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Exciton properties of double-wall carbon nanotubes are studied in the static screened Hartree-Fock
approximation within a k · p scheme. The intrawall electron-hole interaction is largely suppressed by interwall
screening effects. The suppression is sensitive to the effective interwall distance between the inner and outer
tubes and reduces the exciton binding energy as well as the band gap. As a result, the exciton energy levels are
redshifted from those in the single-wall tube with the same diameter. The energy shift of the ground exciton has
little dependence on the tube diameter, in contrast to that of the excited excitons. In the case of a metallic outer
and inner tube, excited exciton states in the semiconducting tube disappear due to strong screening.
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I. INTRODUCTION

Carbon nanotubes have attracted much attentions for their
unique physical properties1–4 since their discovery, and,
therefore, many experimental and theoretical studies have
been dedicated from viewpoints of both fundamental physics
and applications. Their optical properties are particularly
interesting because exciton states play a dominant role5–12

and their binding energies are unusually larger than those
in bulk semiconductor systems, originating from the one-
dimensionality and the strong Coulomb interaction. The
purpose of this paper is to study effects of interwall screening
on excitons in double-wall nanotubes.

The screening effect is known to change exciton energies
unconventionally in nanotubes. In fact, recent theoretical
study suggested that antiscreening is responsible for the large
binding energies of excited exciton states in semiconducting
single-wall nanotubes.13 In experiments, the photolumines-
cence studies14,15 of double-wall nanotubes have reported that
the energies of the optically active exciton states of the inner
tubes are redshifted from those of single-wall tubes with the
same chiral indices, where the effective dielectric screening is
expected to be modified by the presence of the surrounding
outer tube, i.e., environmental effects.16–19 Double-wall tubes
are the simplest systems of multiwall carbon nanotubes and
thus are suited for studying the interactions between different
walls.20–28

In this work we examine effects of screening by the
interwall Coulomb interaction on excitons and optical spectra
in double-wall tubes based on the effective-mass theory and a
static screened Hartree-Fock approximation. We shall focus
on excitons in a semiconducting nanotube surrounded by
or containing another coaxial semiconducting or metallic
nanotube.

The paper is organized as follows: In Sec. II, we briefly
review an effective-mass description of energy bands of carbon
nanotubes, the Coulomb potential and dielectric function in
multiwall nanotubes, and a method of calculation of exciton
states. Numerical results are presented in Sec. III, which dis-
cusses how exciton properties depend on the interwall distance
and semiconducting or metallic screening. The dependence on
the diameter is discussed in Sec. IV. The results are discussed
and a short summary is given in Sec. V.

II. FORMULATION

In a graphene sheet the conduction and valence bands
consisting of π orbitals cross at K and K ′ points, where the
Fermi level is located. Electronic states of the π bands near a
K point are described by the k · p equation,2,29–34

γ (σ · k̂)F(r) = εF(r), (1)

where γ is a band parameter, related to nearest-neighbor
hopping integral γ0 through γ = (

√
3/2)aγ0 with the lattice

constant a = 0.246 nm; σ = (σx,σy) is the Pauli spin matrix;
and k̂ = (k̂x,k̂y) = −i∇ is a wave-vector operator.

The structure of a nanotube is specified by a chiral vector
L corresponding to the circumference. For tubes with a
sufficiently large diameter, the energy bands are obtained by
imposing the boundary conditions around the circumference
direction,

F(r + L) = F(r) exp

(
− 2πiν

3

)
, (2)

where ν is an integer (ν = 0 or ±1) determined by the
structure. For ν = 0, the nanotube becomes a metal. For
ν = ±1, the nanotube becomes a semiconductor with nonzero
gap at the Fermi level.

The energy bands are specified by (s,n,k), where s = + for
the conduction and − for the valence band, respectively, and n

is an integer corresponding to the discrete wave vector along
the circumference direction (x axis) and the wave vector k in
the tube axis direction (y axis).

Consider a multiwall carbon nanotube consisting of cylin-
ders with radius Rj (tube j ) with j = 1,2, . . . ,M , as illustrated
in Fig. 1. The lattice structure of adjacent walls is incommensu-
rate in usual multiwall nanotubes.35,36 In such incommensurate
cases, interwall electron hopping is negligibly small due to
cancellation of interwall coupling at different sites in the
absence of disorder.4,37–39 In our analysis, therefore, interwall
hopping is completely neglected.

Then, the wave function in multiwall nanotubes can be
expressed by that in each wall. According to the boundary
condition (2), the wave function for a band associated with the
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FIG. 1. A schematic illustration of a multiwall carbon nanotube
with M walls where Rj is the radius of the j th wall.

