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On the clustering aspect of various

nonnegative matrix factorization objectives

Andri Mirzal and Masashi Furukawa

Graduate School of Information Science and Technology,

Hokkaido University, Kita 14 Nishi 9, Kita-Ku,

Sapporo 060-0814, Japan

Abstract: The clustering aspect of various nonneg-
ative matrix factorization (NMF) objectives which
include standard NMF, orthogonal NMF, sparse
NMF, Semi-NMF, and Convex NMF have been
reported in many papers. However, there is still
no comprehensive study that provides a theoretical
explanation on this aspect yet. In this work, we
provide such explanation by showing that at the
respective stationary points in nonnegative orthant of
the feasible regions, which are the solutions pursued
by NMF algorithms, the NMF objectives are equiva-
lent to the graph clustering objective, therefore the
clustering aspect of NMF has a solid justification.

Keywords: bound-constrained optimization, clus-
tering method, nonnegative matrix factorization,
Karush-Kuhn-Tucker conditions.

1 Introduction

NMF is a matrix approximation technique that factor-
izes a nonnegative matrix into a pair of other nonneg-
ative matrices of much lower rank:

A ≈ BC, (1)

whereA ∈ R
M×N
+ = [a1, . . . ,aN ] denotes the data ma-

trix, B ∈ R
M×K
+ = [b1, . . . ,bK ] denotes the basis ma-

trix, C ∈ R
K×N
+ = [c1, . . . , cN ] denotes the coefficient

matrix, and K denotes the number of factors which
usually is chosen so that K ≪ min(M,N). Note that
the definitions of A, B, and C above are chosen to
simplify the interpretations of NMF.
To compute B and C, usually eq. 1 is rewritten into

a minimization problem in Frobenius norm criterion.

min
B,C

J (B,C) =
1

2
‖A−BC‖2F s.t. B ≥ 0,C ≥ 0. (2)

In addition to the usual Frobenius norm, the family
of Bregman divergences—which Frobenius norm and
Kullback-Leibler divergence are part of it—can also
be used as the affinity measures. Detailed discussion
on the Bregman divergences for NMF can be found in
[1].

1.1 Local and holistic interpretations

There are other methods to decompose a nonnegative
rectangular matrix, e.g., singular value decomposition
(SVD) and QR decomposition. But, NMF is partic-
ularly interesting because it allows each data vector
to be represented as a linear combination of the basis
vectors:

an ≈ c1nb1 + · · ·+ cKnbK , ∀n, (3)

where ckn is the k-th entry of cn. As shown in eq. 3,
the basis vectors can be thought as either basic build-
ing components (every data vector constructed from
bk, ∀k) or shared features (all data vectors constructed
from the same set B ∈ {b1, . . . ,bK}) of the data. The
basic building components viewpoint leads to the part-
based interpretation which is a popular NMF property
due to the work of Lee and Seung [2] and then verified
by others, e.g., [3, 4, 5, 6, 7, 8]. The shared features
viewpoint leads to the holistic representation of the
data which first studied by Li et al. [3] and then veri-
fied by Hoyer [4].

As reported in [3, 4], NMF can only produce either
local representation (part-based) or holistic represen-
tation. In short, if the data is well-aligned then NMF
will produce sparse basis matrix which associated with
the part-based interpretation, and if the data is not
well-aligned then NMF will produce dense basis ma-
trix which associated with the holistic representation.
The mechanisms for adjusting the sparseness of the ba-
sis matrix are then introduced to ensure NMF be able
to give the part-based interpretation [3, 4, 8] which
is an important application in image processing. And
a theoretical work that gives necessary conditions for
NMF to be able to correctly identify the parts of ob-
jects is provided by Donoho and Stodden [9].

1.2 Clustering interpretation

In addition to the part-based interpretation, Lee and
Seung [2] also show that NMF has clustering interpre-
tation by utilizing it to extract topics from a document
corpus. The clustering aspect of NMF then is investi-
gated further by Xu et al. [10] followed by others, e.g.,
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[11, 12, 13, 14, 15, 16]. This aspect is intuitive since
objective in eq. 2 can be rewritten into:

min
bk,cn

N∑

n=1

K∑

k=1

ckn‖an − bk‖
2, (4)

which is the objective of K-means clustering with the
coefficient ckn denotes the degree of membership of the
data vector an to the cluster centroid bk.

1.3 Research background

The part-based, holistic, and clustering interpretations
are the direct results of NMF formulation which are
not found in other matrix decomposition techniques
(at least not directly). Different from the part-based
interpretation in which NMF can fail to give meaning-
ful results [3, 4, 17], the clustering aspect seems to be
the most stable and powerful property as so far appar-
ently there is no work that disputes it and there are
numerous works that show NMF and its variants are
superior methods compared to, e.g., spectral cluster-
ing [10] and K-means clustering [12, 13, 14, 15].
However, a comprehensive theoretical work for sup-

porting the clustering aspect of NMF seems to be
overlooked. Perhaps because unlike the part-based in-
terpretation where a counterexample is immediately
presented [3] (so that motivating researchers to build
both theoretical conditions [9] and practical frame-
works [3, 4] for NMF to be able to give such inter-
pretation), no counterexample has been presented to
disprove the clustering aspect of NMF yet. So far the
best approaches to explain this aspect are by

1. showing the equivalence of standard NMF objec-
tive in eq. 2 to K-means clustering objective in
eq. 4 [12, 13, 14, 15, 16], and

2. applying zero gradient conditions to some NMF
objectives [13, 14, 15, 16] to show their equiva-
lences to graph clustering objective, i.e., ratio as-

sociation.

