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Extensions of the mandala of Legendrian dualities for
pseudo-spheres in Lorentz-Minkowski space

Shyuichi Izumiya and Handan Yildirim

September 9, 2011

Abstract
In this paper we define one-parameter families of Legendrian double fibrations in the
products of pseudo-spheres in Lorentz-Minkowski space which are the extensions of four
Legendrian double fibrations in the previous research[9]. We show that these are contact
diffeomorphic to each other. Moreover, we construct one-paramter families of new extrisic
differential geometries on spacelike hypersurfaces in these pseudo-spheres as applications
of such extensions of the Legendrian double fibrations.

1 Introduction

If we have a Legendrian double fibration, the projections of a Legendrian submanifold in the
total contact manifold are said to be Legendrian dual to each other. The Legendrian duality
is a generalization of the classical projective duality and the spherical duality. A theorem
of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space was shown in [9]. It
is now a fundamental tool for the study of extrinsic differential geometries on submanifolds
in these pseudo-spheres from the view point of Singularity theory (cf., [9, 11, 12, 15, 17]).
The theorem for these Legendrian dualities was generalized into pseudo-spheres in general
semi-Euclidean space [7]. The assertion is expressed by a commutative diagram of contact
diffeomorphisms among total spaces of special Legendrian double fibrations in the products
of pseudo-spheres. Such the commutative diagram of contact diffeomorphisms has a similar
structure to the religious picture of Buddhism called the “mandala”(cf., §3). Therefore, the
diagram of contact diffeomorphisms for Legendrian double fibrations is called the mandala of
Legednrian dualities in [7]. In this paper, we extend the mandala of Legendrian dualities which
was given in [9] for continuous families of pseudo-spheres in Lorentz-Minkowski space. We
do not consider semi-Euclidean space with general index here. However, we remark that by
exactly the same way as in this paper we can easily generalize the results into the pseudo-
spheres in semi-Euclidean space with general index, so that we omit them. The main results
(cf., Theorems 3.1 and 3.2) are simple generalizations of the results in [9]. However, there are
some new applications of such extended dualities. In §4, we only give some basic results on
such applications. The detailed arguments on these applications have been recently appeared
in the papers [3, 16].
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2 Basic notions

In this section we give basic notions and properties on Lorentz-Minkowski space. Let R*T =
{(xo,21,...,2,) | i €R, i =0,...,n} be an (n+ 1)-dimensional vector space. For any vectors
x = (20,71,...,2,) and Yy = (Y0, Y1,---,¥Yn) in R* the pseudo scalar product of x and y
is defined by (z,y) = —xoyo + >_;, T;y;- The space (R, (,)) is called Lorentz-Minkowski
(n + 1)-space and denoted by R, We say that a vector = in R?™\ {0} is spacelike, null or
timelike if (x,x) > 0,= 0 or < 0, respectively. The norm of a vector & € R is defined by
||| = v/|(z,x)|. For a vector v € R\ {0} and a real number ¢, we define a hyperplane with
pseudo normal v by
HP(v,c) ={x e R | (x,v) =c }.

We call HP(v,c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike, respectively. We have the following three kinds of pseudo-spheres
in R

Hyperbolic n-space is defined by
Hn(_CQ) = {iL‘ € IR71H_1| (m,m} = _62}7

de Sitter n-space by
Si(c*) = {z e Ri"|(z, x) = ¢* }

and the (open) lightcone by
LC™ ={z e RY"" \ {0}|(z,z) =0 },

for any real number c. Instead of S} (1), we usually write S}.

3 Legendrian dualities

In this section we formulate theorems on Legendrian dualities for pseudo-spheres in Lorentz-
Minkowski space and give their proofs. For our purpose, we briefly review some properties
of contact manifolds and Legendrian submanifolds. Let N be a (2n + 1)-dimensional smooth
manifold and K be a tangent hyperplane field on N. Locally, such a field is defined as the field
of zeros of a 1-form a. The tangent hyperplane field K is non-degenerate if a A (da)™ # 0 at
any point of N. We say that (N, K) is a contact manifold if K is a non-degenerate hyperplane
field. In this case, K is called a contact structure and « is a contact form. Let ¢ : N —
N’ be a diffeomorphism between contact manifolds (N, K) and (N’, K’). We say that ¢ is a
contact diffeomorphism if dp(K) = K'. Two contact manifolds (N, K') and (N’, K') are contact
diffeomorphic if there exists a contact diffeomorphism ¢ : N — N’. A submanifold i : L C N
of a contact manifold (N, K) is said to be Legendrian if dim L = n and di,(T,L) C K;) at any
x € L. We say that a smooth fiber bundle 7 : E — M is called a Legendrian fibration if its
total space E is furnished with a contact structure and its fibers are Legendrian submanifolds.
Let # : E — M be a Legendrian fibration. For a Legendrian submanifold 7 : L C FE,
moi: L — M is called a Legendrian map. The image of the Legendrian map 7 o i is called a
wavefront set of i which is denoted by W (L). For any z € F, it is known that there is a local
coordinate system (z,y,p) = (1,...,Tm,Y,P1,---,Pm) around z such that w(z,y,p) = (z,y)
and the contact structure is given by the 1-form o = dy — Y_" | pidx; (cf. [1], 20.3). In [9], the



