<table>
<thead>
<tr>
<th>Title</th>
<th>Nutrient and diatom dynamics during late winter and spring in the Oyashio region of the western subarctic Pacific Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sugie, Koji; Kuma, Kenshi; Fujita, Satoshi; Nakayama, Yuta; Ikeda, Tsutomu</td>
</tr>
<tr>
<td>Citation</td>
<td>Deep Sea Research Part II: Topical Studies in Oceanography, 57(17-18), 1630-1642</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-09</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/48858</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>DSR2-57-17-18_1630-1642.pdf</td>
</tr>
<tr>
<td>Hokkaido University Collection of Scholarly and Academic Papers</td>
<td>HUSCAP</td>
</tr>
</tbody>
</table>
Nutrient and diatom dynamics during late winter and spring in the Oyashio region of the western subarctic Pacific Ocean

Koji Sugie a, b, *, Kenshi Kuma a, c, Satoshi Fujita a, Yuta Nakayama a, Tsutomu Ikeda c

a: Graduate School of Environmental Science, Hokkaido University, Kita 10-Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
b: Present address: Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
c: Faculty of Fisheries Science, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan

* Corresponding author
Koji Sugie
Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
Tel: +81-4-7182-1181, Fax: +81-4-7183-2966
E-mail: kojisugie@gmail.com

Keywords: Nutrient; Iron; spring bloom; Si:N ratio; Diatom; western subarctic Pacific Ocean
Abstract

We investigated the nutrient and diatom dynamics during late winter and spring (9-March to 1-May 2007) in the Oyashio region as part of the OECOS-WEST research cruises. Macronutrients, iron, chlorophyll \(a \) (Chl-\(a \)) and biogenic silica (BSi) concentrations in the upper mixed layer varied remarkably ranges were 1.88–18.8 \(\mu \text{mol L}^{-1} \) for \(\text{NO}_3+\text{NO}_2 \), 0.64–1.85 \(\mu \text{mol L}^{-1} \) for \(\text{PO}_4 \), 3.14–35.7 \(\mu \text{mol L}^{-1} \) for \(\text{Si(OH)}_4 \), 0.14–0.54 nmol L\(^{-1}\) for D-Fe, 0.64–24.6 nmol L\(^{-1}\) for T-Fe, 0.30–17.4 \(\mu \text{g L}^{-1} \) for Chl-\(a \), and 0.34–14.1 \(\mu \text{mol L}^{-1} \) for BSi. Mixed layer depth (MLD) also varied from 8–190 m during the cruises. The growth rate of \textit{in situ} phytoplankton communities, dominated by centric diatoms, varied in shipboard culture experiments from 0.55 d\(^{-1}\) for iron-replete to 0.14 d\(^{-1}\) for iron-limited conditions. A relationship between BSi and Chl-\(a \) concentrations indicates that the \textit{in situ} diatom community in the warmer water system (>4\(^\circ\)C) was heavily silicified, probably due to iron-limitation. The \textit{in situ} macronutrient and dissolved iron concentrations below the MLD and estimated macronutrient concentrations during winter were negatively correlated to temperature (1–6\(^\circ\)C), that is to the relative proportion of warm modified Kuroshio Water mixed into the colder Oyashio water system. The rate of decrease in \(\text{Si(OH)}_4 \) per \(^\circ\)C increase was greater than the rates for \(\text{NO}_3+\text{NO}_2 \) and \(\text{PO}_4 \) for both \textit{in situ} and estimated winter values. These results suggest that the spring bloom in the cold water system with high macronutrients and iron concentrations would progress rapidly and intensely, and then be terminated by nitrogenous nutrient depletion. However, the diatom bloom in warmer waters with lower macronutrients and iron concentrations would be terminated by Si- and/or iron-limitation of heavily-silicified diatoms. In the OECOS study, variation of macronutrients and iron due to the surface intrusions of several water masses and modification from different chemical conditions during winter were the most important factors regulating the progression, magnitude and probably fate of the spring phytoplankton bloom in the Oyashio region.
1. Introduction