The problem with the first approach is there is no
obvious way to incorporate the nonnegativity con-
straints (and other auxiliary constraints, e.g., orthog-
onality, sparsity, and convexity constraints) into the
K-means objective. And the problem with the second
approach is it discards the nonnegativity constraints,
thus is equivalent to finding stationary points on the
respective unbounded feasible regions. Thus, NMF
which is a bound-constrained optimization turns into
an unbounded optimization, and consequently there is
no guarantee the stationary points that being utilized
to prove the equivalences are located in the nonnega-
tive orthant.
In this work, we attempt to provide a theoretical

support for the clustering aspect of NMF—specifically

for NMF objectives that are reported to have clus-
tering capabilities which include standard NMF, or-
thogonal NMF, sparse NMF, Semi-NMF, and Convex
NMF—by analyzing the objectives at the respective
stationary points. The stationary points are impor-
tant in proving the clustering aspect of NMF objec-
tives because

1. local and global optima which are the solutions
pursued by NMF algorithms must be stationary
points,

2. NMF algorithms can only guarantee the station-
ary of the solutions, and

3. the strict Karush-Kuhn-Tucker (KKT) optimality
conditions can be utilized to derive the objectives
at the respective stationary points.

We will show that at the stationary points, those
NMF objectives are equivalent to the relaxed ratio as-

sociation objective (see [18] for details about various
graph clustering objectives), therefore the clustering
aspect of NMF has a solid justification. Note that
in deriving the equivalences, unlike previous works
[13, 14, 15, 16], we will not set the Lagrange multipli-
ers to zeros. Thus, the stationary points under inves-
tigation are guaranteed to be located in nonnegative
orthant of the corresponding feasible regions.

2 Limit points of the sequences gener-

ated by NMF algorithms

All NMF algorithms are formulated in alternating
fashion, fixing one matrix while solving the other (the
popular Lee and Seung multiplicative update algo-
rithms [19] and their derivatives [3, 4, 10, 14, 15, 20]
also use alternating strategy, but cannot be repre-
sented by generic algorithm below). This strategy is
employed because NMF is nonconvex with respect to
B and C, but is convex with respect to B or C [21].
Thus, the alternating strategy transforms NMF prob-
lem into a convex optimization. The modification of
a nonconvex problem into corresponding convex prob-
lem is a common practice in optimization researches
because (1) convex optimization is more tractable, (2)
usually convex methods are more efficient, (3) any lo-
cal optimum is necessarily a global optimum, and (4)
the algorithms are easy to initialize [22].

The following generic algorithm describes the alter-
nating fashion for solving NMF which will generate a
solution sequence {B(l),C(l)}Ll=0:

B(l+1) = arg
B≥0

min
1

2
‖A−BC(l)‖2F (5)

C(l+1) = arg
C≥0

min
1

2
‖A−B(l+1)C‖2F , (6)
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where in eq. 5, C is kept constant while solving for
B, and in eq. 6, B is kept constant while solving
for C. This generic algorithm is known as alter-
nating nonnegativity-constrained least square (ANLS)
algorithm, and usually are solved by decomposing
each subproblem into nonnegativity-constrained least
square (NNLS) problems where there are many al-
gorithms that guarantee the global-optimality of the
NNLS problem.

b̂T (l+1)
m = arg

b̂T
m
≥0

min
1

2
‖âTm −CT (l)b̂T

m‖
2
F , ∀m (7)

c(l+1)
n = arg

cn≥0

min
1

2
‖an −B(l+1)cn‖

2
F , ∀n, (8)

where x̂i is the i-th row of matrix X.
According to Grippo and Sciandrone [23] any limit

point of the sequence {B(l),C(l)}Ll=0 generated by
ANLS algorithms that optimally solve the convex
subproblem eq. 5 and eq. 6 is a stationary point.
And such ANLS based NMF algorithms exist, e.g.,
[6, 7, 20, 21, 24, 25], therefore there is guarantee that
we can reach the stationary points on the feasible re-
gion for NMF problem in eq. 2. And as NNLS is the
building block for ANLS, any NNLS algorithm that
guarantees to find optimal solutions of eq. 7 and eq. 8,
e.g., [26, 27, 28] can also be employed to search the
stationary points for NMF problem in eq. 2.
And as will be shown in section 4, NMF objectives

implicitly put upper bounds on the feasible regions
(the lower bounds are explicit: the nonnegativity con-
straints), thus NMF is a bound-constrained optimiza-
tion problem, consequently {B(l),C(l)}Ll=0 has at least
one limit point [21]. This completes the conditions for
any NMF algorithm that optimally solves subproblem
eq. 5 and eq. 6 to be able to find a stationary point in
the nonnegative orthant of the feasible region which is
the necessary condition for our proofs on the clustering
aspect of NMF.