K point in the tube with radius Rj is written as

F
Rj

snk(r) = 1√
ALj

exp
[
iκνj

(n)x + iky
]
F

νj

snk, (3)

where A is the length of the nanotube, the circumference length
Lj = 2πRj , νj = 0, ±1, and

F
νj

snk = 1√
2

[
bνj

(n,k)
s

]
, (4)

κνj
(n) = 2π

Lj

(
n − νj

3

)
, (5)

bνj
(n,k) = κνj

(n) − ik√
κνj

(n)2 + k2
. (6)

The corresponding energy is given by

εK
j,s,n(k) = sγ

√
κνj

(n)2 + k2. (7)

For the K ′ point, the k · p Hamiltonian is obtained by
replacing k̂y with −k̂y in Eq. (1) and the boundary condition
[Eq. (2)] is obtained by replacing ν with −ν. Therefore, the
energy band is given by Eq. (7) in which κνj

(n) is replaced
with κ−νj

(n) and the wave function is given by Eq. (3), in
which bνj

(n,k) is replaced with b−νj
(n,k)∗. This corresponds

to the fact that the K and K ′ points are related to each other via
the time-reversal operation T , given by FT

K = e−iψσz F∗
K ′ and

FT
K ′ = e−iψσz F∗

K , with the Pauli matrix σz and an arbitrary
phase ψ .40,41 Because Coulomb matrix elements of intervalley
scattering between the K and K ′ points are much smaller than
those of intravalley scattering, the bands associated with the
K and K ′ points are separated from each other and degenerate
due to the time reversal symmetry in the absence of a magnetic
field.

The Coulomb interaction between an electron at r = (x,y)
on a cylinder surface with radius Ri and another at r ′ = (x ′,y ′)
on a cylinder surface with radius Rj is given by

vij (θ − θ ′,y − y ′) =
∑
m

∫
dq

2π
eim(θ−θ ′)eiq(y−y ′)V 0

ij (m,q),

(8)

FIG. 2. The diagrammatic representation of the effective
Coulomb interaction in multi wall nanotubes.

where θ = x/Ri , θ ′ = x ′/Rj , m is an integer, and q is the
wave number in the axis direction. The Fourier coefficient in
Eq. (8) is written as42–44

V 0
ij (m,q) = 2e2I|m|(|q|Rmin)K|m|(|q|Rmax), (9)

with

Rmin = min(Ri,Rj ), Rmax = max(Ri,Rj ), (10)

where Im(t) and Km(t) are the modified Bessel function of the
first and the second kinds, respectively.

In the random-phase approximation or in the self-consistent
field approximation, the screening of the Coulomb interaction
contains a series of bubble diagrams as shown in Fig. 2.
Therefore, within the static approximation, the effective
Coulomb interaction between two electrons on cylinders with
radius Ri and Rj can be expressed by a matrix,

V̂ (m,q) =

⎛
⎜⎜⎝

V11 V12 . . . V1M

V21 V22 . . . V2M

...
...

. . .
...

VM1 VM2 . . . VMM

⎞
⎟⎟⎠, (11)

while the bare Coulomb interaction is given by

V̂ 0(m,q) =

⎛
⎜⎜⎜⎜⎝

V 0
11 V 0

12 . . . V 0
1M

V 0
21 V 0

22 . . . V 0
2M

...
...

. . .
...

V 0
M1 V 0

M2 . . . V 0
MM

⎞
⎟⎟⎟⎟⎠, (12)

and they satisfy

V̂ (m,q) = V̂ 0(m,q) − V̂ 0(m,q)P̂ (m,q)V̂ (m,q), (13)

where the matrix consisting of the polarization function is
given by

P̂ (m,q) =

⎛
⎜⎜⎝

P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . PM

⎞
⎟⎟⎠. (14)

Here, Pj (m,q) is the polarization function of the cylinder with
radius Rj , corresponding to the electron-hole excitation within
the same wall. We then have

V̂ (m,q) = [1 + V̂ 0(m,q)P̂ (m,q)]−1V̂ 0(m,q). (15)
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The off-diagonal elements of P̂ (m,q), corresponding to
the electron-hole excitation between different walls, can be
omitted because the interwall hopping can safely be neglected
in usual incommensurate cases, as mentioned above.4,37–39

Even for some commensurate cases, such as armchair double-
wall nanotubes with significant interwall hoppings, their
contributions to the polarization function have been shown
to be quite small in tight-binding calculations.45

The polarization function Pj (m,q) of tube j can be divided
into two contributions,

Pj (m,q) = 
j (m,q) + 
′
j (m,q), (16)

where 
j (m,q) represents contributions of electrons in the
vicinity of the K and K ′ points and 
′

j (m,q) represents those
in the π bands away from the K and K ′ points, in the σ bands,
and in the core states. In the present study, we replace 
′

j (m,q)
with a phenomenological dielectric constant κ in such a way
that

V 0
jj (m,q)
′

j (m,q) � κ − 1. (17)

Then, if effects of polarization in tube j are included and those
of other tubes are neglected, the effective dielectric function
becomes

εj (m,q) = κ + V 0
jj (m,q)
j (m,q). (18)

This shows that κ is formerly regarded as a background
dielectric constant for a single-wall nanotube. In multiwall
nanotubes, however, such a simple replacement by a back-
ground dielectric constant becomes no longer valid because of
the strong q dependence of interwall Coulomb potential even
in the approximation of Eq. (17), as will be shown in the next
section.

