

Title	Thermotomaculum hydrothermale gen. nov., sp nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough
Author(s)	Izumi, Hiroshi; Nunoura, Takuro; Miyazaki, Masayuki; Mino, Sayaka; Toki, Tomohiro; Takai, Ken; Sako, Yoshihiko; Sawabe, Tomoo; Nakagawa, Satoshi
Citation	Extremophiles, 16(2), 245-253 https://doi.org/10.1007/s00792-011-0425-9
Issue Date	2012-03
Doc URL	http://hdl.handle.net/2115/48725
Rights	The final publication is available at www.springerlink.com
Туре	article (author version)
File Information	Ext16-2_245-253.pdf

1	Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic
2	thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent
3	chimney in the Southern Okinawa Trough
4	
5	Hiroshi Izumi ¹ , Takuro Nunoura ² , Masayuki Miyazaki ² , Sayaka Mino ¹ , Tomohiro Toki ³ ,
6	Ken Takai ² , Yoshihiko Sako ⁴ , Tomoo Sawabe ¹ and Satoshi Nakagawa ^{1,2} *
7	
8	¹ Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1
9	Minato-cho, Hakodate 041-8611, Japan.
10	² Subsurface Geobiology Advanced Research (SUGAR) Project, Institute of
11	Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC),
12	2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
13	³ Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Japan.
14	⁴ Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate
15	School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku,
16	Kyoto 606–8502, Japan.
17	
18	Submitted to Extremophiles
19	
20	
21	Correspondence:
22	Satoshi Nakagawa
23	Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1
24	Minato-cho, Hakodate 041-8611, Japan.
25	Phone: +81-138-40-5570; Fax: +81-138-40-5570;
26	Email: nakagawa@fish.hokudai.ac.jp

27 Abstract

A novel heterotrophic, thermophilic bacterium, designated strain AC55^T, was isolated 28 29 from a deep-sea hydrothermal vent chimney at the Hatoma Knoll in the Okinawa Trough, Japan. Cells of strain $AC55^{T}$ were non-motile, long rods (2.0-6.8 µm long and 30 31 0.3-0.6 µm wide). The strain was an obligatory anaerobic heterotroph capable of 32 fermentative growth on complex proteinaceous substances. Elemental sulfur was reduced to hydrogen sulfide but did not stimulate growth. Growth was observed 33 between 37 and 60 °C (optimum 55 °C), pH 5.5 and 8.5 (optimum pH 6.6), and in the 34 presence of 1.5-4.5 % (w/v) NaCl (optimum 2.5 %, w/v). Menaquinone-7 and -8 were 35 the major respiratory quinones. The G + C content of the genomic DNA from strain 36 AC55^T was 51.6 mol%. The 16S rRNA gene sequence analysis revealed that strain 37 AC55^T was the first cultivated representative of *Acidobacteria* subdivision 10. Based on 38 the physiological and phylogenetic features of the novel isolate, the genus name 39 40 Thermotomaculum gen. nov. is proposed, with Thermotomaculum hydrothermale sp. nov. as the type species. The type strain is $AC55^{T}$ (= JCM 17643^{T} = DSM 24660^{T} = 41 NBRC 107904^T). 42

43

44 Keywords Acidobacteria • Deep-sea hydrothermal vent • Thermophile • Fermentation
45

45 Introduction

46	The phylum Acidobacteria comprises twenty-six distinct subdivisions (Barns et al.
47	2007). Only subdivisions 1, 3 and 8 have genera with validly published names.
48	Subdivision 1 includes the genera Acidobacterium (Kishimoto et al. 1991), Terriglobus
49	(Eichorst et al. 2007; Männistö et al. 2010), Edaphobacter (Koch et al. 2008),
50	Granulicella (Pankratov and Dedysh 2010), Acidicapsa (Kulichevskaya et al. 2011),
51	Telmatobacter (Pankratov et al. 2011), and Bryocella (Dedysh et al. 2011). The only
52	described genus in subdivision 3 is Bryobacter (Kulichevskaya et al. 2010), while
53	subdivision 8 includes the genera Holophaga (Liesack et al. 1994), Geothrix (Coates et
54	al. 1999), and Acanthopleuribacter (Fukunaga et al. 2008). All the above listed,
55	taxonomically characterized acidobacteria are mesophiles. Strain K22 isolated from a
56	New Zealand hot spring is a member of subdivision 4 and the only thermophilic
57	acidobacterium growing at temperatures up to 75 °C (Stott et al. 2008). In addition,
58	subdivision 4 includes an aerobic phototrophic thermophile, 'Candidatus
59	Chloracidobacterium thermophilum' (Bryant et al. 2007). Whole genome sequences are
60	currently available for <i>Acidobacterium capsulatum</i> DSM11244 ^T (accession no.
61	NC_012483), <i>Terriglobus saanensis</i> SP1PR4 ^T (accession no. NC_014963),
62	Granulicella tundricola MP5ACTX9 ^T (accession no. NC_015064), 'Koribacter