3 Some issues in solving NMF objec-

tives using NMF algorithms

The discussion on stationary of the limit points in sec-
tion 2 is only for the standard NMF objective in eq. 2.
Because we aim to explain the clustering aspect of the
standard NMF, sparse NMF, orthogonal NMF, Semi-
NMF, and Convex NMF, there is a need to verify that
for each NMF objective at least one algorithm exists
to guarantee the stationary of the limit points.
For the standard NMF, as stated previously, there

are many algorithms that guarantee the convergence,
e.g., [6, 7, 20, 21, 24, 25]. For sparse NMF, there
also exists such algorithms, e.g., [24, 25] (there also
exists sparse NMF algorithms that do not guarantee
the convergence, e.g., sparse NMF by Hoyer [4], lo-
cal NMF [3], ALS [5], CNMF [8], GD-CLS [11], and

ACLS/AHCLS [29]).

But unfortunately, so far there is no algorithm for
orthogonal NMF, Semi-NMF, and Convex NMF that
guarantee to reach the stationary points. The reason
is because algorithms for these objectives are all based
on multiplicative update rules which as shown numer-
ically by Gonzales and Zhang [30], proved by Lin [20],
and explained qualitatively by Berry et al. [5], multi-
plicative update based algorithms can only guarantee
the stationary of limit points in the interior of the cor-
responding feasible regions, and when the limit points
lie on the boundary of the feasible regions, their sta-
tionary can not be determined.

Thus, in appendix we propose algorithms for uni-
orthogonal NMF, bi-orthogonal NMF, Semi-NMF, and
Convex NMF which based on additive update rules
that has been proven by Lin [20] to have convergence
property. Note that these additive update based al-
gorithms have more works per iteration than their
multiplicative counterparts which are known to have
slow convergence. Hence, whenever possible, the same
framework as shown in [24, 25] should be used to re-
cast the auxiliary constraints into the ANLS frame-
work for allowing more efficient (and converged) NMF
algorithms be employed.

4 Clustering aspect of NMF

In this section a theoretical support for various NMF
objectives that are reported to have clustering aspect
is provided. We utilize the strict KKT optimality
conditions to investigate the objectives at the corre-
sponding stationary points in nonnegative orthant of
the feasible regions. Unlike previous approaches where
Lagrange multipliers are set to nulls [13, 14, 15, 16], we
make no assumption about Lagrange multipliers, thus
the stationary points are guaranteed to be in nonneg-
ative orthant where the solutions of NMF problems
should be located.

Further we also show that the upper bounds, which
is a necessary condition for guaranteeing the existence
of limit point of sequence {B(l),C(l)}Ll=0, is implicitly
imposed by each NMF objective.

And for interpretability reason, A is considered as
feature-by-item data matrix for the rest of this paper,
where feature and item correspond to row and column
respectively.

4.1 Standard NMF

In this subsection we prove that applying the standard
NMF to A leads to the clustering of similar items and
related features as reported in, e.g., [2, 7, 10, 12, 13,
14, 29, 31].
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Theorem 1. Minimizing the following objective

min
B,C

Ja(B,C) =
1

2
‖A−BC‖2F (9)

s.t. B ≥ 0,C ≥ 0,

leads to the feature clustering indicator matrix B and

the item clustering indicator matrix C.

Proof.

‖A−BC‖2F = tr (ATA− 2CATB+BTBCCT ).

Thus, minimizing Ja is equivalent to simultaneously
optimizing:

max
B,C

tr (CATB) (10)

min
B,C

tr (BTBCCT ). (11)

Note that because tr (XY) ≤ tr (X)tr (Y), minimiz-
ing Eq. 11 is equivalent to:

min
B

tr (BTB) and (12)

min
C

tr (CCT ). (13)

The Lagrangian of objective in eq. 9 is:

La(B,C) = Ja(B,C)− tr (ΓBB
T )− tr (ΓCC), (14)

where ΓB ∈ R
M×K
+ and ΓC ∈ R

N×K
+ are the Lagrange

multipliers. By applying the KKT conditions to La we
get:

∇BLa = BCCT −ACT − ΓB = 0 (15)

∇CLa = BTBC−BTA− ΓT
C = 0, (16)

with complementary slackness:

ΓB ⊗B = 0, and ΓT
C ⊗C = 0,

where ⊗ denotes component-wise multiplications.
Eq. 15 and eq. 16 lead to:

B = (ACT + ΓB)(CCT )
−1

(17)

C = (BTB)
−1

(BTA+ ΓT
C). (18)

Substituting eq. 18 to eq. 10 leads to:

max
B

tr
(
(BTB)

−1

(BTAATB+ ΓT
CA

TB)
)
, (19)

which is equivalent to simultaneously optimizing:

max
B

tr (BTAATB) (20)

max
B

tr (ΓT
CA

TB) (21)

min
B

tr (BTB). (22)

Similarly, substituting eq. 17 to eq. 10 leads to:

max
C

tr
(
(CATACT +CATΓB)(CCT )

−1)
, (23)

which is equivalent to simultaneously optimizing:

max
C

tr (CATACT ) (24)

max
C

tr (CATΓB) (25)

min
C

tr (CCT ). (26)

As shown, eq. 22 and eq. 26 recover eq. 12 and eq. 13
respectively, so there is no need to substituting eq. 17
and eq. 18 into eq. 11.

