A novel core-shell composite photocatalyst, commercially available titanium(IV) oxide (TiO₂) particles directly incorporated into a hollow silica shell, was fabricated by successive coating of TiO₂ with a carbon layer and a silica layer followed by heat treatment to remove the carbon layer. The composite induced efficient photocatalytic reactions when relatively small substrates were used, such as methanol dehydration and decomposition of acetic acid, without any reduction in the intrinsic activity of original TiO₂ but did not exhibit efficient photocatalytic activity for decomposition of large substrates, methylene blue and polyvinylalcohol. The unique size-selective properties of
the composites are due to their structural characteristics, i.e., the presence of a pore system and a void space in the silica shell and between the shell and medial TiO$_2$ particles, respectively. The loading of alkylsilyl groups on the surface of the composite led to highly photostable floatability: the floated sample also induced efficient photocatalytic reaction for decomposition of acetic acid while retaining floatation at the gas-water interface.

Introduction

Photocatalysis is a redox reaction driven by photoexcited electrons (e$^-$) in the conduction band and simultaneously generated positive holes (h$^+$) in the valence band of semiconducting materials when photoirradiated with light of energy greater than the band gap between the valence and conduction bands.1 In the presence of molecular oxygen (O$_2$) under ordinary atmospheric conditions, the target of reduction by e$^-$ is limited to O$_2$, and proposed resulting products, superoxide anion,2 hydroperoxy and/or hydroxyl radicals,3,4 are all oxidants. Thus, the photocatalytic reaction under aerated conditions is oxidation of substrates by both h$^+$ and the oxidants derived from e$^-$. This is one of the main reasons for the potential environmental applications of photocatalysis, i.e., complete oxidation and mineralization of organic pollutants in air and water.$^5-8$

Among the many semiconducting materials, titanium(IV) oxide (TiO$_2$) has proven to be the most suitable photocatalyst due to its strong oxidizing power, biological and chemical inertness, cost-effectiveness, and long-term stability against photocorrosion and chemical corrosion. Besides the conventional photocatalytic oxidation properties described above, band-gap excitation of TiO$_2$ in an aerobic condition has also been shown to induce conversion of surface wetability, leading to a highly hydrophilic surface.$^9-11$ These specific properties of TiO$_2$ have resulted in commercial applications to a self-cleaning coating on external walls of buildings and glass materials.6,7
While photooxidation processes on TiO$_2$ photocatalysis are nonselective owing to the strong oxidation ability as described above, selective oxidation of certain chemical bonds in a reaction substrate and degradation of only a given component from a mixture are other versatile and intriguing subjects because they open new potential fields of applications: the former enables construction of environmentally benign organic reaction systems and the latter would be useful for separation processes or the selective elimination of pollutant molecules from a mixture. Therefore, numerous studies have been conducted and have shown induction selective oxidative conversion of certain organic substrates by appropriate selection of the solvent and other reaction conditions.12-15 However, by using ordinal TiO$_2$ particles, the number of substrates to achieve sufficient conversion and selectivity are limited, and thus it is of great importance to control activity of the TiO$_2$ photocatalysts by modification of their bulk and/or surface properties in compliance with different needs.

One typical approach for the construction of selective photocatalytic systems is the use of photocatalysts with defined nanostructures such as mesoporous TiO$_2$ as well as nanocrystalline TiO$_2$ particles or isolated TiO$_2$ species dispersed onto inorganic supports with periodic pore systems and high surface areas.16-22 Although various examples have been reported, this approach often includes a problem of difficulty to fabricate a TiO$_2$ photocatalyst with sufficient activity comparable to that of commercially available TiO$_2$. From the viewpoint of practical utility, therefore, the use of commercially available TiO$_2$ having sufficient photocatalytic performance is more advantageous than the use of such synthesized TiO$_2$ photocatalysts. One of the ordinal methods to provide the commercial TiO$_2$ selective photocatalytic functions is encapsulation of TiO$_2$ particles into porous substances.23-26 However, composites obtained by this method have a propensity to decrease intrinsic photocatalytic activity of the medial TiO$_2$ due to the surface coverage of these substances.

