<table>
<thead>
<tr>
<th>Instructions for use</th>
<th>New smoothing method in the automatic hexahedral mesh generator for improving solver convergence property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Noguchi, So; Motooka, Yuichiro; Igarashi, Hajime</td>
</tr>
<tr>
<td>Citation</td>
<td>2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), 1-1</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-05</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/48584</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 IEEE. Reprinted, with permission, from Noguchi, S., Motooka, Y., Igarashi, H., New smoothing method in the automatic hexahedral mesh generator for improving solver convergence property, 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), May 2010. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Hokkaido University products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.</td>
</tr>
<tr>
<td>Type</td>
<td>proceedings (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>CEFC2010_1.pdf</td>
</tr>
</tbody>
</table>

Title

New smoothing method in the automatic hexahedral mesh generator for improving solver convergence property

Author(s)

Noguchi, So; Motooka, Yuichiro; Igarashi, Hajime

Citation

2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), 1-1

Issue Date

2010-05

Doc URL

http://hdl.handle.net/2115/48584

Rights

© 2010 IEEE. Reprinted, with permission, from Noguchi, S., Motooka, Y., Igarashi, H., New smoothing method in the automatic hexahedral mesh generator for improving solver convergence property, 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), May 2010. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Hokkaido University products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Type

proceedings (author version)

File Information

CEFC2010_1.pdf
New Smoothing Method in the Automatic Hexahedral Mesh Generator for Improving Solver Convergence Property

So Noguchi, Yuichiro Motoooka, and Hajime Igarashi
Graduate School of Information Science and Technology, Hokkaido University
Kita 14 Nishi 9, Kita-ku, Sapporo 060-0814, Japan
noguchi@ssi.ist.hokudai.ac.jp

Abstract—We have developed an automatic hexahedral mesh generator, and evaluated the quality of the generated mesh. It was confirmed that the ratio of the longest and the shortest diagonal lengths of the elements affected the convergence of the ICCG solver. Therefore, for improving the mesh quality, it is necessary to develop the smoothing method in the automatic hexahedral mesh generator.

I. INTRODUCTION

We have previously developed the automatic hexahedral mesh generator [1]. We have also reported about the quality evaluation of the generated hexahedral mesh [2]. As the result, it was concluded that the ratio of the longest and the shortest diagonal lengths of the elements affected the convergence of the ICCG solver.

By the way, the smoothing process in the common mesh generators finally decides the shape of the element. The Laplacian smoothing method, a popular smoothing method, often generates the distorted elements, which cause an inaccurate solution and a long computation time. In this paper, we have proposed a new smoothing method for improving the ratio of the longest and the shortest diagonal lengths.

II. MESH QUALITY EVALUATION

For evaluating the mesh quality, we have proposed the diagonal length ratio \(\lambda \) defined as [2]

\[
\lambda = \frac{\sum_{i=1}^{N} \lambda_i}{N}, \quad \lambda_i = \frac{l_{i,\text{max}}}{l_{i,\text{min}}},
\]

where \(N \) is the number of elements, \(l_{i,\text{max}} \) and \(l_{i,\text{min}} \) the longest and the shortest diagonal lengths of \(i \)-th element. The smaller \(\lambda \) is, the more distorted the element is. In [2], it was confirmed that the diagonal length ratio strongly affected the mesh quality and the ICCG convergence.

III. NEW SMOOTHING METHOD

To increase the diagonal length ratio \(\lambda \) leads to the speed-up of the ICCG convergence. Therefore, in the smoothing process of the proposed mesh generator [1], the nodes should move so as to increase the diagonal length ratio \(\lambda \).

The proposed smoothing process consists of two functions. One is to prevent the elements from turning inside out, another is to increase the diagonal length ratio. The first smoothing is

\[
P_{\text{i,j,dir}} = \sum_{j=1}^{N} \sum_{i=1}^{N} w_{i,j} p_{ij},
\]

\[
w_{i,j} = \left| p_{i,j} - p_{i,j_{,\text{old}}} \right|,
\]

where \(P_{i,j} \) is the position vector of \(i \)-th node belonging to \(j \)-th element, \(k \) is the local node number in \(j \)-th element, \(w_{i,j} \) is the weight function with respect to the distance between the nodes.

The second smoothing method for increasing the diagonal length ratio \(\lambda \)

\[
P_{\text{i,j,dir}} = \sum_{j=1}^{N} \left(\lambda_j + \frac{l_{j,\text{avg}}}{2} e_{ij} \right) / n,
\]

where \(l_{j,\text{avg}} \) is the diagonal length connecting to \(i \)-th node on \(j \)-th element, \(e_{ij} \) the unit vector of the diagonal.

The final position of \(i \)-th node is decided from

\[
P_{\text{i,j,dir}} = (1-w) P_{\text{i,j,dir}} + w P_{\text{i,j,old}},
\]

where \(w \) is the weight.

The proposed smoothing method, where \(w = 0.3, 0.5 \), and 0.7, was applied to a contactor model, as shown in Fig. 1. Fig. 2 shows the property of the ICCG convergence, and Table I represents the diagonal length ratio \(\lambda \).

IV. CONCLUSION

It was confirmed that the diagonal length ratio \(\lambda \) affected the ICCG convergence property. We have proposed the new smoothing method for increasing the diagonal length ratio \(\lambda \), and verified that the property of the ICCG convergence property improved.

V. REFERENCES