basic duality theorem for four Legendrian double fibrations which is the fundamental tool for
the study of spacelike hypersurfaces in Lorentz-Minkowski pseudo-spheres was shown. We now
consider a slight extension of these dualities by the following double fibrations:

(1) (a) H*(=1) x 57 2 Ay = {(v,w) | {v,w) =0},
(b) w11 : Ay — H"(—1), m2 : Ay — ST,
(c) 011 = (dv,w)|Ay, 015 = (v, dw)|A;.

(2) (a) H™(= 1)><LC*3Ai—{(’U w) | (v, w) =+1},
(b) 73 : AF — H(—1), 1, : AF — LC*,
(c) 031 = {dv, w)|Ay, 03, = (v dw)lﬁi

(3) (a)LC*xS”DAi—{(v w) | (v,w) ==+1 },
(b) m5 : AT — LC*, 75, : AF — 57,
(c) 03, = (dv, w)| A, 05, = (v,d'w)|Ai.

(4) (a) LC* x LC* D AT = {(v w) | (v,w) =12 },
(b) 7 : Af — LC*, mf, : AT — LC*,
(c) 03 = (dv, w)|AT, 0 = (Uad’wHAf

Here, 711 (v, w) = v, mo(v, w) = w, 7 (v,w) = v and 75(v, w) = w (i=2,3,4). Moreover,
(dv, w) = —wodvy + > widv; and (v, dw) = —vodwy + Y5, vidw; are one-forms on Ry x

R?*™!. We remark that 61,7 (0) and #15,7'(0) define the same tangent hyperplane field denoted
by K; over A;. And also 93{_1(0) and 05_1(0) define the same tangent hyperplane field denoted
by KijE over A;t (i=2,3,4). We have the following basic duality theorem:

Theorem 3.1 Under the same notations as the previous paragraph, (A, K1) and (AF, KF)
(i = 2,3,4) are contact manifolds such that m; and 7T - (7 = 1,2) are Legendrian fibrations.
Moreover, these contact manifolds are contact dlﬁeomorphzc to each other.

Proof. By definition, we can easily show that A; and AF (i = 2,3,4) are smooth submanifolds
in RY*' x RY* and all of my; and 7;; (i = 2,3,4;j = 1,2) are smooth fibrations.

In [9] it was shown that (A, Ki) is a contact manifold. We now give a brief review
of the proof. Since H™(—1) is a spacelike hypersurface in R?™, ( | )|H"(—1) is a Rie-
mannian metric. Let 7 : S(TH"(—1)) — H"(—1) be the unit tangent sphere bundle of
H™(—1). For any v € H"(—1), we have the local coordinates (vi,...,v,) such that v =
(/02 + -+ 02+ 1,01,...,0,). We can represent the tangent vector w € T, H"(—1) by

n
1
w=(+— E WiV, W1,y -+ oy Wh).
Vo < 1
1=

It follows that (w,v) = (- >0, wivy)(Fvo) + o1, wiv; = 0. Therefore, w € S(T,H"(—1)) if
and only if (w, w) = 1 and (v, w) = 0. The last conditions are equivalent to the condition that
(v, w) € A;. This means that we can canonically identify S(T'H™(—1)) with A;. Moreover, the
canonical contact structure on S(TH"(—1)) is given by the one-form 6(V') = (dn(V),7(V)),
where 7 : T'S(TH™(—1)) — S(T'H"(—1)) is the tangent bundle of S(TH"(—1)) (cf., [4, 6]).
It can be represented by (dv,w)|A; through the above identification. Thus, (A1, 077 (0)) is a
contact manifold. For the other AF (i = 2,3,4), we define the smooth mappings VT, : A} —
AF by U5 (v, w) = (v, Fv + w), V5 (v, w) = (v + w,w) and V], (v, w) = (v + w, Fv + w).



We can construct their converse mappings, so that \Iflj[Z are diffeomorphisms. Moreover, we have

U505 = {(dv, Fv +w)|A
= (dv,Fv)|A; + (dv, w)|A;
= <d'U, ’U)>’A1 = ‘911.