Recently, we have reported fabrication of a novel core-shell composite
photocatalyst, commercially available TiO₂ particles directly incorporated into a hollow silica shell (SiO₂/void/TiO₂).²⁷ It has been shown that the composite has size-selective properties in photodecomposition of organics, i.e., SiO₂/void/TiO₂ exhibited photocatalytic activity for decomposition of relatively small substrates but did not have activity for decomposition a large molecule. Moreover, the notable feature of this photocatalytic system is that it retains intrinsic activity of original TiO₂ for small substrates due to the presence of a void space between the TiO₂ core and the hollow silica shell.

In our previous paper, we briefly reported the structural features and size-selective photocatalytic functions of SiO₂/void/TiO₂. In this paper, we show the details of structural characteristics of the material and photocatalytic activity for various substrates in aqueous systems. Possible control of hydrophobicity of the silica shell, leading to stable floatability on aqueous solutions under photoirradiation, is also discussed.

Experimental

Materials

Commercial TiO₂ samples (Ishihara ST-41 and Degussa P-25, supplied by Ishihara Sangyo and Nihon Aerosil, respectively) were used in this study. Other commercial chemicals were of the highest available grade and were used without further purification. Laboratory-grade water was prepared by using a Milli-Q pure water system (Yamato-Millipore).

Fabrication of TiO₂ coated with a hollow silica shell (SiO₂/void/TiO₂)

To 80 cm³ of aqueous glucose solution (0.5 mol dm⁻³) was added 0.2 g of TiO₂, and the suspension was placed in a Teflon-sealed autoclave and maintained at 453 K for
6 h. The resulting powder was isolated by filtration, washed with water and ethanol, and heated at 873 K under evacuation for 2 h. Then 0.2 g of carbon-coated TiO₂ thus-obtained (C/TiO₂) was stirred in an ethanolic solution (10 cm³) containing 0.42 mmol of \(n \)-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS) for 2 h at room temperature. The resulting AEAPS-treated sample was put into an ethanolic solution (14 cm³) containing 2.2 mmol tetraethyl orthosilicate (TEOS), 0.5 cm³ aqueous ammonia (28%) and 2 cm³ water. After agitating the suspension for 1.5 h at room temperature, the solid part was collected by centrifugation, washed with water several times, and dried at 383 K under vacuum to yield TiO₂ particles covered successively with a carbon layer and a silica layer (SiO₂/C/TiO₂). Finally, the SiO₂/C/TiO₂ sample was heated at 873 K for 3 h in air to remove carbon components. In order to study the effectiveness of surface amino-functionalization during the coating with a silica layer on C/TiO₂, we also attempted to coat the C/TiO₂ sample with a silica layer without treatment with AEAPS. As a reference, TiO₂ directly coated with silica (SiO₂/TiO₂) was also prepared by following the procedure developed by Graf et al. with slight modifications. Briefly, 0.2 g of TiO₂ was stirred in an aqueous poly(vinylpyrrolidone) (PVP) solution (2.3 mmol dm⁻³, 18 cm³) for 12 h. The PVP-adsorbed TiO₂ powder as-obtained was stirred in an ethanolic solution (14 cm³) containing 0.5 mmol tetraethyl orthosilicate (TEOS), 0.5 cm³ aqueous ammonia (28%) and 2 cm³ water for 1.5 h. The resulting powder was collected by centrifugation and heated at 873 K for 3 h in air.

