \in \mathbb{N}^{\tau \backslash \tau^{\prime}} \times \mathbb{Z}^{\tau^{\prime}}$ satisfy $\boldsymbol{\lambda}^{\prime}=A \boldsymbol{w}^{\prime}, \boldsymbol{a}=A\left(\boldsymbol{w}^{\prime}+\tilde{\boldsymbol{a}}\right)$ and $\boldsymbol{a}+A \tilde{\boldsymbol{b}}-\boldsymbol{\lambda}^{\prime}=$ $A \tilde{\boldsymbol{b}}^{\prime}+A \tilde{\boldsymbol{a}}^{\prime}$. As before, put $\boldsymbol{u}_{\tau}:=\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{+} \in \mathbb{N}^{\tau}, \boldsymbol{v}_{\tau}:=\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)_{-} \in \mathbb{N}^{\tau}, \boldsymbol{u}_{\tau^{c}}:=\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)_{+} \in \mathbb{N}^{\tau^{c}}$ and $\boldsymbol{v}_{\tau^{c}}:=\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)_{-} \in \mathbb{N}^{\tau^{c}}$. Then $\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}\right) \in C$. Furthermore, $\boldsymbol{a}-A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}=\boldsymbol{a}-$ $A\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)=\boldsymbol{\lambda}^{\prime}+A \tilde{\boldsymbol{a}}^{\prime} \in \boldsymbol{\lambda}^{\prime}+\mathbb{N} A+\mathbb{Z}\left(A \cap \tau^{\prime}\right)$. Hence $\boldsymbol{\lambda}^{\prime} \in E_{\tau^{\prime}}\left(\boldsymbol{a}-A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}\right)$, and thus $(\boldsymbol{a}-$ $\left.A \boldsymbol{u}_{\tau}+A \boldsymbol{v}_{\tau}, \tilde{\boldsymbol{b}}-\boldsymbol{u}_{\tau^{c}}+\boldsymbol{v}_{\tau^{c}}\right) \notin C$. Finally, $A\left(\boldsymbol{u}_{\tau}+\boldsymbol{u}_{\tau^{c}}\right)-A\left(\boldsymbol{v}_{\tau}+\boldsymbol{v}_{\tau^{c}}\right)=A\left(\tilde{\boldsymbol{a}}-\tilde{\boldsymbol{a}}^{\prime}\right)+A\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)=$ $\boldsymbol{a}-\boldsymbol{\lambda}^{\prime}-A \tilde{\boldsymbol{a}}^{\prime}+A\left(\tilde{\boldsymbol{b}}-\tilde{\boldsymbol{b}}^{\prime}\right)=\mathbf{0}$. Therefore we have established the equivalence between (34) and (35) and hence the equivalence between (32) and (33).

Irreducible quotients of A-hypergeometric systems

In summary, we have shown that

$$
\begin{equation*}
i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)=\bigoplus_{\boldsymbol{c} \in C_{K^{n}}(\tau, \boldsymbol{\lambda})} K \sum_{(\boldsymbol{a}, \tilde{\boldsymbol{b}}), \boldsymbol{c}=\boldsymbol{a}+A \tilde{\boldsymbol{b}}} t^{-\boldsymbol{a}} d T_{\tau} \otimes x^{-\tilde{\boldsymbol{b}}} d\left(K^{\times}\right)^{\tau^{c}} \tag{36}
\end{equation*}
$$

so the proof of Theorem 7.4 is complete.
Corollary 7.5.

$$
\operatorname{dim}_{K} \operatorname{Hom}_{D(R)}\left(M_{K^{n}}(\boldsymbol{\beta}), L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)= \begin{cases}1 & \text { if } \boldsymbol{\beta} \in C_{K^{n}}(\tau, \boldsymbol{\lambda}) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. We have

$$
\begin{aligned}
& \operatorname{dim}_{K} \operatorname{Hom}_{D\left(K^{n}\right)}\left(M_{K^{n}}(\boldsymbol{\beta}), L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right) \\
& \quad=\operatorname{dim}_{K} \operatorname{Hom}_{D\left(K^{n}\right)}\left(\int_{X_{A} \rightarrow K^{n}}^{0} M_{X_{A}}(\boldsymbol{\beta}), L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right) \\
& \quad=\operatorname{dim}_{K} \operatorname{Hom}_{D\left(X_{A}\right)}\left(M_{X_{A}}(\boldsymbol{\beta}), i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)\right) \\
& \quad=\operatorname{dim}_{K}\left(i^{\natural}\left(L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)\right)_{-\boldsymbol{\beta}} .
\end{aligned}
$$

