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Point vortex equilibria on the sphere via

Brownian ratchets

By Paul K. Newton and Takashi Sakajo

Department of Aerospace & Mechanical Engineering and Department of
Mathematics, University of Southern California, Los Angeles, CA 90089-1191

(newton@spock.usc.edu)
and

Department of Mathematics, Hokkaido University
Sapporo, Japan

(sakajo@math.sci.hokudai.ac.jp)

We describe a Brownian ratchet scheme which we use to calculate relative equi-
librium configurations of N point vortices of mixed strength on the surface of a
unit sphere. We formulate it as a problem in linear algebra, A~Γ = 0, where A is a
N × N(N − 1)/2 non-normal configuration matrix obtained by requiring that all
inter-vortical distances on the sphere remain constant, and ~Γ ∈ RN is the (unit)
vector of vortex strengths which must lie in the nullspace of A. Existence of an
equilibrium is expressed by the condition det(AT A) = 0, while uniqueness follows
if Rank(A) = N − 1. The singular value decomposition of A is used to calculate an
optimal basis set for the nullspace, yielding all values of the vortex strengths for
which the configuration is an equilibrium and allowing us to decompose the equilib-
rium configuration into basis components. To home in on an equilibrium, we allow
the point vortices to undergo a random walk on the sphere and after each step, we
compute the smallest singular value of the configuration matrix, keeping the new
arrangement only if it decreases. When the smallest singular value drops below
a predetermined convergence threshold, the existence criterion is satisfied and an
equilibrium configuration is achieved. We then find a basis set for the nullspace of
A, and hence the vortex strengths, by calculating the right singular vectors cor-
responding to the singular values that are zero. We show a gallery of examples of
equilibria with one-dimensional nullspaces obtained by this method. Then, using
an unbiased ensemble of 1000 relative equilibria for each value N = 4 → 10, we
discuss some general features of the statistically averaged quantities, such as the
Shannon entropy (using all of the normalized singular values) and Frobenius norm,
center-of-vorticity vector, and Hamiltonian energy.

Keywords: Singular value decomposition; Brownian ratchets, Point charges on
a sphere; Shannon entropy
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2 P.K. Newton, T. Sakajo

1. Introduction

We introduce a ‘Brownian ratchet’ scheme to obtain relative equilibrium configura-
tions of N -point vortices on the surface of a sphere. Using the relative equilibrium
criterion that all inter-vortical distances remain constant, we find relative equilibria
as fixed points of the evolution equation of the inter-vortical distances. Since these
equations are linear in the vortex strength vector ~Γ ∈ RN , we formulate the prob-
lem as one in linear algebra, namely A~Γ = 0, where A ∈ RM×N is a non-normal
configuration matrix with M =

(
N
2

)
rows. Thus, we seek arrangements of particles

on the sphere for which det(AT A) = 0, or equivalently, for which A has a non-trivial
nullspace. When this condition is satisfied, we obtain the vortex strength vector ~Γ
a posteriori by finding a basis set for the nullspace of A.

The method used to produce an equilibrium is based on using the k smallest
singular values of the configuration matrix as a ‘ratchet’, which we drive to zero
by a random walk algorithm on the sphere. The number of singular values that
are zero correspond to the dimension of the nullspace (which we call the degree of
heterogeneity of the configuration) and thus the number of basis vectors needed to
span the subspace of RN in which the vortex strength vector lies. The decompo-
sition method based on the nullspace of the configuration matrix was introduced
in Jamaloodeen & Newton (2006) and used to determine all vortex strengths for
which the Platonic solid configurations with a point vortex at each vertex form
an equilibrium. Subsequently, the Brownian ratchet scheme coupled with the use
of the singular value decomposition of the configuration matrix was developed by
Newton & Chamoun (2007) and used to study equilibrium configurations in the
planar N -vortex problem. The singular value decomposition gives rise to the ‘opti-
mal’ basis set in which to represent the vortex strength vector and also produces
a characteristic ‘distribution’ of singular values that allows us to calculate other
important quantities, such as the Shannon entropy and the size of the configura-
tion, based on the Frobenius norm. The equilibria described in this paper all have
configuration matrices with one-dimensional nullspaces and hence a unique vector
of vortex strengths and typically, they have no discernible symmetries. Previous
results on relative equilibria of point vortices on the sphere, such as that of Ki-
dambi & Newton (1998), Lim, Montaldi, and Roberts (2001), Laurent-Polz (2002),
Cabral, Meyer & Schmidt (2003), or Newton & Shokraneh (2006) are much more
restrictive. Typically, they assume the vortex strengths to be equal (hence without
loss of generality unity), or occur in equal and opposite pairs in the case where N is
even. This is also true of studies of equilibrium distributions of particles on a sphere
with more general interaction laws, such as that of Altschuler et. al. (1997, 2005,
2006), Bergersen et. al. (1994), Edmundson (1992), Glasser & Every (1992), Erber
and Hockney (1991), Saff & Kuijlaars (1997). By allowing the vortex strengths to
take on any value, we show that the set of relative equilibrium configurations is far
richer than previously realized.