63	versatilis' strain Ellin345 (subdivision 1; NC_008009), 'Solibacter usitatus' strain
64	Ellin6076 (subdivision 3; NC_008536) (Ward et al. 2009) and 'Candidatus
65	Chloracidobacterium thermophilum' (Garcia Costas et al. 2011).
66	Members of the phylum Acidobacteria inhabit a wide variety of environments
67	(Pankratov and Dedysh 2010). They have been detected in soil (Ludwig et al. 1997; Sait
68	et al. 2002; Barns et al. 1999, 2007), hot springs (Barns et al. 1999; Hugenholtz et al.
69	1998; Bryant et al. 2007), acidic mining lakes (Kleinsteuber et al. 2007; Kampe et al.
70	2010), caves (Zimmermann et al. 2005; Meisinger et al. 2007), shallow submarine vents
71	(Sievert et al. 2000), and deep-sea hydrothermal fields (López-García et al. 2003;
72	Brazelton et al. 2006; Nunoura and Takai 2009; Nunoura et al. 2010). In this study, a
73	novel strain of thermophilic acidobacteria is described that was isolated from a deep-sea
74	hydrothermal field.
75	
76	Materials and methods
77	Sample collection A sample from a deep-sea hydrothermal vent chimney was
78	obtained from the Hatoma Knoll (24°51'N, 123°50'E) in the Southern Okinawa Trough
79	at a depth of 1470 m by means of a ROV Hyper Dolphin in July 2008. The chimney
80	portions were broken by a manipulator of the ROV at the 189-1 vent and directly

81	dropped into a sample box. Immediately after the recovery of chimney sample onboard,
82	a relatively large piece of structure was divided into exterior surface and vent orifice
83	portions, and suspended in sterilized seawater in the presence of 0.05 $\%~(w/v)$
84	neutralized sodium sulfide in a 100 ml glass bottle (Schott Glaswerke). The bottle was
85	tightly sealed with a butyl rubber stopper under a gas phase of 100 % N_2 (200 kPa).
86	Cultivation The suspended slurry was used to inoculate MMJSO medium
87	(Nunoura et al. 2007), which was further incubated at 55 °C. MMJSO medium
88	contained 0.02 % (w/v) yeast extract, 0.05 % (w/v) pyruvate, 0.05 % (w/v) lactate,
89	0.1 % (w/v) NaHCO ₃ , 0.05 % (w/v) ascorbic acid, and 1 mg resazurin per liter of MJ
90	synthetic seawater (Sako et al. 1996) under a gas mixture of H ₂ :CO ₂ (80:20) (200kPa).
91	MJ synthetic seawater is composed of (per liter) NaCl, 30 g; MgCl ₂ ·6H ₂ O, 4.18 g;
92	MgSO ₄ ·7H ₂ O, 3.4 g; KCl, 0.33 g; NH ₄ Cl, 0.25 g; K ₂ HPO ₄ , 0.14 g; CaCl ₂ ·2H ₂ O, 0.14 g;
93	and trace mineral solution, 10 ml. Trace mineral solution contains (per liter)
94	nitrilotriacetic acid, 1.5 g; MgSO ₄ ·7H ₂ O, 3.0 g; MnSO ₄ ·2H ₂ O, 0.5 g; NaCl, 1.0 g;
95	FeSO ₄ ·7H ₂ O, 0.1 g; CoSO ₄ ·7H ₂ O, 0.18 g; CaCl ₂ ·2H ₂ O, 0.1 g; ZnSO ₄ ·7H ₂ O, 0.18 g;
96	CuSO ₄ ·5H ₂ O, 0.01 g; KAl(SO ₄) ₂ ·12H ₂ O, 0.02 g; H ₃ BO ₃ , 0.01 g; Na ₂ MoO ₄ ·2H ₂ O, 0.01
97	g; NiCl ₂ ·6H ₂ O, 0.025 g; and Na ₂ SeO ₃ ·5H ₂ O, 0.3 mg.

98	The presence or absence of cell growth was determined by microscopic observation.
99	In order to obtain consistent growth, gas phase of the MMJSO medium was changed to
100	a gas mixture of N ₂ :CO ₂ (80:20) (200kPa). To obtain a pure culture, a
101	dilution-to-extinction method was employed at 55 °C and repeated at least five times
102	(Baross 1995). Purity was confirmed routinely by microscopic observation and by
103	repeated partial sequencing of the 16S rRNA gene using several PCR primers.
104	The isolate was routinely cultivated in MMJYP2 medium, which contains 0.4 $\%$
105	(w/v) yeast extract, 0.4 % (w/v) tryptone peptone, 0.1 % (w/v) NaHCO ₃ and 0.05 %
106	(w/v) Na_2S in modified MJ synthetic seawater (Nakagawa and Takai 2006). Modified
107	MJ synthetic seawater is composed (per liter) of NaCl, 25 g; MgCl ₂ ·6H ₂ O, 4.2 g;
108	MgSO ₄ ·7H ₂ O, 3.4 g; KCl, 0.5 g; NH ₄ Cl, 0.25 g; K ₂ HPO ₄ , 0.14 g; CaCl ₂ ·2H ₂ O, 0.7 g.
109	To prepare MMJYP2 medium, all components other than Na ₂ S and NaHCO ₃ were
110	dissolved. After autoclaving, a concentrated and filter-sterilized solution of NaHCO ₃ ,
111	and neutralized Na ₂ S solution (pH7.5) (sterilized by autoclaving) were added to the
112	medium under gas purging of 80 % N_2 and 20 % $CO_2.$ The tubes were then tightly
113	sealed with butyl rubber stoppers under a gas phase of 80 % N_2 + 20 % CO ₂ (350 kPa).
114	No growth was observed when both NaHCO ₃ and CO ₂ were eliminated from the
115	medium.