This means that (AT, K5) is a contact manifold such that U3, is a contact diffeomorphism.
For the other AF (i = 3,4), we have the similar calculations, so that (AF, K) (i = 3,4) are
contact manifolds such that \I/i are contact diffeomorphisms. This completes the proof. O

We can also give the contact diffeomorphisms \Ili AF — Ai for the other pairs (3, j)

by \I/i = Vi o \Illi], where U3 = (UE)~1 It follows that we have a “mandala of Legendrian

duahtles by the following commutative dlagram

% &
+ \
A ‘I’étg U3y

+
32

Ay Ay

The above mandala is a slight extension of the mandala given by the Legendrian dualities in
[9]. However, we can extend it to infinite families of Legedrian dualities as follows:

(5) (a) H"(—1) x Sp(cos? ¢) D Ay () = {(v,w) | (v, w) = +sing },
(b) wldliiy, - A(0) — HM(—1), m[#fi1y, : Afy(6) —> Sp(cos? ),
(¢) 016]iay = (dv, w)[AT(0), 0[8]h,), = (v, dw)|AL(6).

(6) (a) H”(—cos ¢) x St 5 Afy(¢) = {(v,w) | (v,w) = +sin¢ },
(b) @55, : Af(0) — H™(— cos?¢), mlelE,), : Afy(0) — ST,
(c) 0o ](13 = (dv, w)|A%(9), e[sb];‘zg) (v, dw)| AT

(7) (a) H"(—cos? ¢) x Sy (cos? §) D Afy(¢) = {(v,w) | (
(b) w54 : ATi(0) — H"(—cos?¢), m@]f,, : ATi(

(c) 0[8]iay = (dv, w) AL (@), O8], = ( i

(8) (a) H”(—cos ¢) x S(sin? ¢) > A% () = {(v,w) |
(b) 7@l « A(¢) — H™(— cos? ¢), m[o]5s), : A%

(c) Ol¢ ](23 = (dv, w)|A%(0), 0[6]5s), = (v, dw)| A% (

(9) (a) H"(—cos?¢) x LC* > AFy(¢) = {(v,w) | (v,w) = *(sing +1) },

b) m[@) a1 A5i(¢) — H"(—cos’ @), m [¢]?;4)2-A§4<¢>—>LC*,

¢) 0[0) 50, = (dv, w)|AZ,(8), (0], = (v, dw)|AZ,(4).

(a) LC* x S?(cos? ¢) D A 1(0) ={(v,w) | (v,w) = L(singp+1) },

b) 7[@)5 + A5a(@) — LC*, w(6]50, + A5i(0) — S (cos” ),

) 0[¢1(34 = (dv, w)|AF(9), 0[8]E,), = (v, dw)|AF(6).

o
<
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We also define the tangent hyperplane field K[¢]” over Afj(@ by K[¢]iij = 9[¢]@)171(O) =

0[¢] ij){l(()). The main result in this paper is the following theorem:

Theorem 3.2 Under the same notations as those of the previous paragraph, (A, Ki) and
(A5(0), K[8l3;) ((5,5) = (1,2),(1,3),(1,4),(2,3),(2,4), (3,4)) are contact manifolds such that

ij
T and W[gb]?;j)k (k = 1,2) are Legendrian fibrations. Moreover, these contact manifolds are

contact diffeomorphic to each other.

Proof. We can construct the diffeomorphisms \I/(Z] Af;(@ — Ay with dU U)l(K [(b]j;) = K,
as follows:

(5) We define a mapping
Uiy - REFE X RIP — RYFE X RIS O, (v, w) = (v, £singv + w).
For any (v,w) € A% (¢), we have
(£sin ¢pv + w, £sin pv + w) = —sin® ¢ + 2sin ¢ + cos’p = 1
and (v, £ sin ¢pv + w) = 0. Therefore, we have @ﬁQ)l(Af2(¢)) C A;. We also define a mapping

\Ili

n+1 n+1 n+1 n+1 . +
a2 R X R — R X RY™ 5 W

1(12) (’v,’w) = (v, Fsingv + w).

We can easily calculate that \Ilf(lz)(Al) C AL (), ¥ (12) o \Ifil2)1|A 2(0) = 152 ) and \IJjE
\Ifim)\Al = 1a,. Moreover, we have

(W) 01 = (do, % sin 6 + w)| AL (6) = (dv, w)| Ak () = 0[],

Therefore, K[¢]3 is a contact structure on Af,(¢) such that \I/f[(12 is a contact diffeomorphism.
For other cases, we can define the following mappings:

(6) \112—23)1('0,10) = (v F sin pw, w).
(7) Wi (v, w) =

(8) ¥,

(23)1

m(vq:singbw,isingbv—i—w).
(’U ’U)) = W(’U :FSiHQb’LU,Zl:COSQb’U—{—’lU).