Modification of particle surfaces with an alkylsilylation agent

Functionalization of external surfaces of TiO₂, SiO₂/void/TiO₂ and SiO₂/TiO₂ with alkylsilyl groups was carried out as follows. To 10 cm³ of toluene containing 2.5 mmol of octadecyltrichlorosilane (ODS) was added 50 mg of TiO₂, SiO₂/void/TiO₂ or SiO₂/TiO₂. After the mixtures had been shaken for 1 h at 333 K, the suspensions were centrifuged and washed with ethanol (20 cm³) to remove unreacted ODS and a
by-product, hydrogen chloride. The precipitates were then dried at 373 K overnight. The resulting powders are designated as o-TiO$_2$ and o-SiO$_2$/void/TiO$_2$, respectively.

Characterization and analytical procedures

The morphology of the particles was examined using a Hitachi S-5000 FEG scanning electron microscope (SEM) at a voltage of 20 kV. Thermogravimetry-differential thermal analysis (TG-DTA) was conducted using a Bruker 2000A TG-DTA apparatus in air from room temperature to 1073 K with a heating ramp of 10 K min$^{-1}$. The structures of the particles were also confirmed by transmission electron microscopy (TEM) using a Hitachi H-9000 transmission electron microscope. Powder X-ray diffraction (XRD) was measured using a Rigaku MiniFlex X-ray diffractometer (CuK$_\alpha$, Ni filter). Nitrogen (N$_2$) sorption isotherms at 77 K were obtained on a Quantachrome AUTOSORB-1 automated gas sorption system after drying samples at 473 K for 2 h. The amounts of siliceous components in the SiO$_2$/void/TiO$_2$ samples were determined by using a Nippon Jarrel-Ash ICPAP-575 Mark II inductively coupled plasma atomic emission spectrometer (ICP-AES). For the measurement, silicon components on the samples were dissolved by dispersing the samples in a 0.1 mol dm$^{-3}$ NaOH solution for 6 h at 353 K, and the solution part was collected by centrifugal removal of remaining solid parts.

Photoirradiation and product analyses

An aqueous suspension consisting of 15-30 mg photocatalyst powder (15 mg as TiO$_2$) and a 20 cm3 aqueous solutions of (a) methanol (50%), (b) acetic acid (5%), (c) methylene blue (MB, 50 µmmol dm$^{-3}$), or (d) polyvinylalcohol (PVA, Mw = 22000, 2 mg) was put in a Pyrex cylindrical reaction vessel (6.8 cm in diameter, 240 cm3 in capacity). In reaction a, the catalyst was platinized in situ by adding hexachloroplatinic acid (H$_2$PtCl$_6$), the amount of which corresponded to 1wt% loading of Pt.
Photoirradiation was performed using a 300 W Xe lamp from the upper part of the vessel in argon (a) or air (b, c, and d) with shaking of the suspension to achieve homogeneous dispersion. Gaseous products, H₂ and CO₂, were analyzed by using a Shimadzu GC-8A gas chromatograph equipped with a TCD detector and an MS-5A column (for H₂) or a Porapak Q column (for CO₂). It should be noted that various intermediates can be produced in these systems and it is difficult to determine the main product for PVA photodecomposition (reaction d): photocatalytic activity was evaluated by the amount of CO₂ liberation for convenience. In the case of reaction c, photocatalytic activity was evaluated by decrease in MB by measuring absorbance of the solution at 650 nm (ε = 42,000 dm³ mol⁻¹ cm⁻¹) using a Shimadzu UV-2500PC UV-vis recording spectrophotometer. For the evaluation of photocatalytic activity of alkylsilylated samples, 5-8 mg of photocatalyst powders (5 mg as TiO₂) was added to 20 cm³ aqueous solutions of acetic acid (5%) and phoroirradiated in air using the same equipments as that described above.