116	Light and electron microscopyCells were routinely observed by using a ZEISS
117	Axiophot microscope (Carl Zeiss). Transmission electron micrographs of negatively
118	strained and thin section cells grown in MMJYP2 medium at 55 °C in the
119	late-exponential phase were obtained as described by Zillig et al. (1990).
120	Measurement of growth Growth of novel isolate was determined by direct cell
121	counts, after staining with 6-diamidino-2-phenylindole (DAPI) (Porter and Feig 1980).
122	To determine temperature, pH and NaCl ranges for growth, duplicate cultures were
123	grown in 15 ml test tubes containing 3 ml medium in an incubator. Effects of pH and
124	NaCl concentration on the growth of isolate were determined at 55 °C. NaCl
125	requirements were determined with varying concentrations of NaCl in MMJYP2
126	medium from 0.5 to 5.5 % (w/v). When the pH optimum was examined, pH of the
127	medium was readjusted immediately before inoculation with H_2SO_4 or NaOH by using
128	a compact pH meter (Horiba AS-212) at 55 °C. The pH was found to be stable during
129	the cultivation period.
130	In an attempt to examine the ability of respiratory growth, possible electron
131	acceptors were added to MMJYP2 medium at final concentrations of 0.1 % (w/v,
132	Na ₂ S ₂ O ₃ ·5H ₂ O, NaNO ₃ , ferric citrate, and Na ₂ SO ₄), 0.1 % (v/v, O ₂), 0.01-0.1 % (w/v,
133	Na_2SO_3 and $NaNO_2$) or 1 % (w/v, S ⁰). O ₂ was provided by injecting a defined volume

134	of O_2 (0.1-10 %, v/v) into the culture tubes as previously described (Nakagawa et al.
135	2003). The production of hydrogen sulfide was detected by using lead acetate solution.
136	In an attempt to find organic substrates that could support the growth of isolate,
137	experiments were conducted in which the yeast extract and tryptone peptone in
138	MMJYP2 medium were replaced with other organic materials as potential substrates
139	under a gas phase of N_2 :CO ₂ (80:20, 350 kPa). Each of the following substrates was
140	added at concentrations of 0.01 % or 0.1 % (w/v): L-cystine, L-phenylalanine, L-proline,
141	Casamino acids, (+)-D-glucose, lactose, maltose, chitin, starch, cellulose, formate,
142	formaldehyde, acetate, citrate, pyruvate, propionate, methanol, tryptone peptone and
143	yeast extract (Difco). Products of fermentative growth were identified with F-kit (Roche
144	Applied Science, USA) and H ₂ detector tube (Gastec, Japan). Chemolithoautotrophic
145	growth was examined as described in Nakagawa et al. (2005).
146	Lipid components Respiratory lipoquinones and polar lipids were extracted from
147	freeze-dried cells following Minnikin et al. (1984). Cells grown in MMJYP2 medium at
148	55 °C in the late-exponential phase of growth were used. Respiratory lipoquinones were
149	dissolved in petroleum ether and applied to TLC plates (silica gel). After development
150	with hexane-benzene-chloroform (5:2:1, v/v) separated components were detected at
151	UV-254 nm. Standards of vitamin K_1 and ubiquinone-50 (coenzyme Q_{10}) were used to

152	locate bands corresponding to menaquinone and ubiquinone, respectively.
153	UV-absorbing bands were removed from the plates and further analyzed by using a
154	Shimadzu HPLC with a reverse phase Kinetex C18 column and methanol-isopropanol
155	(3:1, v/v) as the mobile phase at 1ml/min at 37 $^{\circ}$ C and were detected at 269 nm
156	(Tamaoka et al. 1983). Polar lipids were separated by two-dimensional silica gel TLC as
157	described in Pankratov et al. (2011). The plates were sprayed with molybdophosphoric
158	acid (total lipids), molybdenum blue (phospholipids), ninhydrin (free amino groups) and
159	α -naphthol reagents (glycolipids) and Dragendorff reagent (quaternary nitrogen). The
160	standards of phospholipids (Sigma, USA) were used for diagram disposition of
161	phospholipids during comparative analysis.
161 162	phospholipids during comparative analysis. For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped
162	For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped
162 163	For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped tube containing 1ml of anhydrous methanolic HCl and heated at 100 °C for 3 h. The
162 163 164	For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped tube containing 1ml of anhydrous methanolic HCl and heated at 100 °C for 3 h. The extraction and analysis of fatty acid methyl esters have been described previously
162 163 164 165	For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped tube containing 1ml of anhydrous methanolic HCl and heated at 100 °C for 3 h. The extraction and analysis of fatty acid methyl esters have been described previously (Komagata and Suzuki 1987). For comparative purposes, type strains of
162 163 164 165 166	For fatty acid analysis, lyophilized cells were placed in a Teflon-lined, screw-capped tube containing 1ml of anhydrous methanolic HCl and heated at 100 °C for 3 h. The extraction and analysis of fatty acid methyl esters have been described previously (Komagata and Suzuki 1987). For comparative purposes, type strains of <i>Acidobacterium capsulatum</i> (JCM7670), <i>Staphylococcus epidermidis</i> (JCM2414),

170

171

The G + C content was determined by direct analysis of deoxyribonucleosides by HPLC (Tamaoka and Komagata 1984).

172 16S rRNA gene analysis The 16S rRNA gene was amplified by PCR using 173 primers Eubac 27F and 1492R (Lane 1991). Sequence of the PCR product (1,412 bp) 174 was determined directly in both strands using the dideoxynucleotide chain termination 175 method. The rRNA gene sequence was applied to sequence similarity analysis with 176 databases by the BLAST search algorithm (Altschul et al. 1997). In order to determine 177 the phylogenetic position of the isolate, the sequence was aligned with a subset of 16S 178 rRNA gene sequences by ARB software (Ludwig et al. 2004). Resulting alignment was 179 verified against known secondary regions, and only unambiguously aligned nucleotide 180 positions (1126 bases) were used for phylogenetic analyses with PAUP* 4.0 beta 10 181 (Swofford 2000). Phylogenetic tree was inferred by using neighbor-joining analysis 182 (Saitou and Nei 1987) with the Jukes and Cantor correction (Jukes and Cantor 1969). 183 Bootstrap analysis was used for 100 or 1000 replications to provide confidence 184 estimates for the phylogenetic tree topologies. 185