The first equality comes from (12) and the second from the adjointness (23). The third follows from [MV98, Proposition 3.1.7] (see also [Sai07, Proposition 3.6]). Theorem 7.4 then finishes the proof of this corollary.

For $\boldsymbol{\beta} \in K^{d}$, set

$$
\begin{equation*}
E(\boldsymbol{\beta}):=\left\{(\tau, \boldsymbol{\lambda}): \tau \text { a face of } \mathbb{R}_{\geqslant 0} A, \boldsymbol{\lambda} \in E_{\tau}(\boldsymbol{\beta})\right\} \tag{37}
\end{equation*}
$$

Then Corollary 7.5 can be rephrased as follows.

Corollary 7.6.

$$
\operatorname{dim}_{K} \operatorname{Hom}_{D(R)}\left(M_{K^{n}}(\boldsymbol{\beta}), L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)= \begin{cases}1 & \text { if }(\tau, \boldsymbol{\lambda}) \text { is minimal in } E(\boldsymbol{\beta}) \\ 0 & \text { otherwise }\end{cases}
$$

Here the minimality is with respect to (27).
Example 7.7. Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 0
\end{array}\right]=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right] .
$$

Then the cone $\mathbb{R}_{\geqslant 0} A$ has exactly four faces: $\mathbb{R}_{\geqslant_{0}} A=\mathbb{R}_{\geqslant 0}^{2}, \sigma_{1}:=\mathbb{R}_{\geqslant_{0}} \boldsymbol{a}_{1}, \sigma_{3}:=\mathbb{R}_{\geqslant 0} \boldsymbol{a}_{3}$ and $\{\mathbf{0}\}$. The semigroup $\mathbb{N} A$ is shown in Figure 1.

Figure 1. The semigroup $\mathbb{N} A$.
Let τ be a face of $\mathbb{R} \geqslant 0 A$. Then

$$
\left|\mathbb{Z}^{2} \cap K(A \cap \tau) / \mathbb{Z}(A \cap \tau)\right|= \begin{cases}1 & \text { if } \tau \neq \sigma_{3} \\ 2 & \text { if } \tau=\sigma_{3}\end{cases}
$$

M. Saito

Hence the category $\mathcal{O}_{K^{3}}$ has exactly five simple objects with weights in \mathbb{Z}^{2}, namely $L_{K^{3}}\left(T_{A}, \mathbf{0}\right)$, $L_{K^{3}}\left(T_{\sigma_{1}}, \mathbf{0}\right), L_{K^{3}}\left(T_{\sigma_{3}}, \mathbf{0}\right), L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)$ and $L_{K^{3}}\left(T_{\{\mathbf{0}\}}, \mathbf{0}\right)$. For each of these, we write down the weight set $\left(C_{K^{n}}(\tau, \boldsymbol{\lambda})\right.$ in Theorem 7.4) of the pull-back by i^{\natural}.
(i) $i^{\natural}\left(L_{K^{3}}\left(T_{A}, \mathbf{0}\right)\right)$: the weights in $C_{K^{3}}(\mathbb{R} \geqslant 0 A, \mathbf{0})$ are $\boldsymbol{\beta} \in \mathbb{Z}^{2}$ with $E_{\sigma_{1}}(\boldsymbol{\beta})=\emptyset$ and $E_{\sigma_{3}}(\boldsymbol{\beta})=\emptyset$, shown in Figure 2.

Figure 2. The weight space of $i^{\natural}\left(L_{K^{3}}\left(T_{A}, \mathbf{0}\right)\right)$.
(ii) $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{1}}, \mathbf{0}\right)\right)$: the weights in $C_{K^{3}}\left(\sigma_{1}, \mathbf{0}\right)$ are $\boldsymbol{\beta} \in \mathbb{Z}^{2}$ with $E_{\sigma_{1}}(\boldsymbol{\beta})=\{\mathbf{0}\}$ and $E_{\{\mathbf{0}\}}(\boldsymbol{\beta})=\emptyset$, shown in Figure 3.