Now we concentrate on the basis matrix B first.
Eq. 20 – 22 give the conditions that must be satisfied
by B at the stationary point. Note that if we consider
A to be affinity matrix induced from bipartite graph
G(A) (which is a reasonable thought since any feature-
by-item matrix can be modeled by a bipartite graph),
then G(AAT ) is the feature graph where edge weights
describe the similarity between corresponding vertex
pairs. So, eq. 20 looks like ratio association objective
applied to G(AAT ). But without orthogonality con-
straint BTB = I (part of ratio association objective),
one can optimize eq. 20 by setting B to be an infinity
matrix. However, this violates eq. 22 which favours
small B. Similarly, one can optimize eq. 22 by setting
B to be a zero matrix. But again, this violates eq. 20.
Thus, eq. 20 and eq. 22 create implicit lower and upper
bound constraints on B: 0 ≤ B ≤ ΥB.

For convenience, objective in eq. 22 can be restated
as:

min
B

tr (BTB) ≡ min
B

tr (BTBBTB). (27)

By using the fact tr (XTX) = ‖X‖2F , eq. 27 can be
rewritten into:

min
B

(∥
∥BTB

∥
∥
2

F
=

∑

i

(
bT
i bi

)2
+
∑

i6=j

(
bT
i bj

)2
)

, (28)

Therefore, the objectives in eq. 20 – 22 can be restated
into:

max
B

tr (BTAATB) (29)

max
B

tr (ΓT
CA

TB) (30)

min
b

(∑

i

(
bT
i bi

)2

︸ ︷︷ ︸

jb1

+
∑

i6=j

(
bT
i bj

)2

︸ ︷︷ ︸

jb2

)

(31)

s.t. 0 ≤ B ≤ ΥB.

Now the feasible region is bounded, thus guaranteeing
the existence of at least one limit point of the sequence.

However, even though the objectives are now trans-
formed into bound constrained optimization prob-
lem, since there is no column-orthogonality constraint,
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maximizing eq. 29 can be easily done by setting each
entry of B to the corresponding largest possible value
(in graph term this means to only create one parti-
tion on G(AAT )). But this scenario results in a large
value of eq. 31, which violates the objective. Similarly,
minimizing eq. 31 to the smallest possible value vio-
lates eq. 29. Since minimizing jb1 implies minimizing
jb2, but not vice versa, simultaneous optimizing eq. 29
and eq. 31 can be done by setting jb2 as small as pos-
sible and balancing jb1 with eq. 29. This scenario is
the relaxed ratio association applied to G(AAT ), and
as long as vertices of G(AAT ) are clustered, this leads
to the feature clustering indicator matrix B.

The remaining problem is objective in eq. 30. Since
we know nothing about ΓC, the best bet will be mak-
ing ATB as dense as possible. This can be done by
setting B to largest possible values, but this scenario
violates objective in eq. 31. So, the most reasonable
scenario will be making ATB denser at the entries
near diagonal region to guarantee the objective near
optimal. This can be achieved by using B from previ-
ous discussion. As B is the feature clustering indicator
matrix, multiplying AT with B will result in a matrix
that has denser entries near diagonal region, therefore
it can be expected that eq. 30 will have good optimal-
ity. Thus simultaneously optimizing eq. 29 – 31 leads
to the feature clustering indicator matrix B.

By applying the similar approach to the coefficient
matrix C, optimizing eq. 24 – 26 is equivalent to op-
timizing:

max
C

tr (CATACT ) (32)

max
C

tr (CATΓB) (33)

min
ĉ

(∑

i

(
ĉiĉ

T
i

)2
+
∑

i6=j

(
ĉiĉ

T
j

)2
)

(34)

s.t. 0 ≤ C ≤ ΥC,

where ĉi denotes i-th row of C. And by following the
previous discussion, it can be shown that simultane-
ously optimizing eq. 32 – 34 leads to the item clustering
indicator matrix C.

4.2 Uni-orthogonal NMF

Uni-orthogonal NMF objective is introduced by Ding
et al. [15] for improving clustering capabilities by im-
posing auxiliary orthogonality constraint either on the
basis matrix (BTB = I) or the coefficient matrix
(CCT = I). The clustering aspect of this objective
is reported in [13, 15, 32]. Because (A − BC)T =
AT − CTBT , it is sufficient to discuss the orthogo-
nality constraint either on B or C. Here we choose
CCT = I as the auxiliary constraint.

Theorem 2. Minimizing the following objective

min
B,C

Jb(B,C) =
1

2
‖A−BC‖2F (35)

s.t. B ≥ 0,C ≥ 0,CCT = I

leads to the feature clustering indicator matrix B and

the item clustering indicator matrix C.

Proof.

‖A−BC‖2F = tr (ATA− 2CATB+BTB).