Our paper is organized as follows. In §2 we describe the basic tool we use to
construct relative equilibria on the sphere, namely the singular value decomposition
of the configuration matrix associated with each equilibrium. The distribution of
these singular values (properly normalized) gives rise to a scalar quantity which
characterizes the equilibria — the Shannon entropy of the configuration matrix.
In §3 we describe the Brownian ratchet algorithm which we use to calculate the
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Equilibria on the sphere 3

collection of equilibria for each N . In particular, we describe our random walk
algorithm on the sphere and how it is used to home in on configurations of particles
that produce a configuration matrix with a non-trivial nullspace. We show examples
of typical relative equilibria for N = 4, 6, 8, 10 along with the vortex strength vectors
obtained by calculating a basis set for the nullspace of the configuration matrix.
We also detail the convergence properties of the Brownian ratchet scheme. In §4
we discuss several statistical properties of the unbiased ensembles, including the
statistically averaged Shannon entropy, Frobenius norm, Hamiltonian energy, and
center-of-vorticity. §5 contains a discussion of our key findings.

2. Decomposing the pattern

The evolution equations for N -point vortices moving on the surface of the unit
sphere, written in cartesian coordinates, are given by:

ẋα =
1
4π

N∑
β=1

′Γβ
xβ × xα

(1− xα · xβ)
(α = 1, ..., N) xα ∈ R3, ‖xα‖ = 1. (2.1)

The vector xα denotes the position of the αth vortex whose strength is given by
Γα ∈ R. The prime on the summation indicates that the singular term β = α is
omitted and initially, the vortices are located at the given positions xα(0) ∈ R3,
(α = 1, ..., N). The denominator in (2.1) is the intervortical distance, lαβ , between
vortex Γα and Γβ since l2αβ ≡ ‖xα−xβ‖2 = 2(1−xα ·xβ). As described in Newton &
Shokraneh (2006), eqns (2.1) have two conserved quantities associated with them,
the Hamiltonian energy:

H = − 1
4π

N∑
α<β

ΓαΓβ log ‖xα − xβ‖ (2.2)

and the center-of-vorticity vector

J =
N∑

α=1

Γαxα =

(
N∑

α=1

Γαxα,
N∑

α=1

Γαyα,
N∑

α=1

Γαzα

)
= (Jx, Jy, Jz) (2.3)

The evolution equations for the relative distances are:

π
d(l2αβ)

dt
=

N∑
γ=1

′′Γγ

[
xβ · xγ × xα

l2βγ

− xβ · xγ × xα

l2αγ

]
=

N∑
γ=1

′′ΓγVαβγdαβγ , (2.4)

where dαβγ ≡
[

1
l2βγ

− 1
l2αγ

]
. Here the ′′ means the summation excludes γ = α and

γ = β. Vαβγ is the volume of the parallelepiped formed by the vectors xα,xβ ,xγ :

Vαβγ = xα · (xβ × xγ) ≡ xβ · (xγ × xα) ≡ xγ · (xα × xβ).

Notice that the sign of Vαβγ can be positive or negative depending on whether the
vectors form a right- or left-handed coordinate system. The relative equations of
motion yield necessary and sufficient conditions for relative equilibria,

dl2αβ

dt
= 0, ∀α, β = 1 · · ·N, α 6= β. (2.5)
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4 P.K. Newton, T. Sakajo

(a) The configuration matrix approach

Using condition (2.5) in (2.4) gives the equation for the relative equilibria:

N∑
γ=1

′′ΓγVαβγdαβγ = 0 (2.6)

for each value of α, β = 1, ...., N . Based on the fact that (2.6) is linear in the vortex
strengths, we write it as a linear matrix system

A~Γ = 0, (2.7)

where ~Γ = (Γ1,Γ2, ...,ΓN ) ∈ RN is the vector of vortex strengths, and A is the
N ×N(N − 1)/2 configuration matrix whose entries, given by the terms Vαβγdαβγ ,
encode the geometry of the configuration. Without loss of generality, we normalize
the vector of vortex strengths to have unit length, hence

N∑
α=1

Γ2
α = 1. (2.8)

Thus, we seek configurations so that

det (AT A) = 0 (2.9)

in which case A is rank-deficient, and has a nontrivial nullspace. We seek a basis
set for this subspace of RN . In all cases considered in this paper, Rank(A) = N −1,
hence the vortex strength vector is unique up to ± sign.