Figure 3. The weight space of $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{1}}, \mathbf{0}\right)\right)$.
(iii) $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{3}}, \mathbf{0}\right)\right)$: the weights in $C_{K^{3}}\left(\sigma_{3}, \mathbf{0}\right)$ are $\boldsymbol{\beta} \in \mathbb{Z}^{2}$ with $E_{\sigma_{3}}(\boldsymbol{\beta}) \ni \mathbf{0}$ and $E_{\{\mathbf{0}\}}(\boldsymbol{\beta})=\emptyset$, shown in Figure 4.

Figure 4. The weight space of $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{3}}, \mathbf{0}\right)\right)$.
(iv) $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)\right)$: the weights in $C_{K^{3}}\left(\sigma_{3},(1,0)^{\mathrm{T}}\right)$ are $\boldsymbol{\beta} \in \mathbb{Z}^{2}$ with $E_{\sigma_{3}}(\boldsymbol{\beta}) \ni(1,0)^{\mathrm{T}}$, shown in Figure 5.

Figure 5. The weight space of $i^{\natural}\left(L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)\right)$.
(v) $i^{\natural}\left(L_{K^{3}}\left(T_{\{\mathbf{0}\}}, \mathbf{0}\right)\right)$: the weights in $C_{K^{3}}(\{\mathbf{0}\}, \mathbf{0})$ are $\boldsymbol{\beta} \in \mathbb{Z}^{2}$ with $E_{\{\mathbf{0}\}}(\boldsymbol{\beta})=\{\mathbf{0}\}$; hence the weight set is $\mathbb{N} A$, shown in Figure 1.

Let $\boldsymbol{\beta} \in \mathbb{Z}^{2}$. By Corollary 7.5, the irreducible quotients of $M_{K^{3}}(\boldsymbol{\beta})$ are precisely the above $L_{K^{3}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ such that $\boldsymbol{\beta}$ appears in the weight set of $i^{\natural}\left(L_{K^{3}}\left(T_{\tau}, \boldsymbol{\lambda}\right)\right)$.

Recall that $M_{K^{3}}(\boldsymbol{\beta}) \simeq M_{K^{3}}\left(\boldsymbol{\beta}^{\prime}\right)$ if and only if $\boldsymbol{\beta} \sim \boldsymbol{\beta}^{\prime}$ (see [Sai01, Theorem 2.1]). There are eight equivalence classes in $\left\{M_{K^{3}}(\boldsymbol{\beta}): \boldsymbol{\beta} \in \mathbb{Z}^{2}\right\}$. The following table lists the irreducible quotients for each equivalence class.

$M_{K^{3}}(\boldsymbol{\beta})$	Irreducible quotients
$M_{K^{3}}\left((0,1)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\{\mathbf{0}\}}, \mathbf{0}\right), L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)$
$M_{K^{3}}\left((-1,1)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\sigma_{3}}, \mathbf{0}\right), L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)$
$M_{K^{3}}\left((0,0)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\{\mathbf{0}\}}, \mathbf{0}\right)$
$M_{K^{3}}\left((1,0)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\sigma_{1}}, \mathbf{0}\right), L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)$
$M_{K^{3}}\left((-1,0)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\sigma_{3}},(1,0)^{\mathrm{T}}\right)$
$M_{K^{3}}\left((-2,0)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\sigma_{3}}, \mathbf{0}\right)$
$M_{K^{3}}\left((0,-1)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{\sigma_{1}}, \mathbf{0}\right)$
$M_{K^{3}}\left((-1,-1)^{\mathrm{T}}\right)$	$L_{K^{3}}\left(T_{A}, \mathbf{0}\right)$

8. The irreducibility of $M_{K^{n}}(\beta)$

If $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$, then, by Corollary 7.6, there exists a surjective homomorphism

$$
\begin{equation*}
M_{K^{n}}(\boldsymbol{\beta}) \rightarrow L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) \tag{38}
\end{equation*}
$$

In this section, we analyze the kernel of (38) and prove that $M_{K^{n}}(\boldsymbol{\beta})$ is irreducible if and only if $\boldsymbol{\beta}$ is non-resonant.