Thus, minimizing Jb is equivalent to simultaneously
optimizing:

max
B,C

tr (CATB) (36)

min
B

tr (BTB). (37)

The Lagrangian function:

Lb (B,C) = Jb (B,C)− tr
(
ΓBB

T
)
− tr (ΓCC)+

tr
(
ΛC

(
CCT − I

))
, (38)

where ΓB ∈ R
M×K
+ , ΓC ∈ R

N×K
+ , ΛB ∈ R

K×K
+ , and

ΛC ∈ R
K×K
+ are the Lagrange multipliers. By apply-

ing the KKT conditions we get:

∇BLb = BCCT −ACT − ΓB = 0 (39)

∇CLb = BTBC−BTA− ΓT
C + 2ΛCC = 0. (40)

Therefore,

B = (ACT + ΓB) (41)

C = (BTB+ 2ΛC)
−1

(BTA+ ΓT
C). (42)

Substituting eq. 42 to eq. 36 leads to:

max
B

tr
(
(BTB+ 2ΛC)

−1

(BTAATB+ ΓT
CA

TB)
)
,

(43)

which is equivalent to simultaneously optimizing:

max
B

tr (BTAATB) (44)

max
B

tr (ΓT
CA

TB) (45)

min
B

tr (BTB+ 2ΛC) ≡ min
B

tr (BTB). (46)

The objectives in eq. 44 – 46 are equivalent to the
objectives in eq. 20 – 22, and consequently lead to the
feature clustering indicator matrixB which is bounded
by: 0 ≤ B ≤ ΥB.

Similarly, substituting eq. 41 to eq. 36 leads to:

max
C

tr (CATACT +CATΓB), (47)

5



which is equivalent to simultaneously optimizing:

max
C

tr (CATACT ) (48)

max
C

tr (CATΓB) (49)

s.t. CCT = I.

Optimizing objective in eq. 48 with the orthogonality
constraint CCT = I is equivalent to applying ratio as-

sociation to the item graph G(ATA), and hence leads
to the clustering of similar items. And by following
previous discussion, the item clustering indicator ma-
trix C also leads to nearly optimal objective in eq. 49.

4.3 Bi-orthogonal NMF

Bi-orthogonal NMF objective is introduced by Ding et
al. [15] by imposing auxiliary orthogonality constraints
on both the basis matrix and the coefficient matrix.
Because both B and C are constrained to be orthog-
onal, the approximation of A by BC will lead to the
poor result. To avoid this, Ding et al. [15] introduce
matrix S ∈ R

K×K
+ to absorb the different scales of A,

B, and C. The clustering aspect of this objective is
reported in [13, 15, 33].

Theorem 3. Minimizing the following objective

min
B,C

Jc(B,C) =
1

2
‖A−BSC‖2F (50)

s.t. B ≥ 0,S ≥ 0,C ≥ 0,BTB = I,CCT = I

leads to the feature clustering indicator matrix B and

the item clustering indicator matrix C.

Proof. By absorbing S into B, objective in eq. 50 is
equivalent to eq. 35, and therefore leads to the item
clustering indicator matrix C. Similarly, by absorbing
S intoC, objective in eq. 50 is also equivalent to eq. 35,
thus leads to the feature clustering indicator matrix
B.

4.4 Sparse NMF

There are many sparse NMF objectives available. Here
we enlist some of them:

1. Local NMF [3]:

min
B,C

J =
1

2
‖A−BC‖2F+α‖BTB‖F−βtr(CCT ), (51)

with α and β are regularized parameters. Note that
the original local NMF objective uses divergence in-
stead of Frobenius norm.

2. Hoyer’s sparse NMF [4]:

min
B,C

J =
1

2
‖A−BC‖2F + α

K∑

k=1

S(bk) + β
K∑

k=1

S(ĉk),

(52)

where S is the Hoyer’s sparseness function, and ĉk is
k-th row of C.

3. Sparse NMF with L1-norm constraint [24]:

min
B,C

J =
1

2
‖A−BC‖2F + α‖B‖2F + β

N∑

n=1

‖cn‖
2
1. (53)

4. Constrained NMF [8]:

min
B,C

J =
1

2
‖A−BC‖2F + αJ1(B) + βJ2(C), (54)

where J1 and J2 are penalty terms used to enforce
certain constraints on the solution.

To prove the clustering aspect of sparse NMF, we
choose constrained NMF objective by setting J1(B) =
1/2‖B‖2F and J2(C) = 1/2‖C‖2F . This is because con-
strained NMF is more general than any other sparse
NMF objectives, and Frobenius norm seems to be the
most widely used criterion to measure the sparseness
of matrices in NMF problems [8, 12, 24, 25, 31]. The
clustering aspect of other sparse NMF objectives can
also be proven in similar fashion.

Theorem 4. Minimizing the following objective

min
B,C

Jd(B,C) =
1

2

{
‖A−BC‖2F + α‖B‖2F + β‖C‖2F

}

(55)

s.t. B ≥ 0,C ≥ 0,

leads to the feature clustering indicator matrix B and

the item clustering indicator matrix C.

Proof.

‖A−BC‖2F + α‖B‖2F + β‖C‖2F =

tr (ATA− 2CATB+BTBCCT + αBTB+ βCCT ).

Following proof of theorem 1:

min(BTBCCT ) ≡ min(BTB) and min(CCT ),

thus minimizing Jd is equivalent to simultaneously op-
timizing:

max
B,C

tr (CATB) (56)

min
B

tr (BTB) (57)

min
C

tr (CCT ). (58)

The Lagrangian function:

Ld (B,C) = Jd (B,C)− tr
(
ΓBB

T
)
− tr (ΓCC) .