The Oyashio is the western boundary current of the subarctic circulation in the Pacific. A large, annual spring phytoplankton bloom has been consistently observed in the Oyashio region, and its products appear to be transferred efficiently to higher trophic levels. This makes it a region of high productivity (Taniguchi, 1999; Sakurai, 2007). The water in the Oyashio region is characterized by high nutrient concentrations, nutrients supplied to the euphotic zone by strong vertical mixing during winter, as observed in other regions of the subarctic Pacific (Harrison et al., 2004). Saito et al. (2002) reported that the macronutrient concentrations during winter in the Oyashio region are approximately 1.3 times higher than those at Ocean Station Papa in the eastern subarctic Pacific. In addition, surface nitrate concentration during summer in the Oyashio region is drawn down to ~0.7 µmol L\(^{-1}\) by phytoplankton production (Kasai et al., 2001; Saito et al., 2002), while the oceanic subarctic Pacific is a High-Nutrient Low-Chlorophyll (HNLC) region (Banse and English, 1999; Tsuda et al., 2003; Boyd et al., 2004). The large annual macronutrient drawdown is one of the salient characteristics of the Oyashio region compared to other areas in the subarctic Pacific (Wong et al., 2002; Harrison et al., 2004). The large nutrient drawdown is likely supported by higher iron input to the euphotic layer in the western region compared to the eastern north Pacific (Nishioka et al., 2003, 2007; Takata et al., 2006; Nakayama et al., this issue). The supply of a large amount of bioavailable iron is one of the most probable reasons why the surface of the Oyashio region is not in the HNLC condition. However, Saito et al. (2002) suggested that two-thirds of subsurface (~20–30 m) water mass observed in the Oyashio region during summer seems to be in a condition similar to that in HNLC areas. In addition, iron concentration in the surface water of the Oyashio region is variable temporally and spatially (Nishioka et al., 2007). These variable iron concentrations and the diatom bloom phenomenon are similar to those of the coastal upwelling regimes in Pacific eastern boundary currents (Hutchins et al., 1998; Bruland et al., 2001, 2005). However, the physical and biological mechanisms controlling macronutrients and iron supply in the Oyashio region remain inadequately described, although they are important for the ecological dynamics in the region.

Previous research cruises have been conducted once a month at a maximum,
resulting in temporally and spatially variable macronutrient and chlorophyll \(a \) (Chl-\(a \)) recorded from year to year in the Oyashio region, especially in spring (Kasai et al., 2001; Saito et al., 2002). The hydrography in the Oyashio region is often complicated, and it has been called a “perturbed area” (Hanawa and Mitsudera, 1987), since it can be occupied by variable mixtures of two or three dominant water masses: Oyashio water, Coastal Oyashio Water and the Kuroshio extension. Each of those water types, when unmixed, has different chemical and physical conditions during winter and spring (Kono, 1997; Kono and Kawasaki, 1997; Oguma et al., 2008). Although this general picture is likely correct, the physical and biological processes generating the variability of nutrients and Chl-\(a \) concentrations in the Oyashio region are poorly understood because high-frequency observations are lacking for winter and spring. In the present study, we conducted intensive sampling at a fixed station in the Oyashio region for macronutrients, iron and Chl-\(a \) during late winter and spring in 2007 as part of the program Ocean Ecodynamics Comparison in the Subarctic Pacific (OECOS). In addition, we conducted phytoplankton culture experiments and measured biogenic silica (BSi) concentration to assess \textit{in situ} diatom dynamics in the Oyashio region during the spring bloom period.

2. Methods

2.1 Sampling strategy

The OECOS cruises were conducted in the Oyashio region of the western subarctic Pacific Ocean from 8- to 14-March 2007, aboard the TS Oshoro-Maru, and from 5-April to 2-May 2007 aboard the RV Hakuho-Maru. Sampling was done for macronutrients (NO\(_3^-\)+NO\(_2^-\) (hereafter N+N), PO\(_4^3-\) (P), Si(OH)\(_4^2-\) (Si)), ammonium (NH\(_4^+\)), dissolved iron (D-Fe, <0.22-\(\mu \)m), total dissolvable iron (T-Fe, unfiltered) and Chl-\(a \). At selected times, water samples were collected for culture experiments and BSi determinations (Table 1). Seawater samples were collected from 5–300 m at one station (42°00′N, 145°15′E) using a set of 12 acid-cleaned, Teflon-coated, Niskin X 10-L sampling bottles (General Oceanic) attached to a carousel frame equipped with a Sea-Bird SBE-9 plus CTD sensor. Hydrographic conditions (temperature, salinity, sigma-\(t \) and dissolved oxygen) were obtained from CTD data.
2.2 Sample treatment and measurement

Samples for iron analysis were buffered at pH 3.2 with 10 mol L\(^{-1}\) quartz-distilled formic acid, 2.4 mol L\(^{-1}\) ammonium formate buffer solution and then kept at least 3 months for D-Fe, and 6 months for T-Fe at room temperature until analysis in a land laboratory. The iron concentration in each buffered sample was measured by an automated Fe analyzer (Kimoto Electric) using a combination of chelating resin concentration and luminol-hydrogen peroxide chemiluminescence detection in a closed flow-through system (Obata et al., 1993; Nakayama et al., this issue). The samples for macronutrient concentrations in seawater were frozen until a laboratory analysis and determined by a QuAAtro® continuous flow analyzer (Bran+Luebbe).

For Chl-\(\alpha\) analysis, 100–300-mL of water samples were filtered on Whatman GF/F filter with gentle vacuum pressure (<100 mmHg). The Chl-\(\alpha\) concentrations were measured by a Tuner Designs fluorometer (10-AU) according to the method of Welschmeyer (1994) after extraction by \(N, N\)-dimethylformamide (Suzuki and Ishimaru, 1990).