1
+ _ .
(9) g, (v, w) = | 1(’0 F sin ¢pw, v + w).
1
1 + = + i .
(10) Wigy, (v, w) singzﬁ+1<v:':w sin v + w)

By stralghtforward calculations, we can show that ¥ ”)1|A () : Af;(gb) — Ay, ((4,4) =
(1,3),(1,4),(2,3),(2,4),(3,4)) are diffeomorphisms such that d\I/j;j (K[qb];g) = K. Therefore,
(A;';(gb), K [qb];?) are contact manifolds which are contact diffeomorphic to (Ay, K7). O

We can write the above extension of the mandala as follows:



Ay ————AR(0) ———AF

= [o, g] AE (g) = A%, AE(0) = Ay, AE(0) = AE (i £ 1),

The extended Mandala of Legendrian Dualities

The above diagram is not a diagram for contact diffeomorphisms. If we add informations on

the contact diffeomorphisms between A;;, the diagram might be very complicated, so that we

omit the contact diffeomorphisms in the above diagram.

Remark 3.3 We can also define
+ _ At z B + z _ + + - E B +
500125 (5 o) 013 =1 5 = 5],

for (i,7) = (1,2),(1,3),(1,4),(2,3),(2,4) and (3,4). Then these are contact manifolds with
A;-—Li(()) = Aj-[, Ajil (r/2) = Ay and Aﬁ(w/Q) = A¥ (i # 1). Moreover, all of them are canonically
contact diffeomorphic to (A, K7). Since these contact diffeomorphisms can be constructed by
the canonical way, we omit to give the definitions here.

We can explicitly write these families of Legendrian dualities as follows:
(57) (a) H*(=1) x SP(sin® ¢) D A (¢) = {(v,w) | (v, w) =Fcos¢ },
(b) ml¢ ](21 A2i1(¢) — H"(-1), 7"[(;5}31)2 : Aétl(gb) — S(sin® ¢),
(€) 016f,, = (dv, w)| A% (9), 6[6]5,), = (v, dw)| A% (6).
(6) (a) H < sin?6) x S 5 A& (6) = {(v,w) | (v,w) = +cos6 },
(b) 7[@)51), = A51(0) — H™(—sin? ), 7[5, + A51() — ST,
() 9[925](31 = (dv, w)|A%;(9), 9[¢]?§,1)2 = (v, dw)|A5(¢)-
(77) (a) H" ( sin® ) x Sp(sin® ¢) D A (¢) = {(v,w) | (v,w) = £2cos¢ },
(b) 7)), : AL(9) — H™(=sin® ¢), 7[d] (G, : AT (¢) — S{(sin’ ),
(c) 01y, = (dv, w)| AT (9), 9[¢]?21) = (v, dw)|A%; (¢).
(8%) (a) H" ( Sm2¢) x St (cos® ¢) D A (¢) = {(v,w) | (v, w) = £(cos ¢ +sing) },
(b) T[] 521+ A3a(9) — H"(—sin® <b), ) ](32 : Agp(¢) — St (cos” ),
(c) 9[¢]<32 = (dv, w)|A5(9), 9[¢]?§,2)2 = (v, dw)|A3(¢).
(97) (a) H”(—Sm2¢>) x LC* D AR(¢ )— {(v,w) | (v,w) ==£(cosp+1) },
(b) 7[¢];; (42 : Al (¢) — H"(—sin®¢), (¢ ](42 : Al (¢) — LC™,

(@]
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() O8] 550 = (dv, w)| A% (0), 0[8] 1), = (v, dw)| AL (¢).
(10%) (a) LC* x SP(sin®¢) D AL 3(0) = {(v,w) | (v,w) = £(cosp+1) },
(b) 7[@lsy : A(0) — LC*, T[] s, - Al3(0) — ST (sin® ¢),

(c) O[@]Gaay = (dv, w)|Ay(0), 9[05]?13)2 (v, dw)|AZy(9).

4 Slant geometry of submanifolds in pseudo-spheres

In this section we consider one-parameter families of new extrinsic differential geometries on
spacelike hypersurfaces in pseudo-spheres in Lorentz-Minkowski space as an application of the
extended mandala of Legendrian dualities. Here, we only give some basic properties. The
detailed arguments will be appeared in the forthcoming papers [3, 16].