(59)

By applying the KKT conditions we get:

∇BLd = BCCT −ACT + αB− ΓB = 0 (60)

∇CLd = BTBC−BTA+ βC− ΓT
C = 0. (61)
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Therefore,

B = (ACT + ΓB)(CCT + αI)
−1

(62)

C = (BTB+ βI)
−1

(BTA+ ΓT
C). (63)

Substituting eq. 63 to eq. 56 leads to:

max
B

tr
(
(BTB+ βI)

−1

(BTAATB+ ΓT
CA

TB)
)
,

(64)

which is equivalent to simultaneously optimizing:

max
B

tr (BTAATB) (65)

max
B

tr (ΓT
CA

TB) (66)

min
B

tr (BTB+ βI) ≡ min
B

tr (BTB). (67)

The objectives in eq. 65 – 67 are equivalent to the
objectives in eq. 20 – 22, and consequently lead to the
feature clustering indicator matrix B.
Similarly, substituting eq. 62 to eq. 56 leads to:

max
C

tr
(
(CATACT +CATΓB)(CCT + αI)

−1)
,

(68)

which is equivalent to simultaneously optimizing:

max
C

tr (CATACT ) (69)

max
C

tr (CATΓB) (70)

min
C

tr (CCT + αI) ≡ min
C

tr (CCT ). (71)

The objectives in eq. 69 – 71 are equivalent to the
objectives in eq. 24 – 26, and consequently lead to the
item clustering indicator matrix C.

4.5 Semi-NMF

Semi-NMF is introduced by Ding et al. [14] to ex-
tend NMF for mixed signs data matrix A ∈ R

M×N
± .

The clustering aspect of Semi-NMF is reported in
[14]. The factorization is done by releasing nonneg-
ativity constraint on the basis matrix, while keeping
the nonnegativity constraint on the coefficient matrix:
A± ≈ B±C+, thus unlike traditional NMF objectives,
the feasible region is no longer located on the nonneg-
ative orthant. Semi-NMF is motivated by K-means
clustering which can be employed to find clustering
for mixed signs data [14].
Because in Semi-NMF only C is used for clustering

purpose, we prove the clustering aspect of Semi-NMF
for item clustering only.

Theorem 5. Minimizing the following objective

min
B,C

Je(B,C) =
1

2
‖A−BC‖2F (72)

s.t. C ≥ 0,

leads to the item clustering indicator matrix C.

Proof.

‖A−BC‖2F = tr (ATA− 2CATB+BTBCCT ).

Following proof of theorem 1:

min(BTBCCT ) ≡ min(BTB) and min(CCT ),

thus minimizing Je is equivalent to simultaneously op-
timizing:

max
B,C

tr (CATB) (73)

min
B

tr (BTB) (74)

min
C

tr (CCT ). (75)

The Lagrangian function:

Le (B,C) = Je (B,C)− tr (ΓCC) . (76)

By applying the KKT conditions we get:

∇BLe = BCCT −ACT = 0 (77)

Therefore,

B = (ACT )(CCT )
−1

(78)

Substituting eq. 78 to eq. 73 leads to:

max
C

tr
(
(CATACT )(CCT )

−1)
, (79)

which is equivalent to simultaneously optimizing:

max
C

tr (CATACT ) (80)

min
C

tr (CCT ). (81)

The objectives in eq. 80 and 81 are equivalent to the
objectives in eq. 24 and 26, and consequently lead to
the item clustering indicator matrix C.

Note that because Semi-NMF has a simple con-
straint (only nonnegativity constraint onC), K-means
clustering in eq. 4 can also be used to “weakly” prove
the clustering aspect of Semi-NMF. This equivalence
also is stated by the authors [14].

4.6 Convex NMF

Convex NMF is introduced by Ding et al. [14]. Both
Semi-NMF and Convex NMF are extensions to the
standard NMF to deal with mixed signs data matrix.
However, unlike Semi-NMF where the basis matrix is
nonnegativity-unconstrained, Convex NMF put non-
negative constraints on both the weight matrix W and
the coefficient matrix C (see eq. 83), and thus like tra-
ditional NMF, the feasible regions are located in the
nonnegative orthant. Compared to Semi-NMF, Con-
vex NMF puts auxiliary constraint on the basis matrix

7



by restricting each basis vector bk to be a convex com-
bination of the data vectors an:

bk =
N∑

n=1

wnkan, ∀k, (82)

where wnk is nonnegative weight. As shown in eq. 82,
the basis matrix in Convex NMF captures the notion
of clustering centroids much better than any other
NMF objective discussed so far, and consequently
more closely related to the K-means clustering. And
Convex NMF can be written as:

A± ≡ A±W+C+, (83)

where W ∈ R
N×K
+ is the weight matrix.

Because in soft clustering (which is the clustering
offered by NMF other than orthogonal NMF), usually
each an in some degree belongs to small number of
clusters, and each cluster comprises of a fraction of
total number of the data vectors, C and W tend to
be sparse. The experimental results that show the
sparseness of C and W can be found in the original
work [14].
Like Semi-NMF, in Convex NMF only C is used for

clustering purpose, so we prove the clustering aspect
of Convex NMF for item clustering only.