Results and discussion

Structural characterization of SiO₂/void/TiO₂

Figure 1 shows SEM images of bare TiO₂ (ST-41) and TiO₂ after various modifications. The TiO₂ sample without any modifications exhibited angular morphology with particle sizes of ca. 100-300 nm (Fig. 1a). Hydrothermal treatment of the sample in aqueous glucose produced a layer of ca. 60 nm in thickness that entirely covered the surface of TiO₂ particles, as shown in Fig. 1b. Sun and Li reported that glucose was converted into carbonaceous polysaccharide (PS) spheres by hydrothermal treatment at temperatures between 433 K and 453 K. Moreover, in the presence of certain oxide particles during the hydrothermal reaction of glucose, we have demonstrated the formation of a uniform layer of PS on these particles without forming
such PS spheres30,31 Hence, the surface layer on TiO$_2$ is ascribed to the formation a PS layer. The PS layer could be converted to an amorphous carbon layer by heat treatment at 873 K under evacuation to form C/TiO$_2$.32

As shown in Fig. 1c, successive treatments of C/TiO$_2$ with AEAPS and TEOS in ethanol led to coverage of an outer layer on the C/TiO$_2$ sample. From the fact that almost no free silica nanoparticles were observed, this indicates surface coverage with a silica layer by exclusive progress in polycondensation reaction at the surface of C/TiO$_2$, resulting in the formation of the SiO$_2$/C/TiO$_2$ composite. On the other hand, uniform coverage of a silica layer was not achieved when C/TiO$_2$ particles without agitation in the AEAPS solution was employed; instead, irregularly shaped silica aggregates were formed on the C/TiO$_2$ surface and in the surrounding medium (Fig. 1d). These results imply that selective and complete silica coverage is promoted by the preloaded AEAPS molecules on the surface of C/TiO$_2$. Although the details of adsorption state(s) and molecular scale function(s) of AEAPS are not known, the surface AEAPS molecules probably induce a strong attractive force between the C/TiO$_2$ surface and silica to form uniform coverage of a silica layer.

In order to remove carbon components from SiO$_2$/C/TiO$_2$, the sample was heated at 873 K in air. From the fact that no apparent weight loss accompanied by an exothermic event was observed on TG-DTA of thus-obtained white powder, complete removal of carbon components should be achieved during the heat treatment of the sample. The SEM image of the sample shown in Fig. 2a indicates no significant change in the surface morphology compared to that of SiO$_2$/C/TiO$_2$ (see Fig. 1c), while the outer layer becomes semi-transparent. As expected from the SEM observation, the corresponding TEM image of the sample shows successful formation of the desired SiO$_2$/void/TiO$_2$ particles, i.e., a lateral shell of ca. 80 nm in thickness with encapsulated TiO$_2$ particles and the presence of a void space with a width of a few tens nm between the TiO$_2$ core and the SiO$_2$ shell (Fig. 2b). When the other commercial TiO$_2$, Degussa
P-25, was employed, a similar SiO$_2$/void/TiO$_2$ composite was also obtained by the same procedure as that described above (Fig. 2c), implying applicability of the present method for fabrication of the SiO$_2$/void/TiO$_2$ composite to various TiO$_2$ samples.

Figure 3 shows XRD patterns of SiO$_2$/void/TiO$_2$ samples derived from Ishihara ST-41 and Degussa P-25. XRD patterns of bare TiO$_2$ samples are also shown for comparison. The XRD pattern of ST-41 was assigned to pure anatase and no significant change in its pattern was observed after the formation of SiO$_2$/void/TiO$_2$: it shows almost the same widths and relative intensities of all peaks as those of bare ST-41. In the case of P-25, it is difficult to determine the existence of structural alteration because of the presence of both anatase and rutile phases in the bare sample. However, when fractions of anatase (f_A) and rutile from integrated areas of the anatase (101) and rutile (110) peaks in the XRD pattern were introduced as a convenient evaluation of the structural change, the f_A value did not change after the formation of SiO$_2$/void/TiO$_2$ ($f_A=82\%$), indicating almost no appreciable structural difference between bare P-25 and SiO$_2$/void/TiO$_2$.