Given a facet (maximal proper face) σ of $\mathbb{R}_{\geqslant_{0}} A$, we denote by F_{σ} the primitive integral support function of σ; that is, F_{σ} is the uniquely determined linear form on \mathbb{R}^{d} satisfying:
(i) $F_{\sigma}\left(\mathbb{R}_{\geqslant 0} A\right) \geqslant 0$;
(ii) $F_{\sigma}(\sigma)=0$;
(iii) $F_{\sigma}\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.

Then, by [Sai01, Proposition 2.2] and Remark 6.3, we know that $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$ if and only if $F_{\sigma}(\boldsymbol{\beta}) \notin F_{\sigma}(\mathbb{N} A)$ for all facets σ of $\mathbb{R}_{\geqslant 0} A$.

Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$, and let

$$
\boldsymbol{v}_{-\boldsymbol{\beta}}:=t^{-\boldsymbol{\beta}} d T_{A} \otimes 1 \in L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)_{-\boldsymbol{\beta}}
$$

Then, by Theorem 6.4,

$$
\operatorname{Ann}_{D\left(K^{n}\right)}\left(\boldsymbol{v}_{-\boldsymbol{\beta}}\right)=I_{A} D\left(K^{n}\right)+D\left(K^{n}\right) \cap\langle A \theta-\boldsymbol{\beta}\rangle D\left(\left(K^{\times}\right)^{n}\right)
$$

Let

$$
\begin{equation*}
N:=\operatorname{Ann}_{D\left(K^{n}\right)}\left(\boldsymbol{v}_{-\boldsymbol{\beta}}\right) /\left(I_{A} D\left(K^{n}\right)+\langle A \theta-\boldsymbol{\beta}\rangle D\left(K^{n}\right)\right) \tag{39}
\end{equation*}
$$

Then N is the kernel of (38). By (11) and Proposition 5.2, for $\boldsymbol{a} \in \mathbb{Z}^{d}$ we have

$$
\begin{equation*}
N_{-\boldsymbol{\beta}-\boldsymbol{a}}=t^{-\boldsymbol{a}}(\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a})) \cap\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle) / t^{-\boldsymbol{a}}(\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle) . \tag{40}
\end{equation*}
$$

Since $\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \boldsymbol{a}+\mathbb{N} A\right\}$ is \mathbb{N}^{n}-stable, there exists a finite set $\left\{\left(\boldsymbol{u}^{(j)}, I_{j}\right): j \in J\right\}$ of pairs made up of a $\boldsymbol{u}^{(j)} \in \mathbb{N}^{n}$ and a subset I_{j} of $\{1, \ldots, n\}$ (the set of so-called standard pairs of $\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \boldsymbol{a}+\mathbb{N} A\right\} ;$ see, e.g., [SST00, §3.2]) such that:

- the i th coordinate of $\boldsymbol{u}^{(j)}$ is 0 for each $i \in I_{j}$;
- for all $i \notin I_{j},\left(\boldsymbol{u}^{(j)}+\mathbb{N}^{I_{j} \cup\{i\}}\right) \cap\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \boldsymbol{a}+\mathbb{N} A\right\} \neq \emptyset$;
$-\widetilde{\Omega}(-\boldsymbol{a})=\mathbb{N}^{n} \backslash\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \boldsymbol{a}+\mathbb{N} A\right\}=\bigcup_{j \in J}\left(\boldsymbol{u}^{(j)}+\mathbb{N}^{I_{j}}\right)$.
Lemma 8.1. Let $\boldsymbol{a} \in \mathbb{Z}^{d}$, and let $\left\{\left(\boldsymbol{u}^{(j)}, I_{j}\right): j \in J\right\}$ be the set of standard pairs of $\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \boldsymbol{a}+\mathbb{N} A\right\}$. Then for each $j \in J$ there exists a face $\tau^{(j)}$ of $\mathbb{R}_{\geqslant 0} A$ such that $I_{j}=\left\{k \in\{1, \ldots n\}: \boldsymbol{a}_{k} \in \tau^{(j)}\right\}$, and either $\tau^{(j)}$ is a facet with $F_{\tau^{(j)}}\left(A \boldsymbol{u}^{(j)}\right) \notin F_{\tau^{(j)}}(\boldsymbol{a}+\mathbb{N} A)$ or $F_{\sigma}\left(A \boldsymbol{u}^{(j)}\right) \in F_{\sigma}(\boldsymbol{a}+\mathbb{N} A)$ for all facets $\sigma \succeq \tau^{(j)}$.