Explicitly, we have


j (m,q) = 
K
j (m,q) + 
K ′

j (m,q), (19)

with


K
j (m,q) = 2gs

A

∑
n

∑
k

∣∣F
νj †
−,n,k · F

νj

+,m+n,k+q

∣∣2

× g0
[
εK
j,+,m+n(k + q)

]
g0

[
εK
j,−,n(k)

]
εK
j,+,m+n(k + q) − εK

j,−,n(k)
, (20)

where gs = 2 is the spin degeneracy and g0(ε) is a cutoff
function, defined by

g0(ε) = εαc
c

|ε|αc + ε
αc
c

. (21)

The cutoff function containing two parameters αc and
εc should be chosen in such a way that we include only
the contributions from states in the vicinity of the Fermi
level. The appropriate value of εc is about the half of the
π band width ∼3γ0 and the results are essentially independent
of αc when αc � 2. The polarization near the K ′ point,

K ′

j (m,q), is given by Eq. (20) with replacements νj → −νj

and εK
j,s,n(k) → εK ′

j,s,n(k).
The exciton state for an electron in the K valley and a hole

in the K valley of the tube with radius Rj is expressed by

|u; j 〉 =
∑
n,k

ψu
j,n(k)cK†

j,+,n,kc
K
j,−,n,k|g〉, (22)

where |g〉 is the ground-state wave function and cK
j,s,n,k and

c
K†
j,s,n,k are the annihilation and creation operators, respectively,

for states specified by (s,n,k) in the K valley of tube with radius
Rj . The exciton wave function ψu

j,n(k) satisfies the Bethe-
Salpeter equation,

Eu
j ψu

j,n(k) = [
ε̃K
j,+,n(k) − ε̃K

j,−,n(k)
]
ψu

j,n(k)

−
∑
m,q

V
jj

(+,n,k;+,m,k+q)(−,m,k+q;−,n,k)ψ
u
j,m(k + q),

(23)

with

V
jj

(s1,n,k;s2,m,k+q)(s3,m,k+q;s4,n,k)

= 1

A
Vjj (n−m,q)

(
F

νj †
s1,n,k · F

νj

s2,m,k+q

)(
F

νj †
s3,m,k+q · F

νj

s4,n,k

)
,

(24)

and

ε̃K
j,s,n(k) = εK

j,s,n(k) + K
j,s,n(k). (25)

The self-energy is given by

K
j,s,n(k)

= −
∑
m,q

V
jj

(s,n,k;−,m,k+q)(−,m,k+q;s,n,k)g0
[
εK
j,s,m(k + q)

]
,

(26)

in the screened Hartree-Fock approximation.
The optical absorption is described by the dynamical

conductivity. For polarization parallel to the tube axis, the
dynamical conductivity of tube j is calculated using the Kubo
formula as

σj (ω) = gsh̄e2

ALj

∑
KK ′

∑
u

−2ih̄ω|〈u; j |vy |g〉|2
Eu

j

(
Eu2

j − h̄2ω2 − 2ih̄ω�
) , (27)

where the velocity operator in the tube axis direction is given
by vy = (γ /h̄)σy for the K point and � is a phenomenological
broadening parameter. The matrix element is given by

〈u; j |vy |g〉 =
∑

n

∑
k

(vy)j,n,kψ
u
j,n(k)∗, (28)

(vy)j,n,k = i
γ

2h̄

[
bνj

(n,k)∗ + bνj
(n,k)

]
, (29)

and for the K ′ point it is given by complex conjugate of
Eq. (29) with νj → −νj . The intensity of the absorption is
characterized by a dimensionless oscillator strength

f u
j = 2m∗

j

|〈u; j |vy |g〉|2
Eu

j

, (30)

where m∗
j is chosen as the effective mass of the bottom of

the lowest conduction band in the tube with radius Rj , i.e.,
m∗

j = 2πh̄2/(3γLj ).
As long as the absorption in each tube is sufficiently small,

the total absorption is proportional to
∑

j (2πRj )Reσj (ω).
Thus, we shall define the effective dynamical conductivity
as the weighted sum of that of each tube, i.e.,

σ (ω) = R̄−1
M∑

j=1

Rjσj (ω), R̄ = 1

M

M∑
j=1

Rj . (31)
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This is valid when the electric field of light at each tube is
nearly the same as the outside field.