Theorem 6. Minimizing the following objective

min
W,C

Jf (W,C) =
1

2
‖A−AWC‖2F (84)

s.t. W ≥ 0,C ≥ 0

leads to the item clustering indicator matrix C.

Proof. By absorbing W into A to form mixed signs
basis matrix B = AW, objective in eq. 84 is equivalent
to eq. 72, and therefore leads to the item clustering
indicator matrix C.

5 Related works

Some works show the equivalence between the stan-
dard NMF and K-means clustering [12, 13, 14, 15, 16],
however as stated previously, there is no obvious way
to incorporate the nonnegativity and other constraints
into the K-means objective.
Ding et al. [15] provide a theoretical analysis on the

equivalence between uni-orthogonal NMF and graph
clustering, i.e., ratio association. However as their
proof utilizes the zero gradient conditions, the hidden
assumptions (setting the Lagrange multipliers to ze-
ros) are not revealed there. And as stated previously,
this approach is the KKT conditions applied to the
nonnegativity-unconstrained version of eq. 35. Thus,
there is no guarantee that the stationary points which
being utilized to prove the equivalences are located

in the nonnegative orthant. Then by using the same
approach, Ding et al. [14] extend this effort to also in-
clude other objectives, i.e., Semi-NMF, Convex NMF,
Cluster NMF, and Kernel NMF.

The first attempt of Ding et al. [16] to prove the clus-
tering aspect of the standard NMF actually is better
since there is no zero Lagrange multiplier assumption
being made. However, the proof is only for symmetric
matrices and due to the used approach, the theorem
cannot be extended to rectangular matrices which so
far are the usual form of the data (it seems that the
practical applications of NMF are exclusively for rec-
tangular matrices). Therefore, their result cannot be
used to explain the abundant experimental results that
show the power of the standard NMF in clustering,
e.g., [2, 7, 10, 12, 13, 14, 29, 31]. Moreover, they made
unnecessary step by proving the clustering indicator
vectors are approximately orthogonal to each other,
which is a little bit misleading since as shown by Xu
et al. [10] the vectors point to cluster centroids in the
nonnegative orthant. Therefore, when the centroids
are close to each other, their proof will not be correct.

6 Conclusion and future works

By applying the strict KKT optimality conditions
to the standard NMF, uni-orthogonal NMF, bi-
orthogonal NMF, sparse NMF, Semi-NMF, and Con-
vex NMF, the equivalences between these objectives
to graph clustering objective, i.e., ratio association

are obtained, thus giving a theoretical framework for
supporting the clustering aspect of these objectives.
There are highly possible that many other NMF ob-
jectives also have clustering capabilities. We believe
that the same framework can also be utilized to de-
rive the equivalences. However, the proofs presented
can only explain the clustering aspect itself, without
further explanation concerning the clustering quality
differences among objectives. This issue is important
since there are works that show sparse NMF tends to
be better than the standard NMF [12, 31], and bi-
orthogonal NMF is better than the standard NMF,
Semi-NMF, and Convex NMF [13]. We will address
this issue in future researches.

Some NMF objectives discussed, i.e., uni-orthogonal
NMF, bi-orthogonal NMF, Semi-NMF, and Convex
NMF have only multiplicative update based algo-
rithms which have no convergence guarantee. Thus,
in appendix we provide additive update based ver-
sions which for the standard NMF has been shown to
have good convergence property [20]. And to antici-
pate other NMF objectives, we provide a more general
form of the additive update algorithm in appendix E.
However, as the convergence only being proven for the
standard NMF, it is necessary to obtain formal con-
vergence proofs for all algorithms in appendix. Fur-
ther, it is also necessary to evaluate their performances
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compared to the corresponding multiplicative update
counterparts. We will address these problems in future
researches.
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Appendix

A Additive update algorithm for uni-

orthogonal NMF

The following algorithm is uni-orthogonal NMF
(BTB = I) algorithm proposed by Ding et al. [15]
which is based on multiplicative update rules:

bmk ←− bmk

(ACT )mk

(BBTACT )mk

(85)

ckn ←− ckn
(BTA)mk

(BTACTC)kn
. (86)

The additive version can be written as:

bmk ←− bmk −
bmk

(BBTACT )mk

(BBTACT −ACT

︸ ︷︷ ︸

B̂

)mk

(87)

ckn ←− ckn −
ckn

(BTACTC)kn
(BTACTC−BTA
︸ ︷︷ ︸

Ĉ

)mk.

(88)

By inspection we can see that both algorithms are
equivalent. To handle numerical difficulties and con-
vergence issue, the following modifications are neces-
sary [20]:

bmk ←− bmk −
b̂mk

(BBTACT )mk + δ
B̂mk (89)

ckn ←− ckn −
ĉkn

(BTACTC)kn + δ
Ĉmk, (90)

where

b̂mk ≡

{
bmk if B̂mk ≥ 0

max(bmk, σ) if B̂mk < 0
,

and

ĉkn ≡

{
ckn if Ĉkn ≥ 0

max(ckn, σ) if Ĉkn < 0
,

with δ > 0 and σ > 0 are very small adjustable con-
stants (Lin [20] proposes setting δ = σ = 10−8). As
stated in [20] this additive update algorithm is guar-
anteed to converge to a stationary point.