Figure 4 shows a N$_2$ adsorption-desorption isotherm of SiO$_2$/void/TiO$_2$ derived from ST-41 and that of bare ST-41. In comparison with the isotherm of the bare sample, one of the most notable features observed in the isotherm of SiO$_2$/void/TiO$_2$ is the presence of a substantial hysteresis loop that is closed by a drop of the desorption branch in the volume adsorbed at P/P_0 of ca. 0.5. A similar isotherm was also obtained by measurement of the SiO$_2$/void/TiO$_2$ sample fabricated from Degussa P-25. Previous studies have proved that this phenomenon is often referred to as the tensile strength effect (TSE) and is typically observed in samples having a mesopore or a macropore encapsulated by micropore systems.34 These results, therefore, suggest that the lateral silica shell not only forms a hollow structure but also has microporous systems. Indeed, application of the Saito-Foley (SF) model, which is often used for silica-based microporous materials such as zeolites and silica-gels to determine micropore-size
distribution, to the adsorption branch results in specifying the pore system mainly ranged between ca. 0.7 nm and ca. 1.5 nm (inset of Fig. 4). For fabrication of hollow silica spheres based on the similar method reported in the literature, i.e., base-catalyzed hydrolysis and polycodensatoion of TEOS, silica shells were composed of aggregates of silica nanoparticles.35,36 Therefore, the observed microporous structure on SiO\textsubscript{2}/void/TiO\textsubscript{2} is attributable to the vacant spaces between these aggregates. The successful etching of the medial carbon shell in SiO\textsubscript{2}/C/TiO\textsubscript{2} as described above is also attributable to such a micorporous structure of the lateral silica shell.

Specific surface areas of SiO\textsubscript{2}/void/TiO\textsubscript{2} samples derived from ST-41 and P-25 determined by application of the Brunauer-Emmett-Teller (BET) method to the isotherm were 18 m2 g-1 and 30 m2 g-1, respectively. From the surface areas of bare TiO\textsubscript{2} samples (13 m2 g-1 (ST-41) and 45 m2 g-1 (P-25)) and the contents of SiO\textsubscript{2} in SiO\textsubscript{2}/void/TiO\textsubscript{2}, determined using ICP-AES of silicon (ca. 50\% (ST-41) and 40\% (P-25)), specific surface areas of lateral silica shells were estimated to be 23 m2 g-1 (ST-41) and 20 m2 g-1 (P-25), respectively. The similarity of these values indicates structural uniformity of the silica shell formed by the present method regardless of the kind of TiO\textsubscript{2} core.

Photocatalytic reactions on SiO\textsubscript{2}/void/TiO\textsubscript{2}

Figure 5 shows time course curves of H\textsubscript{2} liberation on TiO\textsubscript{2} (ST-41) and those after various modifications from an aqueous methanol solution. It is known that the TiO\textsubscript{2} photocatalyst utilized for the reaction is generally formed by the combination with a reduction catalyst such as Pt fine particles owing to the low catalytic ability of the surface of TiO\textsubscript{2} for H\textsubscript{2} production. In fact, a linear increase in the amount of H\textsubscript{2} was observed on TiO\textsubscript{2} suspended in an aqueous methanol solution containing H\textsubscript{2}PtCl\textsubscript{6}, a source of Pt fine particles, while there was almost no H\textsubscript{2} liberation in the absence of H\textsubscript{2}PtCl\textsubscript{6} (Fig. 5a).37 Moreover, the direct surface coverage with a silica layer strongly
suppressed H₂ liberation: the SiO₂/TiO₂ sample showed lower activity than that of bare TiO₂ (Fig. 5b). It is likely that such silica coverage prevented the adsorption of substances participating in the reaction, such as methanol, H₂O and H₂PtCl₆. On the other hand, despite the presence of an appreciable amount of silica components (see above), the SiO₂/void/TiO₂ sample showed almost the same activity as that of the bare TiO₂ sample, as shown in Fig. 5b. TEM observation of the sample after the reaction shown in Fig. 6 clearly indicates deposition of Pt fine particles on the medial TiO₂ without any collapse of the silica shell. Thus, the unusual photocatalytic activity observed on SiO₂/void/TiO₂ is attributable to the presence of the pore system and the void space in the silica shell and between the shell and medial TiO₂ particles, respectively. i.e., these structures led to efficient mass transfers through the silica shell to supply substances that participate in this reaction to the naked active surface of the medial TiO₂ core when the sizes of these substances were smaller than the pore system of the silica shell shown in the inset of Fig. 4.