In a single-wall nanotube with diameter R, the effec-
tive strength of the Coulomb interaction is specified by
dimensionless interaction parameter (e2/κL)/(2πγ/L) with
L = 2πR. It is estimated as (e2/κL)/(2πγ/L) ≈ 0.4/κ for
γ0 = 2.7 eV. In bulk graphite we have κ ≈ 2.5,46 giving
(e2/κL)/(2πγ/L) ≈ 0.16. In the present numerical calcula-
tions, the parameter (e2/κL)/(2πγ/L) = 0.16 is used. We
shall choose εc = 3γ0 as in the case of single-wall tubes. This
gives εc/(2πγ/L) ≈ 10 for typical nanotubes with diameter
2R ∼ 1.4 nm. Calculations for slightly different values of these
parameters give essentially the same results, although they are
not shown here.

The exact value of κ in carbon nanotubes is not known.
Previous calculations for parallel polarization show that the
exciton energy is almost independent of (e2/κL)/(2πγ/L)
between 0.1, corresponding to κ ≈ 4, and 0.2, corresponding
to κ ≈ 2, for both first and second gaps.6,19 For cross polar-
ization, the exciton energy is more sensitive to the interaction
parameter, suggesting 0.1 < (e2/κL)/(2πγ/L) < 0.2.47 The
two-photon energy is much more sensitive, concluding that
(e2/κL)/(2πγ/L) should be around 0.15 ∼ 0.16.48

III. EFFECTS OF INTERWALL SCREENING

In this section and in the following, we shall consider a
double-wall tube and confine ourselves to the case that at least
one of the two tubes is semiconducting, in order to clarify
roles of interwall screening. We shall denote the radius of the
semiconducting tube by R and assume νR = +1. The other
tube with radius R′ can be either semiconducting (νR′ = +1)
or metallic (νR′ = 0). We vary R′/R for a wide range (both
R′/R > 1 and R′/R < 1, corresponding to the tube with R′
lying outside and inside, respectively).

The effective Coulomb interaction between two electrons
on the cylinder surface with radius R is explicitly calculated
as

VRR(m,q) = V 0
RR(m,q)

ε̃R(m,q)
, (32)

with the effective dielectric function including interwall
screening

ε̃R(m,q) = εR(m,q) + [εR′(m,q) − 1]τm(q)

εR′(m,q) − [εR′(m,q) − 1]τm(q)
,

(33)

where

εR(m,q) = κ + V 0
RR(m,q)
R(m,q), (34)

εR′(m,q) = κ + V 0
R′R′(m,q)
R′(m,q), (35)

τm(q) = I|m|(|q|Rmin)K|m|(|q|Rmax)

K|m|(|q|Rmin)I|m|(|q|Rmax)
. (36)

The effective dielectric function ε̃R′ (m,q) and the screened
potential VR′R′(m,q) for the other tube with R′ can be obtained
by exchanging R and R′.

FIG. 3. Screening factor τm(q) as a function of qRmin for various
values of Rmax/Rmin.

We can easily show 0 � τm(q) � 1. In the long-wavelength
case qR � 1 and qR′ � 1, we have

τm(q) �
⎧⎨
⎩

1 + ln(Rmax/Rmin)
ln(eγ qRmin/2) (m = 0);(

Rmin
Rmax

)2|m|
(m �= 0),

(37)

with Euler’s constant γ = 0.57721 · · ·. In the short-
wavelength case qR  1 and qR′  1, we have

τm(q) � exp(−2q|R − R′|). (38)

For m = 0, τm(q) is singular and its derivative diverges at
q = 0 except in the special (unrealistic) case of R′/R = 1.

Figure 3 shows τm(q) for various values of Rmax/Rmin.
First, we notice that the case of Rmax/Rmin = 1 is exceptional,
for which τm(q) = 1. In fact, a typical double-wall tube
has Rmin ∼ 0.5 nm and Rmax ∼ 0.85 nm and, therefore,
Rmax/Rmin � 1.5. For such tubes, τm(q) generally decreases
with q and approaches 0 for sufficiently large q. This
dependence becomes stronger with increasing Rmax/Rmin. For
m = 0 shown in the topmost panel, τ0(q) suddenly decreases
from 1 in the vicinity of q = 0, corresponding to the singularity
mentioned above. Because of the large q dependence of
τm(q), effects of constant κ introduced in Eq. (17) cannot be
represented by a background dielectric constant independent of
q, as mentioned in the previous section. We note here that τm(q)
is the same as τm(qR,qR′) in Ref. 19, where environment
effects are discussed.

Figure 4 shows some examples of the effective dielectric
function ε̃R(0,q) when the surrounding outer tube with radius
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FIG. 4. The effective dielectric function ε̃R(0,q) of a semiconducting nanotube with radius R. The outer tube is (a) semiconducting and
(b) metallic. The dotted (dot-dashed) line denotes εR(0,q) of a semiconducting (metallic) single-wall tube.