(b) Singular value decomposition

The optimal basis set for the nullspace of A is obtained by using the singular
value decomposition of the matrix (see Trefethen & Bau (1997)). We obtain the N
singular values σi and corresponding left and right singular vectors ~ui ∈ RN(N−1)/2,
~vi ∈ RN by solving the coupled linear system

A~vi = σi~ui; AT ~ui = σi~vi (2.10)

where σmax ≡ σ1 ≥ σ2 ≥ · · · ≥ σmin ≡ σN ≥ 0. The left and right singular vectors
are used as columns to construct the orthogonal matrices U and V :

U = (~u1 ~u2 · · · ~uN ); V = (~v1 ~v2 · · · ~vN ), (2.11)

which produces the singular value decomposition of A:

A = UΣV T =
N∑

i=1

σi~ui~v
T
i . (2.12)
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Equilibria on the sphere 5

Σ is the diagonal matrix with singular values down the diagonal, ordered from
largest (top left) to smallest (bottom right):

Σ =



σmax 0 · · · 0 0
0 σ2 · · · 0 0
...

...
. . .

...
...

0 · · · · · · σN−1 0
0 · · · · · · 0 σmin

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


. (2.13)

Equivalently, multiplying the first eqn in (2.10) by AT , the second by A, and un-
coupling the two, we obtain

AT A~vi = (σi)2~vi; AAT ~ui = (σi)2~ui, (2.14)

which expresses the fact that the singular values squared are the eigenvalues of the
square covariance matrices AT A, AAT . We write these eigenvalues as λi ≡ (σi)2.
The decomposition (2.12) expresses A as a linear superposition of the rank-one
matrices ~ui~v

T
i , (i = 1, ..., N) with weighting determined by the singular values σi.

Its optimality is seen by the fact that the mth partial sum, defined as

Am =
m∑

i=1

σi~ui~v
T
i , (m ≤ N) (2.15)

provides the best rank-m approximation to A, as measured by the Frobenius norm.
In other words, any rank-m matrix B 6= Am has the property that ‖A − B‖F ≥
‖A−Am‖F , where ‖ · ‖F denotes the Frobenius norm defined as ‖A‖F =

∑N
i=1 σi.

(c) Shannon entropy

To understand how the rank-one modes are distributed, it is useful to normalize
each of the eigenvalues of the covariance matrices so that they lie in the range from
zero to one and can be interpreted either as probabilities, or as the percentage of
energy contained in each mode. The normalized eigenvalues are given by

λ̂i = λi/
k∑

i=1

λi, (2.16)

where k is the number of non-zero singular values, hence the rank of A. The Shan-
non entropy, S, of the configuration matrix is obtained by using the k non-zero
normalized eigenvalues λ̂i:

S = −
k∑

i=1

λ̂i log λ̂i. (2.17)

As discussed in Newton & Chamoun (2007, 2008), (2.17) provides a convenient
scalar measure of how the rank-one matrices in (2.12) are distributed in forming
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Figure 1. Schematic diagram depicting one random step based on an arbitrary ‘seed’ particle at

(θ0, φ0) on the unit sphere. See text for details. (a) Step 1: A particle, initially at the origin in

the plane, is diffused to a random location (r, ϕ) via a Gaussian process ; (b) Step 2: The point

is then mapped to (θε, φε) on the unit sphere, with the origin of the plane corresponding to the

North Pole; (c) Step 3: The North Pole is rotated so that it is centered at the arbitrary ‘seed’

location (θ0, φ0) giving rise to the diffused point (θ1, φ1) based on that ‘seed’. The process is then

repeated using (θ1, φ1) as the new seed.

the configuration matrix, and thus can be thought of as a measure of ‘disorder’ of
the pattern. In particular, if all of the weighting is in one mode, then A has rank-one
and the Shannon entropy is minimized – its value is zero. The configuration matrix
in this case can be viewed as the ‘least disordered’ in terms of how its rank one
modes are distributed. On the other hand, if each mode has equal weighting, the
entropy is maximum – its value is ln(k). In this case, the configuration matrix is
the ‘least ordered’ in terms of how the rank one modes are distributed. Interpreted
slightly differently, the Shannon entropy of the configuration can be thought of as
a measure of how close the configuration matrix is to one of low rank. The lower
the entropy, the closer the matrix is to a rank-one matrix. The higher the entropy,
the further away it is to a rank-one matrix. We mention also that low entropy
distributions are less ‘robust’ to perturbations than high entropy ones. As discussed
in Newton & Chamoun (2008), generic perturbations to a given configuration will
tend to increase the entropy of a base configuration, i.e. spread out the distribution
among the modes. If the distribution is already spread out in the base state (i.e. a
high entropy base state), the perturbation has a smaller effect than if the modes
are clustered among only a small number. See Newton & Chamoun (2008) for more
comprehensive discussions of these ideas.