186 **Results and discussion**

187	Enrichment and purification Microbial growth was only observed from the
188	exterior surface of chimney structure at 55 °C. The pure culture obtained was
189	designated strain AC55 ^T and investigated in detail. Cells of strain AC55 ^T are long
190	rod-shaped, observed singly, but can also occur as a group of 3-4 cells in a chain-like
191	structure (Fig. 1a) or as aggregates of up to 40-50 cells (Supplementary Fig. S1). No
192	flagellum was observed (Fig. 1a). Electron micrographs of thin sections showed that the
193	isolate had an envelope consisting of a cytoplasmic membrane and outer membrane (Fig.
194	1b). No sporulation was apparent under any laboratory conditions.
195	Growth characteristics The isolate grew over the temperature range of about
196	37-60 °C, showing optimum growth at 55 °C. The generation time and maximum cell
197	yield at 55 °C, 2.5 % (w/v) NaCl, pH 6.0, were about 3 h and approximately $4.0 \ge 10^7$
198	cells/ml, respectively. No growth was observed at 30 $^\circ$ C or 65 $^\circ$ C (Supplementary Fig.
199	S2a). The isolate grew in the concentration range of about 1.5 to 4.5 $\%$ (w/v) NaCl,
200	showing optimum growth at approximately 2.5 % (w/v) NaCl (Supplementary Fig. S2b).
201	The isolate grew over the pH range of about pH 5.5-8.5, showing optimum growth at
202	pH 6.6. No growth was detected at pH 5.0 or pH 8.5 (Supplementary Fig. S2c).
203	Nutrition The isolate was able to utilize 0.1 % (w/v) yeast extract and 0.1 % (w/v)
204	tryptone peptone as sole energy and carbon sources. Acetate was detected as the product

205	of fermentative growth. H ₂ formation was not detected (detection limit ≥ 0.5 %, v/v).
206	L-cystine, L-phenylalanine, L-proline, Casamino acids, (+)-D-glucose, lactose, maltose,
207	chitin, starch, cellulose, formate, formaldehyde, acetate, citrate, pyruvate, propionate,
208	methanol, 0.01 % (w/v) tryptone peptone and yeast extract did not support the growth.
209	The growth of strain AC55 ^T was inhibited by the addition of 0.1 % (w/v) Na ₂ SO ₃ ,
210	0.1 % (w/v) ferric citrate, and 0.01-0.1 % (w/v) NaNO ₂ . In other cases, possible electron
211	acceptors used in this study resulted in no significant differences in growth rate or in
212	maximal yield, although S^0 was reduced to hydrogen sulfide.
213	Lipid components Strain $AC55^{T}$ contained menaquinone-8 (MK-8; 85.6 %) and
214	-7 (MK-7; 14.4 %) as the predominant isoprenoid quinones. Members of the phylum
215	Acidobacteria subdivision 1 also contained MK-8 as the predominant isoprenoid
216	quinones but not MK-7 (Table 1). As shown by TLC, strain AC55 ^T possesses
217	phosphatidylethanolamine, unidentified aminophospholipids, and unidentified
218	phospholipids (Supplementary Fig. S3). The cellular fatty acids of strain AC55 ^T were
219	C _{17:0} (66.7 %), C _{15:0} (26.2 %), C _{14:0} -OH (4.6 %), and C _{16:0} (2.5 %). The dominance of
220	odd-chain fatty acids is a shared feature among acidobacteria.
221	DNA base composition The $G + C$ content of genomic DNA from strain $AC55^T$
222	was 51.6 mol% (Table 1).

223	Phylogenetic analysis The 16S rRNA gene sequence of strain AC55 ^T was applied
224	to sequence similarity analysis with databases by the BLAST search algorithm (Altschul
225	et al. 1997). Among the species with validly published names, Holophaga foetida
226	(85 %) and Geothrix fermentans (84 %) were the closest relatives of the isolate. The
227	phylogenetic tree indicated that strain AC55 ^T was the first cultivated member of
228	subdivision 10 within the phylum Acidobacteria (Fig. 2). This subdivision contained
229	environmental clone sequences retrieved from various deep-sea habitats, including
230	hydrothermal sediments (López-García et al. 2003) and basaltic lavas (Santelli et al.
231	2008) (Fig. 2).
232	Comparison with related genera A number of fermentative thermophiles and
233	hyperthermophiles, such as members of the Thermococcales and Thermotogales, have
234	been found in deep-sea hydrothermal environments (Takai et al. 2006; Nakagawa and
235	Takai 2008). Recently, additional lineages of deep-sea thermophilic fermenters have
236	been characterized (Reysenbach et al. 2006; Imachi et al. 2008), suggesting the diversity
237	of fermenters in deep-sea vents might still be underestimated. Although differences in
238	their growth strategies <i>in-situ</i> remain to be studied, strain $AC55^{T}$ is unique in that its
239	growth is not stimulated by elemental sulfur.