R′ is [Fig. 4(a)] semiconducting and [Fig. 4(b)] metallic. Only
the results for R′ � R are shown, but those for R′ < R can
immediately be obtained by exchanging R and R′.

In both Figs. 4(a) and 4(b), the dielectric function of the
single-wall tube is shown by the dotted line. It increases from
εR(0,0) = κ gradually with q and becomes almost independent
of q for qR > 1, i.e., εR(0,q) > εR(0,0) for qR > 1. This
q dependence is responsible for the so-called antiscreening
behavior in the single-wall nanotube.13 In fact, the screened
potential VR(y) is reduced from V 0

R(y)/κ in the short-distance
region (|y| � R) but is enhanced over V 0

R(y)/κ in the long-
distance region (|y| � R).

In double-wall tubes consisting of two semiconducting
tubes, except in the unrealistic case of R′/R = 1, the amount
of the increase of ε̃R(0,q) with increasing q is generally
reduced as shown in Fig. 4(a), causing the reduction of the
antiscreening behavior. For tubes with Rmax/Rmin > 1.5, the
effective dielectric function becomes closer to a constant
independent of q without the antiscreening.49 When the
other tube is metallic, on the other hand, ε̃R(0,q) → ∞ for
q → 0 because 
R′(0,q) → 2gs/(πγ ), and, therefore, the
effective potential is screened out in the long-distance region,
completely destroying the antiscreening behavior.

When the other tube is semiconducting, we have ε̃R(0,0) =
2κ − 1 (=4 for κ = 2.5) at q = 0 because τ0(0) = 1. The
singularity in τ0(q) at q = 0, shown in Eq. (37) and in Fig. 3,
gives rise to a sharp decrease of ε̃R(0,q) from 2κ − 1 with q and
causes the appearance of a minimum in the vicinity of q = 0
as shown in Fig. 4(a). The effective Coulomb potential for
excitons in the long-distance region is essentially determined
by the minimum value of ε̃R(0,q) rather than ε̃R(0,0) =
2κ − 1.

Figure 5(a) shows calculated excitation energies as a
function of the radius ratio R′/R when the other tube with
radius R′ is semiconducting. These energies are shown for the
first (n = 0) and second (n = 1) gaps. The result in Fig. 5(a)
clearly shows that, in the presence of inner or outer tube,

exciton energy levels and band gap are redshifted from those
in a single-wall tube with the same diameter. This redshift is
mainly due to that of the band gap because the exciton binding
energies are reduced by interwall screening, as will be shown
below. The energy level of the ground exciton approaches that
of the single-wall tube rapidly away from R′/R = 1, resulting
from a large cancellation of the band gap reduction and the
decrease of the binding energy by screening. On the other hand,
excited excitons undergo large energy shifts accompanying the
band gap shift but remain as bound states for any value of R′/R.

Figure 5(b) shows calculated excitation energies when the
other tube is metallic. The band gap reduction from the single-
wall tube is much larger. However, the ground exciton still
exists with a significant binding energy except in the vicinity
of R′/R = 1 and its energy level is nearly the same as that in
Fig. 5(a). The most striking feature of the metallic screening
is that excited exciton states disappear in the region 0.5 �
R′/R � 2 for the first gap and in the region 0.7 � R′/R � 1.5
for the second gap. This becomes more apparent in the exciton
binding energy as shown below.

Figure 6(a) shows exciton binding energies of the first gap
in the semiconducting case corresponding to Fig. 5(a). It is
interesting to notice that the binding energy most strongly
depends on radius ratio R′/R for the ground exciton and the
dependence becomes weaker for the excited excitons. This
different behavior can be understood by Fig. 4(a), which shows
that the screening in the long-distance region, corresponding
to qR � 1 and contributing most to excited states, is weakly
dependent on R′/R, while that in the short-distance region
corresponding to qR � 1, contributing most to the ground
exciton state, is very sensitive to the slight increase in R′/R.
In the real space, this corresponds to the fact that the short-
range part of the effective electron-hole Coulomb potential
(|y| � L with y being the relative coordinate for an electron-
hole pair and L = 2πR) is more sensitive to R′/R, but the
long-range part (|y| � L) is less sensitive, although not shown
here.
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FIG. 5. (Color online) Calculated excitation energies of a semiconducting nanotube with radius R as a function of R′/R. The other tube
with R′ is (a) semiconducting and (b) metallic. The thin horizontal lines denote the results in the single-wall tube.