4.1 Hyperbolic space

Let £, : U — A; be a Legendrian embedding with £;(u) = (X"(u), X%(u)) for an open
subset U C R""'. Suppose that X" : U — H"(—1) is an embedding. Since £, is a Legen-
drian embedding, X% : U — S? can be considered as a unit normal vector field along the
hypersurface M = X"(U) in H"(—1). We define X% (v) = X"(u) + X%(u). Then these are
lightlike vectors. It follows that we have lightlike normal vector fields X% : U — LC* along
M. We respectively call X% and X', the de Sitter Gauss image and the lightcone Gauss
image of M. We define a map Ly : U — Ay by Lo(u) = (X"(u), XL (u)). It is easy to
check that £ is a Legendrian embedding. In [8], X% and X ft were constructed by an explicit
way and the geometric meanings of the singularities of these Gauss images were investigated.
Both of the de Sitter Gauss image X® and the lightcone Gauss image X play similar roles
with the Gauss map of a hypersurface in Euclidean space. We can interpret that dX%(u) is a
linear transformation on T,M" for p = X"(u). Since the derivative dX"(u) can be identified
with the identity mapping 17,54 on the tangent space T, M H ynder the identification of U
and M* through the embedding X", we have d X' (u) = Iy = dX(u), so that dX*% (u)
can be also interpreted as a linear transformation on T, M*. We call the linear transformations
Ad = —dXu) : T,MH" — T,M" and (S}), = —dX'(u) : T,M" — T,M" the de Sitter
shape operator and the lightcone shape operator of M = Xh(U) at p = X"(u), respectively.
The de Sitter Gauss-Kronecker curvature and the lightcone Gauss-Kronecker curvature of MY
at p = X"(u) are defined to be K (u) = detA? and K (u) = det(S5),, respectively. In [8], the
geometric meanings of the lightcone Gauss-Kronecker curvature from the contact viewpoint
were investigated. The consequences of the results are that the de Sitter Gauss-Kronecker
curvature (respectively, the lightcone Gauss-Kronecker curvature) estimates the contact of hy-
persurfaces with hyperplanes (respectively, hyperhorospheres). Here, a hyperplane is defined to
be the intersection of H"(—1) with a timelike hyperplane through the origin and a hyperhoro-
sphere is defined to be the intersection of H™(—1) with a lightlike hyperplane. We only remark
here that X% is a constant vector if and only if M* is a part of a hyperplane. Moreover, one of
X"’ is a constant vector if and only if M* is a part of a hyperhorosphere. These facts suggest
us that there are two kinds of flat subjects in Hyperbolic space. One of them is a hyperplane
and the other one is a hyperhorosphere. In the Poincaré ball model of Hyperbolic space, the
hyperplane is a hypersphere as the Euclidean sense and it is orthogonal to the ideal boundary.
The hyperhorosphere is also a hypersphere as the Euclidean sense, but it is tangent to the ideal



boundary. We remark that the hyperplanes are totally flat hypersurfaces in the sense of Hy-
perbolic Geometry. What about hyperhorospheres? We emphasize that a new geometry which
is called “Horospherical Geometry”in Hyperbolic space was discovered through the researches
[5, 8, 10, 13, 14, 15]. Hyperhorospheres are totally flat hypersurfaces in Hyperbolic space in
the sense of Horospherical Geometry.

On the other hand, an equidistant hypersurface is defined to be the intersection of H"(—1)
with a timelike hyperplane which does not contain the origin. It is well known that a non-
compact complete totally umbilic hypersurface in Hyperbolic space is a hyperplane, an equidis-
tant hypersurface or a hyperhorosphere (cf., [8]). Here, we consider a natural question.

Question. Can we construct a geometry such that an equidistant hypersurface is a totally flat
hypersurface?

In order to give an answer to this question, we consider the contact manifold (A 4,,(¢), K[¢]5;)
and the contact diffeomorphism ¥, : Ay — Ay, (¢) defined by ¥, (v, cos pv + w). We
define N4 [¢] : U — S7(sin? ¢) by

1(21

N 6] () = cos 6 X" (u) £ X(u),

for ¢ € [0,7/2]. Tt follows that N4[0] = X%, N [7/2] = £X? and (X" (u), N4[¢](u)) = — cos ¢.
We also define an embedding Lo1[¢] : U — A5, (¢) by Loi[¢](u) = (X"(u),N%[¢](u)). Then
we have Ly [¢] = \111_(21) o Ly, so that L£o1[¢] is a Legendrian embedding. Therefore, we have

(dX" Ni[g)) = L1[¢]"0[¢] (1), = 0. This means that N4 [¢](u) is a normal vector of MH at
p= X"(u). We call N4 [¢] : U — S?(sin® ¢) the ¢-de Sitter Gauss image of M. By definition,
we have dNZ[¢](u) = cos ¢l £ dX “(u) which can be considered as a linear transformation
on T,M*". We call S¢[¢], = —dN4%[p](u) : T,M? — T,M" a ¢-de Sitter shape operator (or
¢-de Sitter Weingarten map) of MH at p = Xh(u) The ¢-de Sitter Gauss-Kronecker curvature
of M" at p = X"(u) is defined to be K7 [¢](u) = detS%[4],. The geometry related to ¢-de
Sitter Gauss image is called a ¢-geometry of hypersurfaces in Hyperbolic space. Since the 0-
geometry is the horospherical geometry and 7 /2-geometry is the hyperbolic geometry, we call
the ¢-geometry a slant geometry in Hyperbolic space if ¢ € (0,7/2). The detailed investigation
of the slant geometry in Hyperbolic space will be appeared in the forthcoming paper [3]. Here,
we only consider the most degenerate case.