Proof. Put $S_{c}=\left\{\boldsymbol{d} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{d}) \in F_{\sigma}(\mathbb{N} A)\right.$ for all facets $\left.\sigma\right\}$. Then there exist finitely many pairs $\left(\boldsymbol{b}_{i}, \tau_{i}\right)$ of $\boldsymbol{b}_{i} \in S_{c}$ and a face τ_{i} such that

$$
S_{c} \backslash \mathbb{N} A=\bigcup_{i}\left(\boldsymbol{b}_{i}+\mathbb{Z}\left(A \cap \tau_{i}\right)\right) \cap S_{c}
$$

(see [ST04, proof of Proposition 5.1]). Then

$$
\begin{aligned}
\Omega(-\boldsymbol{a})= & \left(\bigcup_{\text {facets } \sigma} \bigcup_{m \in F_{\sigma}(\mathbb{N} A) \backslash F_{\sigma}(\boldsymbol{a}+\mathbb{N} A)} F_{\sigma}^{-1}(m) \cap \mathbb{N} A\right) \\
& \cup \bigcup_{\boldsymbol{b}_{i}+\boldsymbol{a} \in \mathbb{N} A+\mathbb{Z}\left(A \cap \tau_{i}\right)}\left(\boldsymbol{b}_{i}+\boldsymbol{a}+\mathbb{Z}\left(A \cap \tau_{i}\right)\right) \cap \mathbb{N} A .
\end{aligned}
$$

Since $\widetilde{\Omega}(-\boldsymbol{a})=\left\{\boldsymbol{u} \in \mathbb{N}^{n}: A \boldsymbol{u} \in \Omega(-\boldsymbol{a})\right\}$ by definition, the assertion follows.
Lemma 8.2. Let $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$ and $\boldsymbol{a} \in \mathbb{Z}^{d}$.
(i) If $\boldsymbol{\beta}+\boldsymbol{a} \sim \boldsymbol{\beta}$, then $N_{-\boldsymbol{\beta}-\boldsymbol{a}}=\{0\}$.
(ii) Suppose that there exists a facet σ such that $F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)$ and $F_{\sigma^{\prime}}(\boldsymbol{\beta}+\boldsymbol{a}) \notin$ $F_{\sigma^{\prime}}(\mathbb{N} A)$ for every facet $\sigma^{\prime} \neq \sigma$. Then $N_{-\boldsymbol{\beta}-\boldsymbol{a}} \neq\{0\}$.