In order to investigate in detail the function of the silica shell in SiO₂/void/TiO₂, photocatalytic activity was evaluated by degradation of various substrates with different sizes in aqueous suspension systems. Typical results together with those for bare TiO₂ and SiO₂/TiO₂ are summarized in Table 1. For the decomposition of acetic acid, SiO₂/void/TiO₂ showed activity almost the same as that of bare TiO₂, similar to the above-described results for H₂ liberation. On the other hand, in the degradation of MB, the molecular size of which is close to the pore system of the silica shell, SiO₂/void/TiO₂ showed lower activity than that of bare TiO₂. Moreover, for the degradation of a large substrate, i.e., PVA, only a small amount of CO₂ was liberated on SiO₂/void/TiO₂ despite liberation of a large amount of CO₂ on bare TiO₂. The suppression of photocatalytic activity for degradation of such relatively large molecules compared to the activity of bare TiO₂ clearly indicates a blocking effect of the lateral silica shell to prevent diffusion of such large substrates moving into the shell to reach
the surface of the medial TiO₂ particles. These results indicate that use of the SiO₂/void/TiO₂ structure is a promising strategy for designing novel photocatalysts with significant molecular selective properties without any reduction in intrinsic activity of TiO₂. In addition, as expected from the results for H₂ liberation, the SiO₂/TiO₂ sample showed poor activities for all of the reactions tested owing to the direct surface coverage with the silica layer (entry 3).

In our previous study, we have proposed unique photocatalytic systems based on photocatalyst particles assembled at oil-water and gas-water interfaces.³⁰,³⁸ For these systems, we employed TiO₂ particles coated with porous silica, the surface of which was modified with a hydrophobic silane agent: indirect attachment of the hydrophobic agent to the surface of TiO₂ enables inhibition of photocatalytic decomposition of such an agent. The properties of the SiO₂/void/TiO₂ photocatalysts described above indicate the possibility of utilizing those photocatalysts for such photocatalytic systems. Based on these facts and considerations, we investigated the properties and photocatalytic activity of SiO₂/void/TiO₂ photocatalysts (derived from Degussa P-25) loaded with alkylsilyl groups (o-SiO₂/void/TiO₂). Fig. 7a shows photographs of o-SiO₂/void/TiO₂ added to pure water before and after photoirradiation for certain periods. While the SiO₂/void/TiO₂ particles without loading of alkylsilyl groups were dispersed in water due to their hydrophilic surface nature (data not shown), o-SiO₂/void/TiO₂ floated on the gas-water interface: the particles became hydrophobic due to the surface coverage of alkylsilyl groups. When the bare TiO₂ (P-25) sample was treated with ODS for comparison (o-TiO₂), a similar hydrophobic property also appeared, i.e., visual observation showed practically no difference between o-SiO₂/void/TiO₂ and o-TiO₂, as shown in Fig. 7b. On the other hand, a significant difference was observed between them upon photoirradiation of these samples: most of o-SiO₂/void/TiO₂ particles floated at the interface, while o-TiO₂ gradually settled during the photoirradiation. Previous studies have shown the inability of o-TiO₂ to float on the
gas-water interface is due attributed to photodecomposition of alkylsilyl groups on the surface through the photocatalytic reaction of TiO$_2$.39

Further photoirradiation of the o-SiO$_2$/void/TiO$_2$ sample induced gradual sinking of the sample into the aqueous phase. However, the fact that most of the recovered sample again floated at the gas-water interface40 implies retention of most of the loaded alkylsilyl groups on the o-SiO$_2$/void/TiO$_2$ sample. Although we have no clear evidence at present, a possible explanation for such photosinking of o-SiO$_2$/void/TiO$_2$ is that an increase in TiOH during the photoirradiation, i.e., the formation of a superhydrophilic surface of the medial TiO$_2$ induced by band-gap excitation of TiO$_2$,10,11 leads to alteration of the hydrophilic-hydrophobic balance of o-SiO$_2$/void/TiO$_2$ toward the hydrophilic side.