240	Strain AC55 ^T is the first isolate within the phylum <i>Acidobacteria</i> from deep-sea
241	hydrothermal environments. Although acidobacteria represent an ubiquitous microbial
242	group (Barns et al. 2007), they have been rarely found in deep-sea (López-García et al.
243	2003). All previously described members of the phylum Acidobacteria are mesophilic
244	heterotrophs mostly from terrestrial environments. Considering thermophilic
245	acidobacteria was also isolated from terrestrial hot spring (Stott et al. 2008), this group
246	of bacteria has important roles in elemental cycles not only in temperate but in hot
247	environments. On the basis of these results, a new genus, Thermotomaculum gen. nov.,
248	is proposed. The type species is Thermotomaculum hydrothermale gen. nov., sp. nov.,
249	of which the type strain is $AC55^{T}$ (= JCM 17643 ^T = DSM 24660 ^T = NBRC 107904 ^T).
250	Description of Thermotomaculum gen. nov. Thermotomaculum
251	(Ther.mo.to.ma'cu.lum. Gr. fem. n. thermê, heat; L. neut. n. tomaculum, a kind of
252	sausage; N.L. neut. n. Thermotomaculum, a sausage-shaped thermophile). Non-motile
253	rods that stain Gram-negative. Anaerobic. Thermophilic. Heterotrophic. Growth by
254	fermentation. Major cellular fatty acids are $C_{17:0}$ and $C_{15:0}$. Major quinones are
255	menaquinone-7 and -8. Major polar lipids are phosphatidylethanolamine, unidentified
256	aminophospholipids, and unidentified phospholipids. Members of the genus
	animophospholipids, and undentified phospholipids. Members of the genus

258 Thermotomaculum hydrothermale.

259	Description of <i>Thermotomaculum hydrothermale</i> sp. nov. <i>Thermotomaculum</i>
260	hydrothermale (hy.dro.ther.ma'le. N.L. neut. adj. hydrothermale, pertaining to a
261	hydrothermal vent). Cells are non-motile, with a mean length of 2.0-6.8 μ m and width
262	of approximately 0.3-0.6 μm . The temperature range for growth is 37-60 °C (optimum
263	55 °C). The pH range for growth is 5.5-8.5 (optimum 6.6). NaCl in the concentration
264	range for growth is 15-45 g/l (optimum 25 g/l). Fermentative growth occurs with yeast
265	extract, tryptone peptone as the sole carbon and energy source. The major cellular fatty
266	acids are $C_{17:0}$ and $C_{15:0}$. The G + C content of the genomic DNA is 51.6 mol%. Isolated
267	from a deep-sea hydrothermal vent in the Southern Okinawa Trough, Japan. The type
268	strain is $AC55^{T}$ (=JCM 17643 ^T =DSM 24660 ^T = NBRC 107904 ^T). The
269	DDBJ/EMBL/GenBank accession number for the 16S rRNA gene of strain $AC55^{T}$ is
270	AB612241.

- 271
- 272

273 Acknowledgements

We would like to thank the captain and the crew of R/V *Natsushima* and *Hyper Dolphin*for helping us to collect deep-sea hydrothermal vent samples. We are grateful to Dr.

Katsuyuki Uematsu for assistance with the preparation of electron micrographs. This
work was supported by the Institute for Fermentation, Osaka (IFO) and Japan Society
for the Promotion of Science (JSPS).

279 References

- 280 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment
- 281 search tool. J Mol Biol 215: 403-410
- 282 Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of
- the bacterial kingdom *Acidobacterium* in the environment. Appl Environ Microbiol
 65: 1731-1737
- 285 Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum
- sequences in uranium-contaminated subsurface sediments greatly expand the known
- diversity within the phylum. Appl Environ Microbiol 73: 3113-3116
- 288 Baross JA (1995) Isolation, growth and maintenance of hyperthermophiles. In: Robb,
- 289 FT, Place RA (eds) Archaea; a Laboratory Manual, Thermophiles. Cold Spring
- Harbor Laboratory, New York, pp. 15-23
- 291 Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and
- sulfur-metabolizing microbial communities dominate the lost city hydrothermal field
- 293 ecosystem. Appl Environ Microbiol 72: 6257-6270
- Bryant DA, Garcia Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon
- LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus
- 296 Chloracidobacterium thermophilum: an aerobic phototrophic *Acidobacterium*.
- 297 Science 317: 523-526
- 298 Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp.
- 299 nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer.
- 300 Int J Syst Evol Microbiol 49: 1615-1622
- 301 Dedysh SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina
- 302 NE, Rijpstra WI, Damsté JS (2011) Bryocella elongata gen. nov., sp. nov., a novel

- 303 member of subdivision 1 of the *Acidobacteria* isolated from a methanotrophic
- 304 enrichment culture, and emended description of *Edaphobacter aggregans* Koch et al.
- 305 2008. Int J Syst Evol Microbiol (in press) doi: 10.1099/ijs.0.031898-0
- 306 Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil
- 307 bacteria that define *Terriglobus* gen. nov., in the phylum Acidobacteria. Appl
- 308 Environ Microbiol 73: 2708-2717
- 309 Fukunaga Y, Kurahashi M, Yanagi K, Yokota A, Harayama S (2008)
- 310 Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a
- 311 chiton, and description of *Acanthopleuribacteraceae* fam. nov.,
- 312 *Acanthopleuribacterales* ord. nov., *Holophagaceae* fam. nov., *Holophagales* ord.
- 313 nov. and *Holophagae* classis nov. in the phylum 'Acidobacteria'. Int J Syst Evol
- 314 Microbiol 58: 2597-2601
- 315 Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011)
- 316 Complete genome of *Candidatus* Chloracidobacterium thermophilum, a
- 317 chlorophyll-based photoheterotroph belonging to the phylum *Acidobacteria*. Environ

318 Microbiol (in press) doi:10.1111/j.1462-2920.2011.02592.x

- 319 Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level
- 320 bacterial diversity in a Yellowstone hot spring. J Bacteriol 180: 366-376
- 321 Imachi H, Sakai S, Hirayama H, Nakagawa S, Nunoura T, Takai K, Horikoshi K (2008)
- 322 *Exilispira thermophila* gen. nov., sp. nov., an anaerobic, thermophilic spirochaete
- 323 isolated from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 58:
- 324 2258-2265
- Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed)
- 326 Mammalian protein metabolism. Academic Press, New York, pp. 21-132