Figure 6(b) shows exciton binding energies of the first gap
in the metallic case corresponding to Fig. 5(b). We can see the
intense reduction of the binding energies and the vanishing of
excited exciton states in the region 0.5 � R′/R � 2. In other
regions, the first- and second-excited exciton states appear but
higher excited exciton states are absent. The features of exciton
binding energies in the second gap are qualitatively the same
as in the first gap for both semiconducting and metallic cases.

Figure 7 shows the oscillator strengths of the ground and
second-excited excitons of the first gap. The first-excited
exciton is optically inactive because of its parity but can be
observed in two-photon processes.10,11,48,50 The reduction of

the oscillator strength is not so appreciable for the ground
exciton for both semiconducting and metallic outer tube except
in the vicinity of R′/R = 1. The metallic screening due to
the outer tube drastically modifies the excited exciton state,
resulting in the disappearance for 0.5 � R′/R � 2 as seen in
Fig. 6(b). This well corresponds to Fig. 5(b).

Figure 8 shows some examples of the dynamical conduc-
tivity describing the absorption spectra of the semiconducting
tube with radius R surrounded by (a) semiconducting and (b)
metallic outer tube for typical cases of R′/R = 1.5. In the
case of a semiconducting outer tube [Fig. 8(a)], the absorption
peak of the ground exciton, which is strongest, is slightly

FIG. 6. (Color online) Exciton binding energies of the first gap corresponding to Fig. 5. The dashed lines represent those in the single-wall
tube.
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FIG. 7. (Color online) Oscillator strength of the ground and second excited excitons of the first gap corresponding to Fig. 5. The dashed
lines represent the results in the single-wall tube.

redshifted in comparison with that of a single-wall tube. The
redshift of the peak associated with the second excited exciton
is much more prominent and the position becomes closer to
the interband continuum.

In the case that the outer tube is metallic [Fig. 8(b)],
the spectrum consists of a single dominant peak associated
with the ground exciton and weak interband continuum,
corresponding to the disappearance of excited exciton states
as discussed above. The redshift of the exciton peak is slightly
larger than that in the case of a semiconducting outer tube
shown in Fig. 8(a), but the difference is not so appreciable.
The reduction of the band gap is most noticeable.

The behavior of the exciton binding may be most straight-
forwardly seen in an effective real-space potential. The
Coulomb potential between two ring charges in the tube with

radius R and the corresponding exciton wave function are
given by the Fourier transform:

VRR(y) =
∫

dq

2π
VRR(0,q) exp(iqy), (39)

ψu
R(y) =

√
A

L

∫
dk

2π
ψu

R,0(k) exp(iky), (40)

with L = 2πR. Figure 9 shows the screened potential for
R′/R = 1.5 together with the exciton bound levels and the
exciton wave functions. For reference, the screened potential
in a semiconducting single-wall tube (the dotted line) is shown
in both Figs. 9(a) and 9(b). The corresponding exciton bound
levels are represented by the horizontal lines, whose length

FIG. 8. (Color online) Calculated dynamical conductivity of a semiconducting nanotube with radius R near the ground exciton of the first
gap in the presence of a (a) semiconducting and (b) metallic outer tube with radius R′ for R′/R = 1.5. The dashed lines denote the conductivity
in the single-wall tube. The arrows denote the bottom of the interband continuum.
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FIG. 9. (Color online) The screened Coulomb potential for an electron-hole pair in a semiconducting nanotube with radius R surrounded
by an outer tube with radius R′ for R′/R = 1.5, together with the exciton wave functions. (a) The outer tube is semiconducting and (b) metallic.
The horizontal lines stand for exciton bound levels and their length indicates the spatial extent 2

√〈y2〉. In (b) the results for the ground exciton
in single-wall tube are shown by the dotted lines.

represents the spatial extent 2
√

〈y2〉, where the average is taken
using ψu

R(y).
In the presence of a semiconducting or metallic outer tube,

the potential is reduced from that of the single-wall tube in the
whole region. For a semiconducting outer tube, in particular,
the tendency of the antiscreening is still present, although
being not so clear in Fig. 9(a). As a result, excited exciton
states (first and second) are not removed by the interwall
screening, although the binding energy is reduced and the wave
function becomes more extended. In fact, the spatial extent in
the double-wall tube is 2

√
〈y2〉/L � 4.8 for the first-excited

exciton and 9.7 for the second-excited exciton, in contrast
to 3.4 and 6.9, respectively, in the single-wall tube. For a
metallic outer tube, on the other hand, the potential in the
long-distance region is completely screened out, destroying
all excited exciton states.