Floating photocatalysts are useful for water purification because of the ease of separation from the solution and efficient utilization of irradiated photon(s) even though presences of components interrupting the light in the solution.41-44 Thus, we studied the photocatalytic function of o-SiO$_2$/void/TiO$_2$ for decomposition of aqueous acetic acid as a model reaction. Figure 8 shows time course curves of CO$_2$ liberation on o-SiO$_2$/void/TiO$_2$. The results for o-TiO$_2$ under the same conditions and results for TiO$_2$ in the suspension system are also shown in this figure. Despite the fact that most of the particles floated at the gas-water interface during the irradiation period (see Fig. 7), o-TiO$_2$ showed lower activity than the activities of other samples. As described for the SiO$_2$/TiO$_2$ sample employed in above suspension systems, the suppression of photocatalytic activity is ascribed to the coverage of surface active site(s) with alkylsiline components. On the other hand, the o-SiO$_2$/void/TiO$_2$ sample that floated at the gas-water interface showed ca. 80% of the activity of the bare TiO$_2$ suspension, as was expected from its specific structure described above. The slight decrease in activity is probably due to the partial coverage with alkylsilyl groups on the medial TiO$_2$ and/or the shielding of a part of pore systems in the lateral silica shell.
Conclusion

In this study, we have shown that SiO$_2$/void/TiO$_2$ composites, commercially available TiO$_2$ photocatalyst particles encapsulated in hollow silica shells, have size-selective photocatalytic functions for various reactions. Such properties will bring about a revolution in the practical utility of TiO$_2$ photocatalysis for incorporation in various organic products such as fibers, polymers and paints. The basic concept of the present core-shell photocatalyst is also a promising strategy for designing photocatalysts with significant molecular selective properties toward organic synthesis when the pore diameter and distribution of the shells are controlled. Moreover, efficient control of the hydrophobic property of the shell led to flotation of the composites, indicating potential applications for water purification. Thus, we can expect further development of a new category of photocatalytic systems based on the present SiO$_2$/void/TiO$_2$ composites when further controls and optimizations of the structure, such as pore diameters/distributions and hydrophobic characters of silica shells and kinds of photocatalysts used, are attained.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 19028042, "Chemistry of Concerto Catalysis") from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Dr. Takao Sakata and Professor Hirotaro Mori (Osaka University) are gratefully acknowledged for their help in TEM measurements. The authors would also like to thank Professor Takayuki Hirai (Osaka University) for permission to use an ICP-AES.
References

32. Note that no distinct alteration of surface morphology was induced by this treatment (data not shown).
37. In this system, photoexcited electrons (e\(^-\)) reduce PtCl\(_6^{2-}\) ions to make Pt deposits which act as reduction catalysis of water using e\(^-\) to produce H\(_2\).
40. After photoirradiation for several hours, the o-SiO\(_2\)/void/TiO\(_2\) sample was collected and dried at 353 K in air overnight. Then the dried sample was again added to the pure water. Note that most of o-TiO\(_2\) recovered by the same procedure did not achieve such re-floatation.

Figure Captions

Figure 1. SEM images of (a) TiO\(_2\) (ST-41) and (b) that after hydrothermal treatment with an aqueous glucose solution. (c) SEM image of C/TiO\(_2\) after successive treatment with AEAPS and TEOS. (d) SEM image of C/TiO\(_2\) after treatment with TEOS. Scale bars correspond to 200 nm.