327	Kampe H, Dziallas C, Grossart HP, Kamjunke N (2010) Similar bacterial community
328	composition in acidic mining lakes with different pH and lake chemistry. Microb
329	Ecol 60: 618-627
330	Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.:
331	an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic
332	mineral environment. Curr Microbiol 22: 1-7
333	Kleinsteuber S, Müller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2007)
334	Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic
335	mining lake. FEMS Microbial Ecol 63: 107-117
336	Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov.,
337	sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine
338	and forest soils. Int J Syst Evol Microbiol 58: 1114-1122
339	Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics.
340	Methods Microbiol 19: 161-207
341	Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN (2010) Bryobacter aggregatus
342	gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3
343	of the Acidobacteria. Int J Syst Evol Microbiol 60: 301-306
344	Kulichevskaya IS, Kostina LA, Valásková V, Rijpstra WI, Damsté JS, Boer W, Dedysh
345	SN (2011) Acidicapsa borealis gen. nov., sp. nov. and A. ligni sp. nov., two novel
346	subdivision 1 Acidobacteria from sphagnum peat and decaying wood. Int J Syst Evol
347	Microbiol (in press) doi: 10.1099/ijs.0.034819-0
348	Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds)

- 349 Nucleic Acid Techniques in Bacterial Systematics. Chichester, Wiley, pp.115–175
- 350 Liesack W, Bak F, Kreft J, Stackebrandt E (1994) Holophaga foetida gen. nov., sp. nov.,

351	a new, homoacetogenic bacterium degrading methoxylated aromatic compounds.
352	Arch Microbiol 162: 85-90
353	López-García P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial

- diversity in hydrothermal sediment and epsilonproteobacterial dominance in
- 355 experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:
- 356 961-976
- 357 Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S,
- 358 Hartmann A, Schleifer KH (1997) Detection and in situ identification of
- 359 representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett
- 360 153: 181-190
- 361 Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T,
- 362 Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S,
- 363 Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B,
- 364 Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A,
- 365 Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids
- 366 Res: 32, 1363-1371
- 367 Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2010) Terriglobus saanensis
- 368 sp. nov., a novel Acidobacterium isolated from tundra soil of Northern Finland. Int J
- 369 Syst Evol Microbiol (in press) doi: 10.1099/ijs.0.026005-0
- 370 Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M,
- 371 Bennett PC, Engel AS, Lee NM (2007) *In situ* detection of novel *Acidobacteria* in
- 372 microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane
- 373 Cave, WY, USA). Environ Microbiol 9: 1523-1534
- 374 Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett,

- 375 JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones
- and polar lipids. J Microbiol Methods 2: 233-241
- 377 Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp.
- 378 nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea
- 379 hydrothermal vent chimney. Int J Syst Evol Microbiol 53: 863-869
- 380 Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005) Nitratiruptor tergarcus
- 381 gen. nov., sp. nov. and *Nitratifractor salsuginis* gen. nov., sp. nov., nitrate-reducing
- 382 chemolithoautotrophs of the ε -*Proteobacteria* isolated from a deep-sea hydrothermal
- 383 system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55: 925-933
- 384 Nakagawa S, Takai K (2006) Methods for the isolation of thermophiles from deep-sea
- 385 hydrothermal environments. Method Microbiol 35: 55-91
- 386 Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry

387 and ecological significance. FEMS Microbiol Ecol 65: 1-14

- 388 Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007)
- 389 *Desulfothermus okinawensis* sp. nov., a thermophilic and heterotrophic
- 390 sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst
- 391 Evol Microbiol 57: 2360-2364
- 392 Nunoura T, Takai K (2009) Comparison of microbial communities associated with
- 393 phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV
- 394 hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 67:
- 395 351-370
- 396 Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T, Kazama H,
- 397 Hosoi-Tanabe S, Nakamura K, Kinoshita M, Hirayama H, Inagaki F, Tsunogai U,
- 398 Ishibashi J, Takai K (2010) Archaeal diversity and distribution along thermal and

399	geochemical	gradients in h	vdrothermal	sediments at the	Yonaguni Knoll IV
0 / /		D			

- 400 hydrothermal field in the Southern Okinawa Trough. Appl Environ Microbiol 76:
- 401 1198–1211
- 402 Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov.,
- 403 *Granulicella pectinivorans* sp. nov., *Granulicella aggregans* sp. nov. and
- 404 *Granulicella rosea* sp. nov., acidophilic, polymer-degrading acidobacteria from
- 405 Sphagnum peat bogs. Int J Syst Evol Microbiol 60: 2951-2959
- 406 Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh N (2011)
- 407 *Telmatobacter bradus* gen. nov., sp. nov., a cellulolytic facultative anaerobe from
- 408 subdivision 1 of the *Acidobacteria* and emended description of *Acidobacterium*
- 409 *capsulatum* Kishimoto *et al.* 1991. Int J Syst Evol Microbiol (in press)
- 410 doi:10.1099/ijs.0.029629-0
- 411 Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic
- 412 microflora. Limnol Oceanogr 25: 943-948
- 413 Reysenbach A-L, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK,
- 414 Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from
- 415 deep-sea hydrothermal vents. Nature 442: 444-447
- 416 Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil
- 417 bacteria from phylogenetic lineages previously only detected in
- 418 cultivation-independent surveys. Environ Microbiol 4: 654-666
- 419 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing
- 420 phylogenetic trees. Mol Biol Evol 4: 406-425
- 421 Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996) Rhodothermus obamensis sp.
- 422 nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst

- 423 Bacteriol 46: 1099-1104
- 424 Sambrook J, Fritch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual,
- 425 2nd edn. Cold Spring Harbor Laboratory, New York
- 426 Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H,
- 427 Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature
 428 453: 653-656
- 429 Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S ribosomal DNA-defined
- 430 bacterial populations at a shallow submarine hydrothermal vent near Milos Island
- 431 (Greece). Appl Environ Microbiol 66: 3102-3109
- 432 Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF
- 433 (2008) Isolation of novel bacteria, including a candidate division, from geothermal
- 434 soils in New Zealand. Environ Microbiol 10: 2030-2041
- 435 Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (and other
- 436 methods), version 4. Sinauer Associates. Sunderland, Mass.
- 437 Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of mid-ocean
- 438 ridges and back-arc basins. In Back-Arc Spreading Systems: Geological, Biological,
- 439 Chemical, Geophysical Interactions. In: Christie DM, Fisher CR, Sang-Mook L,
- 440 Givens S (eds) Geophysical Monograph Series 166, American Geophysical Union,
- 441 Washington, DC, pp. 185–213
- 442 Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial
- 443 menaquinone mixtures by high performance lipid chromatography. J Appl Bacteriol
- 444 54: 31-36
- 445 Tamaoka J, Komagata K (1984) Determination of DNA base composition by
- 446 reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:

447 125-128

- 448 Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft
- 449 DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D,
- 450 Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson R J, Durkin
- 451 AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP,
- 452 Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ,
- 453 Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang
- 454 Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum
- 455 *Acidobacteria* provide insight into the lifestyles of these microorganisms in soils.
- 456 Appl Environ Microbiol 75: 2046-2056
- 457 Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH,
- 458 Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic
- 459 sulfur-reducing archaebacterium that ferments peptide. J Bacteriol 172: 3959-3965
- 460 Zimmermann J, Gonzalez JM, Saiz-Jimenez C (2005) Detection and phylogenetic
- 461 relationships of highly diverse uncultured acidobacterial communities in Altamira
- 462 cave using 23S rRNA sequence analyses. Geomicrobiol J 22: 379-388

464 **Table 1.** Comparison of major characteristics of strain AC55^T with those of other members of the phylum *Acidobacteria*.

465 Strains: 1, *Thermotomaculum hydrothermale* AC55^T; 2, *Acidobacterium capsulatum* 161^T (Kishimoto et al. 1991); 3, *Edaphobacter* spp.

466 (Koch et al. 2008); 4, Acidicapsa spp. (Kulichevskaya et al. 2011); 5, Granulicella spp. (Pankratov and Dedysh 2010); 6, Terriglobus

467 spp. (Eichorst et al. 2007; Männistö et al. 2010); 7, Bryocella elongata SN10^T (Dedysh et al. 2011); 8, Telmatobacter bradus TPB6017^T

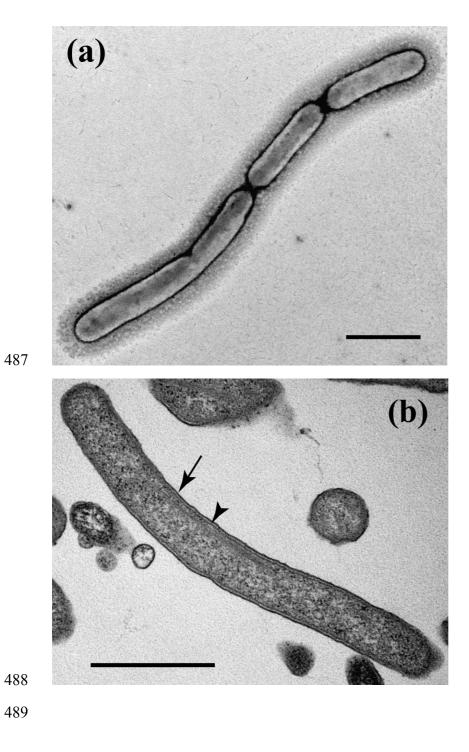
468 (Pankratov et al. 2011); 9, Bryobacter aggregatus MPL3^T (Kulichevskaya et al. 2010); 10, Acanthopleuribacter pedis FYK2218^T

469 (Fukunaga et al. 2008); 11, Geothrix fermentans H-5^T (Coates et al. 1999); 12, Holophaga foetida TMBS4^T (Liesack et al. 1994).

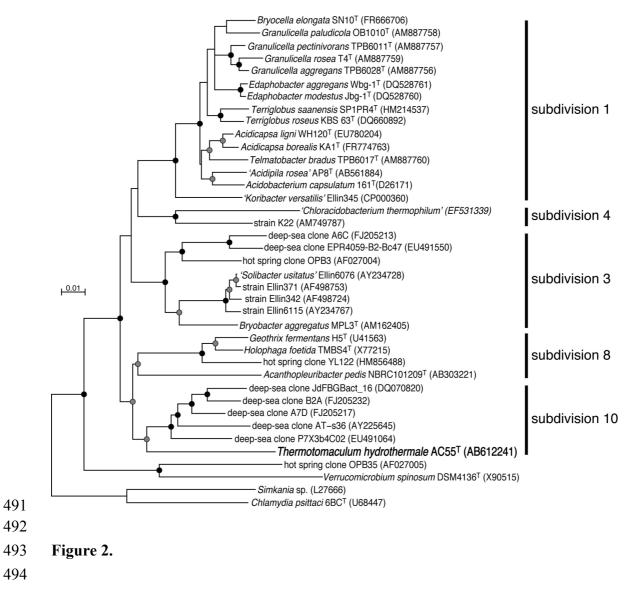
Characteristic	1	2	3	4	5	6	7	8	9	10	11	12
Subdivision	10	1	1	1	1	1	1	1	3	8	8	8
Source of isolation	Deep-sea hydrothermal vent	Acid mine drainage	Alpine and forest soil	Peat and wood	Peat and <i>Cladonia</i>	Soil and termite hindgut	Peat	Peat	Peat	Chiton	Petroleum contaminated aquifer	Freshwater mud
Motility	-	+	+/-	-	-	-	-	+	-	+	-	ND
Aerobic or anaerobic	Anaerobic	Aerobic	Aerobic	Aerobic	Aerobic	Aerobic	Aerobic	Anaerobic	Aerobic	Aerobic	Anaerobic	Anaerobic
Temp. range (°C)	37-60	20-37	15-37	10-33	2-33	4-30	6-32	4-35	4-33	15-30	ND	10-35
Temp. optimum (°C)	55	30	30	22-28	18-22	25	20-24	20-28	22-28	30	35	28-32
pH range	5.5-8.0	3.0-6.0	4.0-7.0	3.5-7.3	3.0-7.5	5.0-7.0	3.2-6.6	3.0-7.5	4.5-7.2	4-9	ND	5.5-8.0
pH optimum	6.6	ND	5.5	4.0-5.5	3.8-4.5	6.0	4.7-5.2	4.5-5.0	5.5-6.5	7-8	ND	6.8-7.5
NaCl range (%)	1.5-4.5	ND	ND	< 2.0	≤ 3.5	ND	< 3.0	< 0.1	≤1.5	ND*	ND	ND
NaCl optimum (%)	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND*	ND	ND
Major quinone	MK-7, MK-8	MK-8	ND	MK-8	MK-8	ND	MK-8	MK-8	MK-9, MK-10	MK-6, MK-7	ND	ND
GC content (mol%)	51.6	59.7-60. 8	55.8-56.9	51.7-54.1	57.3-59.3	58.1-59.8	60.7	57.6	55.5-56.5	56.7	ND	62.5