Proposition 4.1 For a hypersurface M™, one of N4 [¢](u) is a constant vector if and only if
MH"is a part of a hyperquadric H"(—1) N HP(v, — cos ¢) with v € SP(sin® ¢).

Proof. Suppose that N [¢](u) = constant = v. Then we have
(X"(u),v) = (X" (u),N{[9](u)) = 0.

This means that M¥ c H"(—1) N HP(v, — cos ¢). If N4 [¢](u) = constant = v, we have the
similar result. For the converse, suppose that M7 C H"(—1) N HP(v,—cos¢) with v €
St(sin® ¢). Since v is a normal vector of M there exist real numbers ), such that v =
AX"(u) + pX%(u). By definition, we have — cos ¢ = (X" (u),v) = —X and sin® ¢ = —\? + p2.
It follows that v = N4 [¢](u) or v = N [¢](u). 0

We remark that the above proposition asserts that a totally flat hypersurface in the ¢-
geometry is a part of a hyperquadric H"(—1) N HP(v, — cos ¢) with v € S?(sin® ¢). We call
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it a ¢-hyperquadric in Hyperbolic space H"(—1). A ¢-hyperquadric is a hyperhorosphere (re-
spectively, a hyperplane, an equidistant hypersurface), when ¢ = 0 (respectively, ¢ = /2,
¢ € (0,7/2)).

4.2 De Sitter space

We also consider the Legendrian embedding £, : U — A; and suppose that X : U — S
is an embedding. In this case, all the tangent vectors of MP = X%(U) are spacelike, so that
X% is a spacelike embedding. In [17] Kasedou constructed the extrinsic differential geometry
on the spacelike hypersurfaces in S} analogous to the theory in [8]. We can interpret his
framework by using the mandala of Legendrian dualities. We consider the lightlike vectors
+ X% (u) = X%u) £ X"(u). We call X" and £X7%, the hyperbolic Gauss image and the
lightcone Gauss image of MP = X%(U), respectively. We also define a map Egt : U — AT by
LE(u) = (XL (u), X4u)). It is a Legendrian embedding and d(£X%)(u) = Ly, o & dX"(u)
for p = X%(u). Since dX"(u) is considered to be a linear transformation on T, M”, d(+X"%)(u)
is also a linear transformation on 7T, MP. We call (S7), = —d(£X%)(u) : T,MP — T,MP
and A;L = —dXh(u) : T,MP — T,MP the lightcone shape operator and the hyperbolic shape
operator of MP at p = X d(u), respectively. Geometric characterizations of the singularities
of the lightcone Gauss image £X% of MP from the view point of the contact with model
hypersurfaces (cf.,[18]) are one of the main results in [17]. Especially, Theorem 5.6 in [17]
was obtained by applying the theory of Legendrian singularities for +X* (u). For definitions
and basic properties of the theory of Legendrian singularities, see (Part III, [1]). Here, we can
interprete the results in [17] by using the mandala of Legendrian dualities. Let ®3; : Ay — Aj
be the mappings defined by ®% (v, w) = (fw, +(w — v)). Then we have 73, 0 &5 = Fmyy. It
is easy to show that ®3; are contact diffeomorphisms. By definition, we have

o3 0 La(u) = (£ X5 (u), (XL (w) — X" (u)) = L5 (u).

This means that Legendrian maps +my9 0 Lo and 731 0 £3i are Legendrian equivalent. We only
remark here that all of the conditions in Theorem 6.3 in [8] and Theorem 5.6 in [17] are invariant
under the Legendrian equivalence. Therefore, the assertions of these theorems are equivalent.

On the other hand, we consider the contact manifold (A} (¢), K[#]4;) and the contact
diffeomorphism ¥4, : Ay — Af; (@) defined by U, (v, w) = (£v + cos gw, w). We define
a map N[¢] : U — H"(—sin® ¢) by

N [¢](u) = cos 9 X (u) = X" (u),

for ¢ € [0,7/2]. It follows that N2[0] = £X%, Nt [r/2] = £ X" and (X% (u), N2 [¢](u)) = cos ¢.
We also define an embedding Ls1[¢] : U — A (¢) by La[¢](u) = (N2[¢](u), X%(u)). Then
we have L31[¢] = \Iff(:ﬂ) o L1, so that L31[¢] is a Legendrian embedding. Therefore, we have
(dX4 Nh[g]) = £31[q§]*9[¢}&)2 = 0. By exactly the same way as the hyperbolic case, we can
construct the ¢-hyperbolic shape operator S%[¢], = —dN[¢](u) : T,MP — T,MP and the
¢-hyperbolic Gauss-Kronecker curvature K¥[¢](u) of MP at p = X%(u). The geometry related
to the Gauss image N%[¢] is called a ¢-geometry of the spacelike hypersurfaces in de Sitter
space. We also consider the most degenerate case here.