3. The Brownian ratchet idea

Our method of obtaining relative equilibria is based on a Brownian ‘ratchet’ scheme
which we implement by a diffusion process in the plane which we then map to the
unit sphere. The terminology we use is borrowed from the biological literature in
which molecular motors are known to extract energy from their surrounding ‘heat
bath’ and rectify it via a ratchet mechanism. See Reimann (2002) for a comprehen-
sive recent review. For us, the heat bath is provided by a random walk algorithm
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T:2000
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Figure 2. Panel depicting the random walk of collections of particles on the sphere initially
clustered in spherical caps around the two poles. ‘o’ are clustered at the North Pole, while
‘+’ are clustered at the South Pole. After sufficiently many steps, the particles distribute
themselves about the surface of the sphere in such a way that there no longer appears
to be any preference for either type of particle to be in either hemisphere. Shown are
(non-dimensional) time T = 0 − 20000.

on the sphere, while the ratchet which rectifies this motion is the smallest singular
value of the configuration matrix which we drive to zero. The random walk problem
on the sphere is interesting in its own right, and has been studied in the past by
Brillinger (1997) who considered the motion of a particle on the unit sphere heading
toward a specific destination but subject to random deviations, which he modeled
as a diffusion process with drift. His motivation was to model the trajectories of
certain marine mammals, and in so doing he obtained quantitative formulas for
expected travel times to a spherical cap, as well as forms for limiting distributions.
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8 P.K. Newton, T. Sakajo

Indeed before this work, Kendall (1974) was interested in modeling the navigation
of birds and used a pole-seeking Brownian motion model to partially explain their
behavior. An early and quite general work on random walk models on the sphere
and on more general Riemannian manifolds in that of Roberts & Ursell (1960).

(a) Random walk on a sphere

The random walk algorithm on the sphere is the engine which drives our ratchet
scheme, so we describe it first. As shown schematically in figure 1, we start with
an initial ‘seed’ point (θ0, φ0) on the sphere. From this point, the random walk is
computed in three simple steps:

1. First, we obtain a sample point in the plane from the two-dimensional Gaus-
sian distribution, for which we compute the polar coordinate representation,
(r, ϕ);

2. Next with a scale factor ε (typically taken as ε = 0.01), we rescale the point
as (εr, ϕ) and then map it to a corresponding point on the surface of the unit
sphere centered around the North Pole so that the point is represented by
(θε, φε) = (εr, ϕ) in spherical coordinates;

3. Finally, we rotate the point so that the North Pole maps to the original point
(θ0, φ0), while (θε, φε) maps to the new ‘diffused’ point (θ1, φ1).

The process is then iterated to obtain each subsequent point (θn+1, φn+1) starting
with (θn, φn) as a ‘seed’. Here, the procedure is implemented for a collection of
particles initially clustered around the North Pole (those marked ‘o’), and South
Pole (those marked ‘+’), shown in figure 2. As the particles evolve, they gradually
diffuse over the surface of the sphere, eventually giving equal probability of finding
a ‘o’ particle or a ‘+’ particle in any fixed two-dimensional spherical sector.

(b) The ratchet scheme in practice

For each N , we seek configurations of particles on the unit sphere for which (2.9)
is satisfied, hence Rank(A) < N . We find these configurations with the following
‘ratchet’ algorithm:

1. First, we distribute N points randomly on the surface of the unit sphere and
calculate the configuration matrix A, finding its smallest singular value, σmin;

2. We then allow each particle to execute one random step on the sphere in order
to produce a new configuration matrix Ã, along with its smallest singular
value, σ̃min;

3. If σ̃min ≤ σmin, we keep the new configuration, otherwise we discard it;

4. The process is repeated until σ̃min drops below a certain pre-determined
threshold, which we typically choose to be O(10−10). This ‘converged’ config-
uration is what we call a relative equilibrium;

5. We then compute a basis set for the nullspace in order to find the correspond-
ing vortex strengths.

USC/AME Preprint



Equilibria on the sphere 9

10-10

10-8

10-6

10-4

10-2

0 10000 20000

σ m
in

2

Step Number

N= 6
N= 8
N=10

 0.42

 0.44

 0.46

 0.48

 0.59  0.62  0.65

φ

θ

(a) (b)

Figure 3. (a) Convergence of the smallest singular value squared (log plot) as a function of the

random walk step for N = 6, 8, 10; (b) Convergence of one of the point vortices making up the

relative equilibrium configuration to its final position (marked ‘+’) on the sphere.

Typical convergence plots are shown in figure 3. Figure 3(a) shows the decay of the
smallest singular value (squared) as a function of the step number for N = 6, 8, 10,
plotted on a log-log scale. In most cases, convergence is rapid. Figure 3(b) shows
the actual path of one of the point vortices making up the configuration from its
initial point to its final (converged) point (marked by a cross) on the sphere. Note
that the vortex meanders initially before it homes in rather directly to its final
location, which need not be nearby the initial location. As a general remark, we
note that the singular values of a matrix are relatively insensitive to perturbations
of the matrix (see Trefethen & Bau (1997)), hence we expect that the converged
positions of the vortices are not far from the exact equilibrium positions when the
smallest singular value is below O(10−10).

(c) Gallery of relative equilibria for N = 4, 6, 8, 10

Typical examples of relative equilibria found this way are shown in the panels of
figure 4 for N = 4, figure 5 for N = 6, figure 6 for N = 8, figure 7 for N = 10. In each
figure, we present a panel of ten distinct relative equilibrium configurations showing
both the vortex positions in the Northern and Southern hemispheres as well as the
corresponding vector of vortex strengths ~Γ. In each case, the intersection of the
center-of-vorticity vector, J (as defined in (2.3)) with the unit sphere is marked with
an ‘×’. All of the cases treated in this paper have one-dimensional nullspaces, hence
unique vortex strength vectors which we normalize to unity. Note that all of the
configurations are manifestly asymmetric, a topic discussed in Newton & Chamoun
(2008). Examples of asymmetric equilibria are indeed rare, the first discussion of
this can be found in Aref & Vainchtein (1998).