470 ND, not determined

471 *Growth was observed on R2A agar containing 50-150 % artificial seawater (optimum 70-120 % ASW).


472 FIGURE LEGENDS

473


474 Fig. 1. Electron micrograph of a negatively stained cell (a) and thin section (b) of strain
475 AC55^T. Arrowhead, cytoplasmic membrane; arrow, outer membrane. Bars, 2.0 μm (a)
476 and 1.0 μm (b).

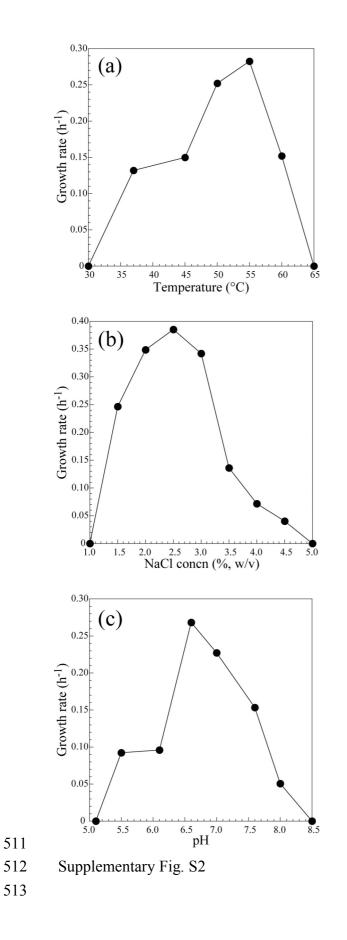
477

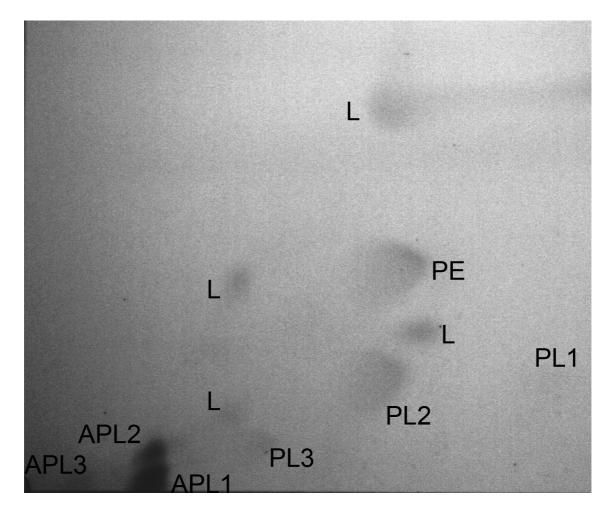
478	Fig. 2. Neighbor-joining phylogenetic tree based on 990 aligned positions of the 16S
479	rRNA gene sequence. Bootstrap analyses (100 replications for the maximum-likelihood
480	and 1000 replications for the neighbour-joining) were used to obtain confidence
481	estimates for the tree topology. Branch points conserved with bootstrap values of >
482	75 % (solid circles) and with bootstrap values of $>$ 50 % (gray circles) with the both
483	neighbour-joining and maximum-likelihood methods are indicated. The accession
484	numbers for sequences are given in parentheses. The scale bar represents the expected
485	number of changes per nucleotide position.
486	

Figure 1.

495	Legend	for	supp	lement	tary	figures.

Supplementary Fig. S1. DAPI-stained cells of strain AC55^T in the early stationary


497 growth phase.


499	Supplementary Fig. S2. Effects of temperature (a), NaCl concentration (b) and pH (c)
500	on the growth of strain AC55 ^T . Growth curve at different temperatures was determined
501	in MMJYP2 medium at pH 6.0. Growth curve at different NaCl concentrations was
502	detremined in the same medium at 55 °C. Growth curve at different pH was determined
503	in the same medium at 55 °C and 2.5 % (w/v) NaCl concentration.
504	
505	Supplementary Fig. S3. Polar lipid pattern of strain AC55 ^T . PE,
506	phosphatidylethanolamine; PL, unidentified phospholipid; APL, unidentified
507	aminophospholipid; L, unidentified lipid.

509

510 Supplementary Fig. S1

513

514

515 Supplementary Fig. S3