Proof. (i) Suppose that $\boldsymbol{\beta}+\boldsymbol{a} \sim \boldsymbol{\beta}$. Then $\mathbb{I}(\Omega(-\boldsymbol{a})) \nsubseteq \mathfrak{m}_{\boldsymbol{\beta}+\boldsymbol{a}}$ or $\mathbb{I}(\Omega(-\boldsymbol{a}))+\mathfrak{m}_{\boldsymbol{\beta}+\boldsymbol{a}}=K[s]$. Hence $\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))+\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle K[\theta]=K[\theta]$. Therefore $\mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a})) \cap\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle K[\theta]=\langle A \theta-$ $\boldsymbol{\beta}-\boldsymbol{a} \backslash \mathbb{I}(\widetilde{\Omega}(-\boldsymbol{a}))$, or $N_{-\boldsymbol{\beta}-\boldsymbol{a}}=\{0\}$ by (40).
(ii) Since $F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}) \in \mathbb{N} A$, there exist $\boldsymbol{u} \in \mathbb{N}^{n}$ and $\boldsymbol{\gamma} \in K^{\sigma}$ such that $\boldsymbol{\beta}+\boldsymbol{a}=A(\boldsymbol{u}+\boldsymbol{\gamma})$. Then, for any $\boldsymbol{v} \in \mathbb{N}^{\sigma}, A(\boldsymbol{u}+\boldsymbol{v}) \in \mathbb{N} A \backslash(\boldsymbol{a}+\mathbb{N} A)=\Omega(-\boldsymbol{a})$ since $F_{\sigma}(A(\boldsymbol{u}+\boldsymbol{v}))=F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}-$ $A \boldsymbol{\gamma}+A \boldsymbol{v})=F_{\sigma}(\boldsymbol{\beta}+\boldsymbol{a}) \notin F_{\sigma}(\boldsymbol{a}+\mathbb{N} A)$. Hence $\boldsymbol{u}+\mathbb{N}^{\sigma} \subseteq \widetilde{\Omega}(-\boldsymbol{a})$. Put $\boldsymbol{\xi}:=\boldsymbol{u}+\boldsymbol{\gamma}$. Then $A \boldsymbol{\xi}=\boldsymbol{\beta}+$ \boldsymbol{a} and $\boldsymbol{\xi}+K^{\sigma}=\boldsymbol{u}+K^{\sigma} \subseteq \mathrm{ZC}(\widetilde{\Omega}(-\boldsymbol{a}))$. By Lemma 8.1 we have

$$
\mathrm{ZC}(\widetilde{\Omega}(-\boldsymbol{a}))=\bigcup_{j \in J}\left(\boldsymbol{u}^{(j)}+K^{\tau^{(j)}}\right)
$$

and we see that, by the assumption, $\boldsymbol{\xi}+K^{\sigma}$ is the unique irreducible component of $\mathrm{ZC}(\widetilde{\Omega}(-\boldsymbol{a}))$ containing $\boldsymbol{\xi}$. Hence, by localizing at $\boldsymbol{\xi}$, to prove the assertion it is enough to show that $\mathbb{I}\left(\boldsymbol{\xi}+K^{\sigma}\right) \cap\langle A \theta-(\boldsymbol{\beta}+\boldsymbol{a})\rangle \neq \mathbb{I}\left(\boldsymbol{\xi}+K^{\sigma}\right) .\langle A \theta-(\boldsymbol{\beta}+\boldsymbol{a})\rangle$ (see (40)) or, upon translating by $\boldsymbol{\xi}$, that $\mathbb{I}\left(K^{\sigma}\right) \cap\langle A \theta\rangle \neq \mathbb{I}\left(K^{\sigma}\right) .\langle A \theta\rangle$. Since it is clearly true that

$$
F_{\sigma}(A \theta)=\sum_{j=1}^{n} F_{\sigma}\left(\boldsymbol{a}_{j}\right) \theta_{j} \in \mathbb{I}\left(K^{\sigma}\right) \cap\langle A \theta\rangle \backslash \mathbb{I}\left(K^{\sigma}\right) \cdot\langle A \theta\rangle,
$$

we have finished the proof.

Theorem 8.3. $M_{K^{n}}(\boldsymbol{\beta})$ is irreducible if and only if $\boldsymbol{\beta}$ is non-resonant, i.e. $F_{\sigma}(\boldsymbol{\beta}) \notin \mathbb{Z}$ for all facets σ of $\mathbb{R}_{\geqslant 0} A$.

Proof. Suppose that $\boldsymbol{\beta}$ is non-resonant. Then $\boldsymbol{\beta}+\boldsymbol{a} \sim \boldsymbol{\beta}$ for all $\boldsymbol{a} \in \mathbb{Z}^{d}$. Hence, by Lemma 8.2(i), $M_{K^{n}}(\boldsymbol{\beta}) \simeq L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right)$.