Proposition 4.2 For a spacelike hypersurface MP C S}, one of N2 [¢p](u) is a constant vector
if and only if MPis a part of a hyperquadric ST N HP(v,cos ¢) with v € H"(—sin” ¢).
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Proof. Suppose that N [¢](u) = constant = v. Then we have
(X (u),v) = (X(u), N} [g](u)) = 0.

This means that M? C S N HP(v,cos¢). If N*[¢](u) = constant = v, we have the similar
result. For the converse, suppose that MP C S* N HP(v,cos ¢) with v € H"(—sin® ¢). Since
v is a normal vector of MP, there exist real numbers A,y such that v = AX"(u) + pX%(u).
By definition, we have cos¢ = (X%(u),v) = p and —sin®’¢ = —A? + p2. It follows that
v = N2 [6](u) or v = N" [](u). .

We also remark that the above proposition asserts that a totally flat spacelike hypersurface
in the ¢-geometry is a part of a hyperquadric SN H P(v, cos ¢) with v € H"(— sin? ¢). We call
it a ¢-hyperquadric in de Sitter space ST'. By definition, the 0-hyperquadric is S7 N HP(v, 1)
for v € LC* and 7/2-hyperquadric is S} N HP(v,0) for v € H"(—1). The 0-hyperquadric is
called a de Sitter hyperhorosphere which is nothing but a parabolic hyperquadric. We call the
7 /2-hyperquadric a small elliptic hyperquadric. We remak that a small elliptic hyperquadric is
a spacelike geodesic, when n = 2. We also call the geometry related to the Gauss image N [¢]
a slant geometry of spacelike hypersurfaces in de Sitter space if ¢ € (0,7/2).

4.3 The lightcone

In [9], an extrinsic differential geometry on spacelike hypersurfaces was considered in the light-
cone motivated by the result of [2]. The induced metric on the lightcone is degenerate, so
that we cannot apply ordinary submanifold theory of semi-Riemannian geometry. The A} -
duality is really useful in this case. Let £, : U — A, be a Legendrian embedding with
Ly(u) = (X’ (u), X" (u)) for an open subset U C R"!. Suppose that X’ : U — LC* is a
spacelike embedding. In [9], the Legendrian embedding £, was used for the construction of the
extrinsic differential geometry on spacelike hypersurfaces M f =X i(U ) in the lightcone. It was
shown that for any spacelike embedding X ﬂ : U — LC™, there exists a unique Legendrian
embedding £, : U — Ay such that 7;; 0L, = X . Since £, is Legendrian, X* (u) is a lightlike
normal vector of M* at p = X* (u). We call it a lightcone normal vector of M. If X* is an
embedding, then X' (u) is called a lightcone normal vector of M* = X* (U) at p = X" (u).
We define two vector fields
X (u) + X (v) X (u) - X (u)

X"(u) = 5 and X%u) = 5

Then X"(u) € H"(—1) and X%(u) € S?'. Moreover, we have mappings £; : U — A,
L U — A, and L5 : U — AJ which are defined by £1(u) = (X" (u), X%(v)), L3 (u) =
(X"(u), X (u)) and LE(u) = (X% (u), X% (u)), respectively. It is easy to show that £,
and E;t (i = 2,3) are Legendrian embeddings. We now define mappings ®% : Ay — A

U+ w _ vt+w
by qDIQ(”?“’) = ( 2 ,’U) and CI>42(’U,U)) = ( 9

Tyeo®t, = 75, We can show that ®F, are contact diffeomorphisms and ®3,0L, = £3. Therefore,
74, © L4 (respectively, 7y, 0 £4) and 75, 0 £ (respectively, 7o, 0 L) are Legendrian equivalent.
It follows that the assertions of Theorem 6.3 in [8] and Theorem 6.6 in [9] are equivalent. By
the arguments in Subsection 4.2, the assertions of Theorem 5.6 in [17] and Theorem 6.6 in
[9] are also equivalent. However, we can directly define the Legendrian equivalence between
7y 0Ly (i = 1,2) and 73, o L5 as follows: Let ®f : A; — AJ be mappings defined

,w). Then we have 75, o &, = 7, and
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w—v w —

by @15 (v, w) = (v, ) and P 5(v, w) = (w, T'v) By exactly the same reasons as the

above, we can show that <I>jf3 give Legendrian equivalences between m,; o £, (i = 1,2) and
+rf o £3i.