In figure 8 we show histograms (for large collections of equilibria as discussed
in the next section) of the length of the J vector for the cases N = 4, 6, 8, 10. In
all cases, the peak is near the unit value, indicating that most of the states making
up the ensemble can be described as not too different from single dominant vortex
of near unit strength resting near the tip of the center-of-vorticity vector, with the
remaining N − 1 weaker vortices distributed asymmetrically around the surface of
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10 P.K. Newton, T. Sakajo

the sphere. In all cases, the N vortices have mixed signs and the spread around the
most likely state tightens as N increases, indicating that the limiting configuration
(constrained to have Rank = N − 1) is a single vortex of unit strength resting at
the tip of the center-of-vorticity vector.

Likewise, histograms of the Hamiltonian energy (2.2) are shown in figure 9, and
in each case the peak value is zero with a spread that tightens with increasing
N . This limiting configuration suggests a relatively uniform distribution of points
around the sphere with vortex strengths of mixed sign.

4. Statistical properties

In contrast to classes of equilibria obtained by other methods (see Aref et. al. (2003)
for a comprehensive overview), the approach described in this paper is capable
of generating large unbiased ensembles of equilibria. This is both because of the
random initial conditions used to start each Brownian based search, and because of
the random search algorithm which is capable of finding all relative equilibria, not
just those with prescribed symmetries or specific vortex strengths. Thus, it makes
sense to use these ensembles to produce statistically averaged quantities which
characterize the equilibria. We discuss some of these properties in this section.

(a) Ensemble averages

For each value of N = 4 → 10, we generate an ensemble of equilibrium config-
uration matrices, denoting each member of the ensemble A(j), with corresponding
right nullvector ~Γ(j). The initial sample size for each case is nominally M = 1000
which we double to M = 2000 by including both ±~Γ(j). The singular values for
the jth realization are denoted by σ

(j)
max ≡ σ

(j)
1 ≥ σ

(j)
2 ≥ ... ≥ σ

(j)
min ≡ σ

(j)
N ≥ 0

and their corresponding left and right singular vectors are denoted by ~u
(j)
i and

~v
(j)
i (i = 1, ..., N) respectively. We define the ensemble average of the collection of

configuration matrices

〈A〉M =
1
M

M∑
j=1

A(j); 〈A〉∞ = lim
M→∞

〈A〉M (4.1)

as well as the ensemble averages of the singular components:

〈σi〉M = 1
M

∑M
j=1 σ

(j)
i ; 〈σi〉∞ = limM→∞〈σi〉M , (4.2)

〈λi〉M = 1
M

∑M
j=1 λ

(j)
i ; 〈λi〉∞ = limM→∞〈λi〉M (4.3)

The standard deviation of each quantity is denoted with double brackets 〈〈·〉〉. We
denote the averaged normalized values

〈σ̂i〉M = 1
M

∑M
j=1 σ̂

(j)
i ; 〈σ̂i〉∞ = limM→∞〈σ̂i〉M , (4.4)

〈λ̂i〉M = 1
M

∑M
j=1 λ̂

(j)
i ; 〈λ̂i〉∞ = limM→∞〈λ̂i〉M (4.5)
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N=4 (01)(01)(01)(01)

(02)(02)(02)(02)

(03)(03)(03)(03)

(04)(04)(04)(04)

(05)(05)(05)(05)

(06)(06)(06)(06)

(07)(07)(07)(07)

(08)(08)(08)(08)

(09)(09)(09)(09)

(10)(10)(10)(10)

Figure 4. N = 4: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(8.22e−02, 9.32e−02,−5.26e−01, 8.41e−01); (−9.54e−02, 1.27e−02,−9.67e−03,−9.95e−01);
(−2.73e−02,−2.87e−02,−9.99e−01, 1.42e−02); (−6.03e−04,−5.01e−03,−9.97e−01, 7.46e−02);
(−9.69e−01,−2.29e−01, 4.99e−02, 7.54e−02); (−1.60e−01, 1.75e−01,−9.19e−01,−3.14e−01);
(9.51e−01, 6.15e−03,−3.07e−01,−2.90e−02); (−5.04e−01,−2.23e−01,−1.89e−01, 8.13e−01);
(9.24e−02, 6.72e−02,−9.80e−01, 1.64e−01); (−1.79e−02,−8.13e−02, 2.33e−01, 9.69e−01).

with standard deviations 〈〈̂·〉〉. We then define the Shannon entropy of the jth
member of the ensemble to be

S(j) = −
k∑

i=1

λ̂
(j)
i log λ̂

(j)
i , (4.6)
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N=6 (01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)