In both Figs. 9(a) and 9(b), the ground exciton remains
as a bound state and its spatial extent does not change so
much from the single-wall case and remains about the same as
the tube circumference, i.e., ∼L. In fact, the spatial extent is
2
√

〈y2〉/L � 1.2 in the single-wall tube and becomes 1.4 and
1.5 for a semiconducting and metallic outer tube, respectively,
in the double-wall tube. The increase of 2

√
〈y2〉 is much

smaller than for excited exciton states.
This behavior of the ground-exciton wave function is

closely related to the infinite binding energy for potential
∝−1/|y| in a real one-dimensional system due to a fall of
a particle into y = 0.51,52 In carbon nanotubes with circum-
ference L, the potential is effectively cut off around |y| ∼ L

and, therefore, the exciton binding energy becomes finite. As a
result, the spatial extent of the wave function is almost always
∼L independent of screening. The present result shows that

the interwall screening does not modify this feature of the
one-dimensionality of excitons even in double-wall tubes.

IV. DIAMETER DEPENDENCE

In double-wall tubes, the interwall distance is usually about
the same as that of inter layer distance in bulk graphite.53,54

Thus, it is straightforward to calculate excitation energies and
optical absorption spectra for varying diameter in double-wall
tubes if we set R′ − R = 0.34 nm or R − R′ = 0.34 nm.
Figure 10 shows the ground exciton energies and the bottoms
of the interband continua of double-wall nanotubes as a func-
tion of the tube diameter. A semiconducting tube with radius R

is surrounded by a semiconducting tube with radius R′ (R′ >

R) in (a), it is surrounded by a metallic tube with radius R′ in
(b), and it surrounds a metallic inner tube with R′ (R′ < R).
The lower horizontal axis shows the diameter of the semicon-
ducting tube and the upper horizontal axis shows the diameter
of the outer semiconducting tube in (a), the diameter ratio
R′/R in (b), and the diameter of inner metallic tube in (c).

In Fig. 10(a) for double-wall tubes consisting of two
semiconducting tubes, excitation energies associated with the
first and second gaps are shown. In Figs. 10(b) and 10(c),
the exciton energy and the bottom of interband continuum
for the second gap consisting of n = ±1 are shown in
metallic nanotubes as well as the excitation energies of the
semiconducting tube. In metallic nanotubes, optical transition
is forbidden between the conduction and valence bands with
n = 0 having a linear dispersion but becomes allowed between
the bands with n = ±1, for which an exciton bound state
is formed even in the presence of metallic screening by
electrons in the linear bands.47,55 We notice that the shift
due to inter wall screening is slightly larger in the case of
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FIG. 10. (Color online) The ground exciton energies (solid lines) and the bottoms of the interband continua (dot-dashed lines) for the fixed
interwall distance at R′ − R = ±0.34 nm as a function of the tube diameter, (a) consisting of both semiconducting tubes, (b) a semiconducting
tube surrounded by a metallic outer tube, and (c) a semiconducting tube surrounding a metallic inner tube. The thick lines represent the results
in double-wall tubes and the thin lines those in single-wall tubes.

metallic interwall screening than in the case of semiconducting
interwall screening, although its absolute value is very small
in the energy scale of the figure.

In Fig. 10(a) where both tubes are semiconducting, the
exciton of the second gap in the outer tube crosses the exciton

of the first gap in the inner tube around 2R � 0.75 nm
(R′/R � 1.8). This crossing point is about the same with-
out interwall screening, which is in agreement with recent
experiments.15 In single-wall tubes, this crossing is determined
by E11(R) = E22(R′). We obtain R′/R � 1.8 by noting

FIG. 11. (Color online) The shift of excitation energies due to the presence of an outer or inner tube for the fixed interwall distance at
R′ − R = ±0.34 nm as a function of the tube diameter, (a) consisting of both semiconducting tubes, (b) a semiconducting tube surrounded by
a metallic outer tube, and (c) a semiconducting tube surrounding a metallic inner tube. The lower and upper panels show the energy shifts for
the first and second gaps, respectively.
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FIG. 12. (Color online) Calculated dynamical conductivity σ (ω) of a double-wall nanotube with the fixed interwall distance at R′ − R =
±0.34 nm, consisting of (a) two semiconducting tubes, (b) a semiconducting inner tube and a metallic outer tube, and (c) a metallic inner tube
and a semiconducting outer tube. The tube diameter is varied from 2R = 0.68 nm to 1.7 nm in (a) and (b) and 2R = 1.36 nm to 2.38 nm in (c).
The solid and dash-dotted lines represent the ground exciton energies and the bottoms of the interband continua, respectively.

E22(R) ≈ 1.8 × E11(R) and E11(R) ∝ E22(R) ∝ R−1.6,9 In
Fig. 10(b), the exciton in the metallic outer tube crosses
the exciton of the second gap in the semiconducting inner
tube in the region 1.3 � 2R � 1.4 nm. Because the redshift
due to interwall screening is larger, this crossing occurs in the
double-wall tube at a diameter that slightly differs from that in
single-wall nanotubes.