On the other hand, we have a proposition as a special case of Proposition 3.7 in [9] as
follows:

Proposition 4.3 Let £, : U — A} be a Legendrian embedding with L4(u) = (X (u), X (u)).
(1) Suppose that X', is an embedding. Then X (u) is a constant vector if and only if ML is a
part of LC* N HP(v,—1) with v € S}.

(2) Suppose that X', is an embedding. Then X" (u) is a constant vector if and only if ML is
a part of LC* N HP(v, —2) with v € LC*.

(3) Suppose that X* is an embedding. Then X"(u) is a constant vector if and only if M* is a
part of LC* N HP(v, —1) with v € H"(—1).

We respectively call LC* N HP(v,—1) with v € S}, LC* N HP(v,—2) with v € LC*
and LC* N HP(v,—1) with v € H"(—1), a de Sitter flat hyperbolic hyperquadric, a lightcone
flat parabolic hyperquadric and a hyperbolic flat elliptic hyperquadric. In [9], the lightcone
Gauss-Kronecker curvature for a spacelike hypersurface M }E was introduced by using X* as
a Gauss map. Actually, it is defined by K*(u) = det(—dX"* (u)). The lightcone flat parabolic
hyperquadric is totally flat in this sense. By the above proposition, we have three kinds of totally
flat spacelike hypersurfaces in the lightcone. Therefore, we are interested in the relations among
these flatness.

We consider the contact manifold (A3(¢), K[¢],3) and the contact diffeomorphism W,

(43) °
Ay — A(¢) defined by

Uz (v, w) = <v, % ((cos¢ — 1)v + (cos ¢ + 1)w)) :
We define a map N¢[¢] : U — SP(sin? ¢) by

N{[6] () = 5 ((cos 6 — )X (u) + (cosd+ DX (w),
for ¢ € [0,7/2]. We also define an embedding Ly3[¢] : U — A;(¢) by

Laglé)(u) = (X (), Nf[9]())-
Then we have Ly3[¢] = W ;5 0Ly, so that L43[¢] is a Legendrian embedding. Therefore, we have
(dX,N[¢]) = Las[0]*0[9)] (131 = 0. This means that N¢[¢](u) can be considered as a normal
vector of ML at p = X (u). We remark that N¢[0](u) = X (u) and N[ /2](u) = X(u).
Then we have the following proposition.

Proposition 4.4 Suppose that X" is an embedding. Then N¢[¢](u) is a constant vector if and
only if MY is a part of LC* N HP(v, —(cos ¢ + 1)) with v € S}(sin® ¢).

Proof.  Suppose that N¢[¢](u) = v. Then we have (X (u),v) = (X (u),N{[¢](u)) = 0.

This means that M¥ C LC* N HP(v, —(cos ¢ + 1)). For the converse, suppose that M C
LC*NHP(v,—(cos p+1)) with v € S (sin? ¢). Since v is a normal vector of ML in R}, there
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exist real numbers A, u such that v = AX* (u) +pX" (u). By definition, we have —(cos ¢+1) =
(X" (u),v) = —2u and sin? ¢ = —4\p, so that 2\ = cos ¢ — 1. It follows that v = N¢[¢](u). O

We call LC* N HP(v, —(cos ¢ + 1)) with v € S}(sin? ¢) a ¢-de Sitter flat hyperbolic hyper-
quadric.

On the other hand, we consider the contact manifold (A (), K[¢];) and the contact
diffeomorphism W} 0, : Ay — Ajp(¢) defined by

U (v, w) = (% (1 4+cosp)v + (1 —cosp)w) ,w) :
We define a map N[¢] : U — H"(—sin® ¢) by
NH[G] () = 5 (1 + cos )X (u) + (1~ cosd) X" (u),

for ¢ € [0, 7/2] and have a map Lys[¢] : U — AL (¢) defined by Lio[¢](u) = (Np[¢](u), X (u)).
By exactly the same reason as the above case, L4]¢] is a Legendrian embedding, so that
N2[#](u) can be considered as a normal vector of M% at p = X* (u). We remark that N2[0](u) =
X" (u) and N [r/2](u) = X"(u). Then we have the following proposition.

Proposition 4.5 Suppose that X* is an embedding. Then NI[¢](u) is a constant vector if and
only if MY is a part of LC* N HP (v, —(1 + cos ¢)) with v € H"(— sin® ¢).

Since the proof of Proposition 4.5 is given by exactly the same arguments as those of
Proposition 4.4, we omit it. We call LC* N HP(v,—(1 + cos¢)) with v € H"(—sin?¢) a
o-hyperbolic flat elliptic hyperquadric.

We call both the geometry related to the Gauss maps N¢[¢] and N?[¢] a slant geometry of
spacelike hypersurfaces in the lightcone. The detailed arguments on the slant geometry will be
appeared in the forthcoming paper [16].
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