B Additive update algorithm for bi-

orthogonal NMF

The multiplicative update rules based algorithm for
bi-orthogonal NMF [15] can be written as follow:

bmk ←− bmk

(ACTST )mk

(BBTACTST )mk

(91)

ckn ←− ckn
(STBTA)kn

(STBTACTC)kn
(92)

spq ←− spq
(BTACT )pq

(BTBSCCT )pq
. (93)
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And the additive version is:

bmk ←− bmk −
bmk

(BBTACTST )mk

B̃mk (94)

ckn ←− ckn −
ckn

(STBTACTC)kn
C̃kn (95)

spq ←− spq −
spq

(BTBSCCT )pq
S̃pq, (96)

where

B̃mk = (BBTACTST −ACTST )mk

C̃kn = (STBTACTC− STBTA)kn

S̃pq = (BTBSCCT −BTACT )pq.

Then a similar modifications must be applied to deal
with numerical difficulties and convergence issue as in
uni-orthogonal case.

C Additive update algorithm for Semi-

NMF

Ding et al. [14] propose the following multiplicative
update algorithm for Semi-NMF:

B←− ACT (CCT )
−1

(97)

ckn ←− ckn

√
√
√
√

(BTA)
+

kn +
[
(BTB)−C

]

kn

(BTA)
−

kn +
[
(BTB)+C

]

kn

, (98)

where X
+

= (|x|ij + xij)/2 and X
−

= (|x|ij − xij)/2
and pseudo inverse is used if inverse cannot be calcu-
lated. The additive version can be written as:

B←− ACT (CCT )
−1

(99)

ckn ←− ckn −
ckn

√

(BTA)
−

kn +
[
(BTB)+C

]

kn

Skn,

(100)

where

Skn =
√

(BTA)
−

kn +
[
(BTB)+C

]

kn
−

√

(BTA)
+

kn +
[
(BTB)−C

]

kn
.

Then a similar modifications must be applied to deal
with numerical difficulties and convergence issue as in
uni-orthogonal case.

D Additive update algorithm for Con-

vex NMF

Convex NMF is introduced by Ding et al. [14] and
they proposed the following multiplicative update al-

gorithm to compute it:

wnk = wnk

√

(Â+
CT )nk + (Â−

WCCT )nk

(Â−

CT )nk + (Â+
WCCT )nk

(101)

ckn = ckn

√

(WT Â
+)kn + (WT Â

−

WC)kn

(WT Â
−)kn + (WT Â

+
WC)kn

, (102)

where Â = ATA, and X
+

and X
−

are defined simi-
larly as in appendix C. The additive version can be
written as:

wnk = wnk −
wnk

√

(Â−

CT )nk + (Â+
WCCT )nk

W̆nk

(103)

ckn = ckn −
ckn

√

(WT Â
−)kn + (WT Â

+
WC)kn

C̆kn,

(104)

where

W̆nk =

√

(Â−

CT )nk + (Â+
WCCT )nk −

√

(Â+
CT )nk + (Â−

WCCT )nk

C̆kn =

√

(WT Â
−)kn + (WT Â

+
WC)kn −

√

(WT Â
+)kn + (WT Â

−

WC)kn.

Then a similar modifications must be applied to deal
with numerical difficulties and convergence issue as in
uni-orthogonal case.

E A more general form of additive up-

date algorithm for NMF

A more general form of NMF objective formulation in-
cludes auxiliary constraints on B and/or C in addition
to the nonnegativity constraints:

min
B,C

J =
1

2
‖A−BC‖2F+αJ1(B)+βJ2(C)+γJ3(B,C).

(105)
The Lagrangian:

L = J − tr (ΓBB
T )− tr (ΓCC), (106)

where ΓB ∈ R
M×K
+ and ΓC ∈ R

N×K
+ are the Lagrange

multipliers. By differentiating L with respect to B and
B we get:

BCCT −ACT + α∇BJ1(B) + γ∇BJ3(B,C) = ΓB

(107)

BTBC−BTA+ β∇CJ2(C) + γ∇CJ3(B,C) = ΓT
C.

(108)

Then, by using the complementary slackness, the mul-
tiplicative update algorithm for NMF objective in
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eq. 105 can be written as follow:

bmk ←− bmk

(ACT )mk
(
BCCT + α∇BJ1(B) + γ∇BJ3(B,C)

)

mk

(109)

ckn ←− ckn
(BTA)kn

(
BTBC+ β∇CJ2(C)γ∇CJ3(B,C)

)

kn

.

(110)

And, the additive version can be written as:

bmk ←− bmk −
bmk

(
BCCT + α∇BJ1(B) + γ∇BJ3(B,C)

)

mk

B̄mk

(111)

ckn ←− ckn −
ckn

(
BTBC+ β∇CJ2(C) + γ∇CJ3(B,C)

)

kn

C̄kn,

(112)

where

B̄mk =
(
BCCT + α∇BJ1(B) + γ∇BJ3(B,C)−ACT

)

mk

C̄kn =
(
BTBC+ β∇CJ2(C) + γ∇CJ3(B,C)−BTA

)

kn
.

Then a similar modifications must be applied to deal
with numerical difficulties and convergence issue as in
uni-orthogonal case.
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