Figure 5. N = 6: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Start-
ing at the top left and proceeding down the left column, the vortex strengths are
given by (9.99e − 01, 1.21e − 03,−1.33e − 03, 8.55e − 04, 6.86e − 03,−1.87e − 03);
(−1.54e − 03,−9.28e − 03,−4.92e − 03,−2.30e − 03,−4.36e − 03, 9.99e − 01);
(1.15e − 03, 2.46e − 03, 9.98e − 01, 4.47e − 02,−4.36e − 03,−3.73e − 03);
(1.24e − 02,−1.51e − 02, 8.53e − 05,−9.99e − 01,−5.77e − 03,−1.20e − 02);
(2.51e − 01, 5.25e − 03, 2.65e − 01, 8.99e − 01, 1.73e − 01,−1.71e − 01);
(2.35e − 04, 1.03e − 05, 3.80e − 04,−1.39e − 04,−4.22e − 04, 9.99e − 01);
(1.38e − 03, 3.32e − 04, 1.68e − 05,−7.09e − 04,−1.83e − 05,−9.99e − 01);
(−5.01e − 03,−3.10e − 04, 7.89e − 04, 4.57e − 04,−2.88e − 04, 9.99e − 01);
(2.47e − 04,−4.90e − 06,−1.92e − 03,−2.18e − 03, 9.99e − 01, 6.28e − 04);
(−1.45e − 03, 6.92e − 03,−1.94e − 02, 1.65e − 03,−8.50e − 03) − 9.99e − 01);.
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N=8 (01)(01)(01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)(10)(10)

Figure 6. N = 8: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(1.23e−04,−6.62e−05, 3.76e−05, 1.01e−05,−2.96e−04,−2.80e−03, 9.99e−01,−7.44e−05);
(−8.70e−03, 1.15e−03,−1.00e−03, 9.99e−01,−8.58e−04,−1.28e−03, 5.99e−04,−8.68e−04);
(1.61e−03, 8.76e−04, 9.99e−01, 1.88e−03,−2.67e−03,−8.81e−04,−5.10e−04, 8.66e−04);
(6.41e−04, 6.88e−04,−4.76e−04,−2.49e−04,−9.15e−04, 9.97e−04, 9.99e−01, 6.67e−04);
(−1.02e−03,−9.99e−01,−1.72e−03,−5.12e−04,−3.59e−04,−3.65e−04, 1.51e−03, 2.31e−03);
(2.58e−04,−5.37e−05, 9.99e−01, 2.90e−04,−1.40e−03,−6.43e−04,−1.69e−04, 5.52e−04);
(9.13e−04,−1.53e−03, 9.73e−05, 9.99e−01, 1.11e−03, 9.08e−05, 2.80e−04,−1.53e−03);
(7.74e−03,−9.99e−01,−6.24e−04,−8.47e−04, 2.83e−03, 3.64e−02, 3.83e−03, 1.03e−03);
(4.03e−03,−9.99e−01, 1.17e−03, 1.17e−04, 9.41e−04,−7.53e−05, 4.45e−02,−1.00e−04);
(−9.99e−01, 9.12e−04,−4.47e−04, 1.26e−03, 1.33e−03, 1.47e−03,−1.69e−04, 6.57e−04);.
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N=10 (01)(01)(01)(01)(01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)

Figure 7. N = 10: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(−1.60e−03, 1.31e−03, 1.88e−03,−1.61e−04,−9.99e−01, 8.35e−04, 8.05e−04, 1.00e−03, 2.34e−04, 1.38e−03);
(1.47e−03, 8.97e−03,−9.99e−01,−1.85e−03, 4.53e−04,−3.37e−03,−6.19e−03, 6.59e−03,−1.02e−03, 6.36e−05);
(2.46e−04,−1.72e−04, 2.20e−03,−8.13e−04,−7.56e−03, 9.99e−01, 1.46e−03, 2.44e−03, 7.21e−04, 2.39e−03);
(6.20e−04, 5.14e−03,−9.99e−01,−8.33e−04,−2.21e−03, 2.56e−03, 4.37e−03, 1.33e−02, 4.04e−03, 5.59e−03);
(−3.91e−05,−1.79e−03,−4.78e−04, 4.96e−05, 4.45e−04, 4.08e−04, 9.99e−01, 8.77e−04, 4.37e−04,−2.23e−04);
(1.37e−04, 1.36e−03,−1.54e−05,−9.99e−01,−7.70e−04,−1.38e−03,−2.72e−03, 1.17e−04, 1.96e−03,−2.31e−03);
(7.99e−04,−8.61e−04,−2.12e−04, 1.82e−03,−2.67e−04, 8.14e−04,−3.05e−04, 9.99e−01, 9.86e−05, 1.51e−04);
(9.95e−03,−9.99e−01, 1.30e−05,−1.15e−03,−6.55e−04,−1.08e−04,−1.83e−03,−2.54e−04, 9.63e−05,−2.73e−03);
(4.22e−04, 1.91e−04,−4.14e−04, 8.39e−04,−1.05e−04, 4.51e−04, 4.68e−02, 8.80e−04,−1.76e−04,−9.98e−01);
(−4.09e−04,−2.58e−03,−1.20e−03,−5.46e−04,−9.31e−04, 9.99e−01,−1.26e−04,−6.47e−04,−1.64e−05,−1.19e−03);.
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Figure 8. Histograms of the length of the center-of-vorticity vector ‖J‖. In each case, the peak

clusters around the unit value which would be its value if there was a single point vortex of unit

strength.