Figure 11 shows the shift of excitation energies due to the
presence of an outer or inner tube. The shift of the ground
exciton is almost independent of the diameter and remains
very small, while those of exciton excited states and band
gaps are much larger and decrease with the diameter. For a
double-wall tube consisting of two semiconducting tubes, the
shift of the inner tube lies between ∼15 and ∼20 meV and that
of the outer tube is slightly smaller. When the semiconducting
tube is surrounded by or surrounding a metallic tube, the shift
of the ground exciton lies between ∼20 and ∼30 meV and
excited excitons are present only in very narrow tubes and
disappear beyond a critical value of the diameter.

With increasing R, the ratio R′/R decreases and therefore
the screening effect becomes relatively larger as shown in
Figs. 5 and 6. However, the energy scale itself decreases with R

because excitation energies are all scaled roughly by 2π/L ∝
R−1. These two effects tend to cancel each other for the ground
exciton, giving rise to the shifts almost independent of the tube
diameter. For excited excitons and band gaps, the dependence
on R′/R is much weaker and, therefore, their shifts due to
interwall screening decrease with the diameter, because of the
dominant 2π/L ∝ R−1 scaling of their energies.

Figure 12 shows some examples of calculated absorption
spectra, Re σ (ω), in double-wall tubes consisting of (a) two
semiconducting tubes, (b) a semiconducting inner tube and a

metallic outer tube, and (c) a metallic inner tube and a semicon-
ducting outer tube, corresponding to Fig. 11. Both inner and
outer tubes almost equally contribute to the absorption, being
dominated by excitons. This feature is essentially independent
of whether tubes are metallic or semiconducting.

V. DISCUSSION AND SUMMARY

Photoluminescence experiments were performed in double-
wall-rich samples showing shifts from the single-wall tubes as
small as a few meV14,15 or vanishingly small.23 The present
calculation also gives a small shift, which is almost invisible in
Fig. 10. As shown in Fig. 11, however, this small shift is almost
one order of magnitude larger than the experiments. Origins
of this discrepancy are not known and should be clarified in
future.

Experimentally, photoluminescence intensity seems to be
modified by interwall interactions in double-wall tubes. In
fact, observed increase was ascribed to exciton transfer from
E22 of outer tubes to E11 of inner tubes15 and observed
suppression was considered to be due to strong quenching
by metallic outer tubes.25 The calculated oscillator strength in
Fig. 7 shows a small decrease in absorption intensity due to
interwall screening but is certainly not directly related to the
photoluminescence intensity.

Previous calculations of interwall conductance show that
interwall hopping is strongly enhanced in the presence of
disorder due to destruction of the cancellation of the interwall
coupling at different carbon sites,56 suggesting that strength
of exciton transfer is sensitive to disorder. The photolumines-
cence intensity is highly likely to depend on relative strength
of interwall transfer and radiative recombination of excitons.
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The small shift of the ground exciton energy in double-wall
tubes is a result of the cancellation of the reduction in the
band gap due to the interwall screening and the reduction in
the exciton binding energy. This cancellation is exact, if we
consider only the “long-range part” of the Coulomb potential
(qR � 1) in calculating the self-energy and the exciton binding
energy. The small shift appears due to “short-range part”
of the Coulomb interaction (qR � 1) and mixings between
different bands. The interwall screening also modifies these
residual interactions and, therefore, gives rise to the small shift
from the single-wall case, very roughly about 10–15 meV for
double-wall tubes consisting of two semiconducting tubes, as
discussed above.

In graphene, the interband conductivity is known to be given
by (π/2)(e2/h) independent of frequency,57 giving rise to
absorption of ∼2.3% per sheet as experimentally observed.58,59

Figure 12 shows that the peak conductivity in nanotubes can
be as large as ∼40(e2/h), although the peak height itself is
sensitive to the broadening and, therefore, varies depending of
quality of nanotubes. This is more than one order of magnitude
larger than that of graphene and causes strong absorption of
incident light. In the case that the exciton levels in different
tubes happen to overlap with each other, Eq. (31) might be
modified and an adequate treatment is likely to be needed for
a self-consistent determination of the electric field at different
tubes. This problem is out of the scope of this paper and left
for future study.

In summary, we have studied effects of interwall screen-
ing on excitons and optical spectra in double-wall carbon
nanotubes in the static screened Hartree-Fock approximation
within a k · p scheme. The intrawall electron-hole interaction
is largely suppressed by interwall screening effects. The sup-
pression is sensitive to semiconducting or metallic screening
and also to the effective interwall distance between the inner
and outer tubes. This suppression reduces the exciton binding
energy as well as the band gap energy. These two effects
almost cancel with each other, causing a small redshift for
the energy of the ground exciton from that in single-wall tubes
with the same diameter. Further, this shift of the ground exciton
has little dependence on the tube diameter. Excited exciton
states are strongly affected by the interwall screening and are
strongly suppressed (and even disappear) when the other tube
is metallic.
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