Suppose that $\boldsymbol{\beta}$ is resonant and that $F_{\sigma}(\boldsymbol{\beta}) \in \mathbb{Z}$. If $\boldsymbol{\beta}=\boldsymbol{\beta}^{\text {empty }}$, then, by Corollary 7.6, there exists a surjective homomorphism

$$
\begin{equation*}
M_{K^{n}}(\boldsymbol{\beta}) \rightarrow L_{K^{n}}\left(T_{A}, \boldsymbol{\beta}\right) . \tag{41}
\end{equation*}
$$

Since σ is a facet of $\mathbb{R}_{\geqslant 0} A$, there exists $\boldsymbol{b} \in \mathbb{Z}^{d}$ such that $F_{\sigma}(\boldsymbol{b})<0$ while $F_{\sigma^{\prime}}(\boldsymbol{b})>0$ for every facet $\sigma^{\prime} \neq \sigma$. Hence, for a sufficiently large $n \in \mathbb{N}, F_{\sigma}(\boldsymbol{\beta}-n \boldsymbol{b}) \in F_{\sigma}(\mathbb{N} A)$ and $F_{\sigma^{\prime}}(\boldsymbol{\beta}-n \boldsymbol{b}) \notin F_{\sigma^{\prime}}(\mathbb{N} A)$ for every facet $\sigma^{\prime} \neq \sigma$. Thus the homomorphism (41) has a non-trivial kernel by Lemma 8.2(ii).

Let $\boldsymbol{\beta} \neq \boldsymbol{\beta}^{\text {empty }}$. Then there exists a minimal $(\tau, \boldsymbol{\lambda}) \in E(\boldsymbol{\beta})$ (see (37)) with $\tau \neq \mathbb{R}_{\geqslant 0} A$. Hence, by Corollary 7.6, $L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ is a quotient of $M_{K^{n}}(\boldsymbol{\beta})$. Since the support of $L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ is strictly contained in the support of $M_{K^{n}}(\boldsymbol{\beta})$, the kernel of the homomorphism $M_{K^{n}}(\boldsymbol{\beta}) \rightarrow L_{K^{n}}\left(T_{\tau}, \boldsymbol{\lambda}\right)$ is non-trivial.

References

BGG76 I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, A category of \mathfrak{g}-modules, Funct. Anal. Appl. 10 (1976), 87-92.
Ful93 W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, NJ, 1993).
GKZ90 I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinskii, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990), 255-271.
HTT08 R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236 (Birkhäuser, Boston, 2008).
Kas03 M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217 (American Mathematical Society, Providence, RI, 2003).
MMW05 L. F. Matusevich, E. Miller and U. Walther, Homological methods for hypergeometric families, J. Amer. Math. Soc. 18 (2005), 919-941.

MR87 J. C. McConnel and J. C. Robson, Noncommutative Noetherian rings (Wiley, Chichester, 1987).

Mus87 I. M. Musson, Rings of differential operators on invariants of tori, Trans. Amer. Math. Soc. 303 (1987), 805-827.
MV98 I. M. Musson and M. Van den Bergh, Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc. 650 (1998).
Sai01 M. Saito, Isomorphism classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323-338.
Sai07 M. Saito, Primitive ideals of the ring of differential operators on an affine toric variety, Tohoku Math. J. 59 (2007), 119-144.
SST00 M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6 (Springer, New York, 2000).
ST01 M. Saito and W. N. Traves, Differential algebras on semigroup algebras, Contemporary Mathematics, vol. 286 (American Mathematical Society, Providence, RI, 2001), 207-226.
ST04 M. Saito and W. N. Traves, Finite generations of rings of differential operators of semigroup algebras, J. Algebra 278 (2004), 76-103.

M. Saito

SW09 M. Schulze and U. Walther, Hypergeometric D-modules and twisted Gauss-Manin systems, J. Algebra 322 (2009), 3392-3409.

SS88 S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988), 229-259.
Wal07 U. Walther, Duality and monodromy reducibility of A-hypergeometric system, Math. Ann. 338 (2007), 55-74.

Mutsumi Saito saito@math.sci.hokudai.ac.jp
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

[^0]: Received 12 December 2009, accepted in final form 6 April 2010, published online 17 August 2010. 2000 Mathematics Subject Classification 33C70 (primary), 16S32, 14M25 (secondary).
 Keywords: A-hypergeometric systems, irreducibility, resonance, toric variety, ring of differential operators.
 This journal is (c) Foundation Compositio Mathematica 2010.