with ensemble average

〈S〉M =
1
M

M∑
j=1

S(j); 〈S〉∞ = lim
M→∞

〈S〉M , (4.7)

and standard deviation 〈〈S〉〉.

(b) Statistical properties

Here we summarize the main results based on an analysis of the ensemble av-
erages for the cases N = 4, 5, 6, 7, 8, 9, 10. Table 1 shows the ensemble averaged
properties of the singular values, listed in decreasing order, for the case N = 10.
For each of the ten singular values, we show the maximum value in the ensemble
(maxjσ

(j)
i ), the minimum value (minjσ

(j)
i ), the sample mean (〈σi〉M ), and the sam-

ple standard deviation (〈〈σi〉〉M ) for M = 1000. The smallest singular value, σ10,
has converged to the sample average 〈σ10〉1000 = 9.97× 10−11. In Table 2 we show
the corresponding results for the normalized family of singular values σ̂i. Here, the
smallest sample average is 〈σ̂10〉1000 = 5.09 × 10−12 with a gap of ten orders of
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Figure 9. Histograms of the Hamiltonian energy H. In each case, the peak clusters around zero,

indicating a relatively even distribution of points around the sphere with vortex strengths of mixed

sign.

magnitude between it and the next smallest value 〈σ̂9〉1000 = 1.39× 10−2. The size
of the smallest singular value, the gap between it and the next smallest, and the
steady decrease of the convergence curve shown in figure 3(a) gives us confidence
that we are in close proximity to an equilibrium configuration. Figure 10 shows
the distribution of the normalized singular values for N = 4, 6, 8, 10. A noteworthy
feature is that the shape of the distribution for the final two cases N = 8, 10 is
quite similar, indicating convergence to a fixed distribution as a function of N .

In Table 3 we show the statistical properties of the averaged Shannon entropy
and Frobenius norms for N = 4, 5, 6, 7, 8, 9, 10. These quantities, shown as a function
of the sample size M are depicted in figures 11 and 13. It is interesting to note
from figure 11, the spacing of the converged values is quite regular, indicating an
underlying scaling law. Indeed, in figure 12 we show the ensemble averaged Shannon
entropy values shown in Table 3 plotted as a function of N on a log-log scale.
The data shows power-law scaling of the form 〈S〉 ∼ αNβ , with α ∼ 0.305683,
β ∼ 0.671424 as obtained via a least squares fit to the data. In figure 14 we show
histograms of the total vortex strength of each equilibrium. We note the tendency
for
∑N

i=1 Γi to cluster at the extreme values ±1 in agreement with the observation
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Sing vals maxjσ
(j)
i minjσ

(j)
i 〈σi〉M 〈〈σi〉〉M

σ1 3.72e+02 1.88e+00 8.73e+00 2.00e+01

σ2 3.71e+02 1.75e+00 8.43e+00 2.01e+01

σ3 4.77e+01 1.22e+00 3.18e+00 2.28e+00

σ4 4.22e+01 8.99e-01 2.59e+00 1.98e+00

σ5 1.16e+01 7.06e-01 1.70e+00 7.40e-01

σ6 4.93e+00 4.61e-01 1.24e+00 5.08e-01

σ7 3.81e+00 2.73e-01 8.44e-01 3.21e-01

σ8 2.56e+00 9.92e-02 5.36e-01 2.27e-01

σ9 1.03e+00 7.44e-03 2.75e-01 1.36e-01

σ10 9.99e-11 9.54e-11 9.97e-11 4.07e-13

Table 1. Maximum value, minimum value, sample mean and standard deviation for the
N = 10 ensemble averaged singular values (not normalized) based on a sample size of
M = 1000.

Sing vals maxj σ̂
(j)
i minj σ̂

(j)
i 〈σ̂i〉M 〈〈σ̂i〉〉M

σ̂1 4.95e-01 1.72e-01 2.74e-01 5.76e-02

σ̂2 4.95e-01 1.51e-01 2.56e-01 6.20e-02

σ̂3 2.60e-01 2.21e-03 1.38e-01 3.64e-02

σ̂4 2.15e-01 2.11e-03 1.12e-01 3.26e-02

σ̂5 1.38e-01 1.98e-03 7.84e-02 2.48e-02

σ̂6 1.14e-01 1.53e-03 5.78e-02 1.99e-02

σ̂7 8.74e-02 9.52e-04 4.06e-02 1.58e-02

σ̂8 7.60e-02 8.96e-04 2.62e-02 1.21e-02

σ̂9 4.65e-02 2.31e-04 1.39e-02 8.21e-03

σ̂10 1.10e-11 1.19e-13 5.09e-12 2.03e-12

Table 2. Maximum value, minimum value, sample mean and standard deviation for
the N = 10 ensemble averaged singular values (normalized) based on a sample size of
M = 1000.

that the histograms of ‖J‖ in figure 8 cluster around one. The ‘pure translation’
case

∑N
i=1 Γi = 0 appears to be quite rare although there are examples of pure

translational equilibria in the samples.