Figure 2. (a) SEM image and (b) TEM image of powders after heat treatment of
SiO2/C/TiO2 derived from ST-41 at 873 K in air. (c) TEM image of the sample derived from P-25. Scale bars correspond to 200 nm.

Figure 3. XRD patterns of (a) TiO2 (ST-41), (b) SiO2/void/TiO2 derived from ST-41, and (c) Degussa P-25 and SiO2/void/TiO2 derived from P-25.

Figure 4. N2 adsorption-desorption isotherms of (a) TiO2 (ST-41) and SiO2/void/TiO2 derived from ST-41. Filled and open circles denote adsorption and desorption branches, respectively. The inset shows corresponding micropore-size distributions calculated by using the SF method.

Figure 5. (a) Time course curves of H2 liberation on TiO2 (ST-41) from a deaerated aqueous methanol solution in the presence (open circles) or absence (filled circles) of H2PtCl6. (b) Time course curves of H2 liberation on SiO2/TiO2 (open triangles) and SiO2/void/TiO2 (filled triangles) derived from ST-41 from a deaerated aqueous methanol solution containing H2PtCl6.

Figure 6. TEM image of the SiO2/void/TiO2 (ST-41) sample after photoirradiation in aqueous methanol containing H2PtCl6. Scale bars correspond to 200 nm.

Figure 7. Locations of (a) o-SiO2/void/TiO2 (P-25) and (b) o-TiO2 (P-25) added to water before (0 h) and after photoirradiation for some periods (1 h and 3 h).

Figure 8. Time course curves of CO2 liberation on TiO2 (P-25) (open circles), o-TiO2 (filled circles) and o-SiO2/void/TiO2 (open triangles) from an aerated aqueous acetic acid solution.
A novel core-shell composite of titanium(IV) oxide (TiO$_2$) particles directly incorporated into a hollow silica shell was fabricated. The composite induced efficient photocatalytic reactions when relatively small substrates were used, such as methanol dehydration and decomposition of acetic acid, without any reduction in the intrinsic activity of original TiO$_2$ but did not exhibit efficient photocatalytic activity for decomposition of large substrates, methylene blue and polyvinylalcohol. The loading of alkylsilyl groups on the surface of the composite led to highly photostable floatability: the floated sample also induced efficient photocatalytic reaction for decomposition of acetic acid while retaining floatation at the gas-water interface.

Table 1. Photocatalytic activity of TiO$_2$ (ST-41) and that after various modifications for decomposition of various substratesa

<table>
<thead>
<tr>
<th>entry</th>
<th>photocatalyst</th>
<th>R_{CO_2} (AcOH)b / µmol h$^{-1}$</th>
<th>D_{MB}^c / µmol</th>
<th>R_{CO_2} (PVA)c / µmol h$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TiO$_2$</td>
<td>87.4</td>
<td>0.65</td>
<td>27.2</td>
</tr>
<tr>
<td>2</td>
<td>SiO$_2$/void/TiO$_2$</td>
<td>84.2</td>
<td>0.34</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>SiO$_2$/TiO$_2$</td>
<td>2.8</td>
<td>0.07</td>
<td>0.2</td>
</tr>
</tbody>
</table>

a Photoirradiation was carried out in aqueous suspension consisting of 15-30 mg photocatalyst powder (15 mg as TiO$_2$) and a 20 cm3 aqueous solutions of acetic acid (5%), MB (50 µmol dm$^{-3}$), or PVA (2 mg).

b Rate of CO$_2$ liberation from aqueous acetic acid solution. c Amount of MB decreased after 1-h photoirradiation. d Rate of CO$_2$ liberation from an aqueous PVA solution.
Fig. 1

Fig. 2
Fig. 3

Fig. 4
Fig. 5

Fig. 6
Fig. 7

(a) and (b) show the progression of a biochemical reaction over time.

Fig. 8

A graph depicting the CO₂ liberation over time, with different symbols and lines representing various conditions.