5. Discussion

The Brownian search scheme described in this paper, based on a linear algebra
formulation of the problem (in contrast to the classical variational approach used,
for example in Campbell & Ziff (1979)), offers an unbiased approach for finding all
of the relative equilibrium configurations of point vortices on the sphere, regardless
of their stability properties or symmetries. For the range of values of N used in
this paper, the convergence properties of the algorithm were adequate — for larger
values of N , we expect convergence to be more sluggish. The richness of the class
of relative equilibria allowed us to use them as microstates from which to extract
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Figure 10. Distribution of ensemble averaged normalized singular values, with error bars at one

standard deviation about the mean. Note that there appears to be little difference between the

distributions shown for N = 8, 9, 10.
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N < S > << S >> < ‖ · ‖ > << ‖ · ‖ >>

4 7.74e-01 9.71e-02 2.75e+00 5.32e+00

5 8.88e-01 1.64e-01 4.78e+00 1.32e+01

6 1.02e+00 2.07e-01 7.96e+00 1.25e+01

7 1.14e+00 2.30e-01 1.04e+01 1.09e+01

8 1.23e+00 2.51e-01 1.63e+01 2.11e+01

9 1.35e+00 2.51e-01 1.89e+01 1.46e+01

10 1.42e+01 2.75e-01 2.75e+01 4.27e+01

Table 3. Ensemble averaged Shannon entropy and Frobenius norms with standard
deviations for N = 4 − 10. Each ensemble consists of 1000 equilibrium configurations.
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Figure 11. Ensemble averaged entropy levels for N = 4 − 10, compared with the
maximum entropy ln(N).

information on the macroscopic level via ensemble averages. There are two main
findings:

1. The length of the center-of-vorticity vector, ‖J‖ clusters near one, as shown
in the histograms of figure 8, while the total vorticity associated with each
member of the ensemble, as expressed by

∑N
i=1 Γ(j)

i , tends to cluster at the
extreme values of ±1 as shown in the histograms in figure 14.

2. The averaged Shannon entropy scales very nearly like 〈S〉 ≈ αNβ , with β ∼
2/3. This quantity reflects the averaged distribution of the normalized singular
values shown in figure 10 as a function of N and provides a scalar measure
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Figure 12. Ensemble averaged Shannon entropy values shown in Table 3, plotted as a
function of N on a log-log scale. The data shows power-law scaling of the form 〈S〉 ∼ αNβ ,
with α ∼ 0.305683, β ∼ 0.671424 as obtained via a least squares fit to the data.

of the relative weighting of the rank-one components, ~ui~v
T
i , constituting the

equilibrium ‘pattern’, as encoded in the configuration matrix and expressed
in (2.12).

The first conclusion provides evidence that the macroscopic average vorticity
can be thought of as one single vortex of unit strength, with either clockwise or
counterclockwise circulation, discretized, in a sense, by the point vortices in their
relative equilibrium configuration. Since this macroscopic state is in agreement with
statistical results reported by mean-field theory using collections of equal strength
vortices moving dynamically on the sphere or via Monte Carlo simulations (see the
recent monograph of Lim & Nebus (2006)) it suggests that using the full family
of relative equilibria (presumably most of them unstable) offers a useful and rich
enough set of microscopic building blocks from which to extract meaningful macro-
scopic information. The second conclusion, we believe is unexpected as there is no
a priori reason for the averaged quantities to follow any clean scaling law. Indeed,
as shown in figure 13, the ensemble averaged Frobenius norms do not exhibit clear
scaling features. As a final remark, we point out that the methods and conclusions
reached in this paper are also relevant in treating the classical problem of opti-
mally distributing N charged electrons on the surface of a conducting sphere, an
unsolved problem with a long history (see, as an example, Altschuler et. al. (1997,
2005, 2006), Bergersen et. al. (1994), Edmundson (1992), Glasser & Every (1992),
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Figure 13. Ensemble averaged Frobenius norms for N = 4 − 10.

Erber and Hockney (1991), Saff & Kuijlaars (1997)) and listed by Smale (2000) as
one of the outstanding mathematical problems for the next century.
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Figure 14. Histograms showing the total vortex strength of the ensemble. (a) N = 4; (b) N = 6;

(c) N = 8; (d) N = 10. Note the tendency for
PN

i=1 Γi to cluster at the extreme values ±1. The

‘pure translation’ case
PN

i=1 Γi = 0 appears to be quite rare.
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