For BSi analysis, 1-L seawater was filtered through an 0.45-\(\mu\)m omnipore filter (Millipore) using an all-plastic filtration unit followed by rinsing with Milli-Q water (Millipore, >18.0 M\(\Omega\) cm\(^{-1}\)). The filters were frozen in acrylic tubes at −20°C until analysis. The BSi was digested by heating the filters to 85°C for 2-hours in an 0.5% \(Na_2CO_3\) solution (Merk, suprapur) to dissolve BSi (Paasche, 1980). After cooling, the solution was neutralized with 0.5 mol L\(^{-1}\) HCl. An aliquot of the solution was diluted with Milli-Q water, and analyzed by a QuAAtro® continuous flow analyzer. Data were corrected by subtracting an appropriate filter blank. Paasche’s method (1980) should give less than 0.5% recovery of lithogenic mineral silica (Michel et al., 2002). The variability of the mean in duplicate BSi sample analyses was 2% in the present study.

2.3 Culture experiment

Three culture experiments were conducted on 9-March, 6- and 20-April 2007 (Table 1). Seawater for cultivation was collected at 10 m depth then sieved through 100-\(\mu\)m, acid-cleaned Teflon-mesh to eliminate mesozooplankton. The 100-\(\mu\)m mesh was sometimes
shaken gently to flush out chin-forming diatoms, after which there was no visible phytoplankton on the mesh. The seawater was then homogenized in an acid-washed 20-L polyethylene tank and dispensed into acid-cleaned 250-mL polycarbonate bottles (Nalgene) in a clean room on board. Incubation was at 5°C under 150-µmol photons m⁻² s⁻¹ of fluorescent light (12-h light:12-h dark). The macronutrients and Chl-α concentrations were measured initially and after 1-, 3- and 5-d incubations by the methods described above. The cultivation experiments were conducted in triplicate, nine bottles per experiment; bottles were sacrificed at each interval. Culture bottles were gently stirred by hand at least twice a day. Observation of the phytoplankton community initially and after 5-d of incubation was only done for the 6- and 20-April experiments using phase-contrast inverted microscopy following the method of Hasle (1978). An adequate volume of formalin-fixed sample was poured into the settling chamber (Hydro-bios), and settled for at least 24-h before identifications were made.

2.4 Data analysis

Macronutrient concentrations during winter were estimated by subtracting remineralized macronutrient concentrations from that below the MLD, which was estimated from the relationship between apparent oxygen utilization (AOU) and canonical Redfield ratio as reported previously (Tsurushima et al., 2002):

\[[\text{Nut}]_{\text{winter}} = [\text{Nut}]_{\text{in situ}} - (\text{AOU} \times \text{Redfield ratio} ÷ 170) \]

where \([\text{Nut}]_{\text{winter}}\) and \([\text{Nut}]_{\text{in situ}}\) represent for any macronutrient concentration during winter and that observed in situ, respectively. The Redfield ratios we used for macronutrient remineralization by heterotrophic activities were O₂:N:P = 170:16:1, reported by Anderson and Sarmiento (1994). In addition, we used O₂:Si = 170:15 to estimate [Si] during winter. However, Si remineralization does not occur solely by biological degradation processes, but mainly by thermodynamic dissolution (Dugdale and Wilkerson, 1998). The BSi dissolution rate is generally slower than those of particulate N or P, creating a downward “silica pump” (Dugdale and Wilkerson, 1998), and hence the deep [Si] maximum in the north Pacific Ocean is observed at least 1.5 times deeper (>1500 m) than those of N and P (~1000 m). In addition, Michel et al. (2002) reported based on linear regression analysis of BSi vs. particulate organic nitrogen (PON) that BSi flux is approximately 3 times higher than that of PON through the
150 m stratum during spring blooms. However, a conflicting observation was reported (Bidle et al., 2002, 2003) that the effect of a preferential remineralization of N and P compared to Si is diminished by bacterial attack. Thus the uncertainties affecting macronutrient remineralization ratios, especially for Si, have not yet been clarified (e.g., Dugdale and Wilkerson, 1998; Michel et al., 2002; Bidle et al., 2002, 2003). In addition, the amount of oxygen utilization other than by bacteria could be overestimated for purposes of estimating $[\text{Nut}]_{\text{winter}}$ in a relatively shallow and heterotrophic biomass-rich water column like that observed in the present study. During the spring bloom period in the Oyashio region, Shinada et al. (2001) reported that bacterial and microzooplankton production was approximately 67% of the secondary production. That indicates that normalized values of AOU could be overestimated by two-thirds, i.e., estimated $[\text{Nut}]_{\text{winter}}$ values could be underestimated and the gap amount may be transferred to higher trophic levels.

In the present study, the pycnocline during the April–May cruise was defined as the first downward increase in σ_t of ≥ 0.02 m$^{-1}$ and/or more than 2 weaker increases of $0.01 < \sigma_t < 0.02$ m$^{-1}$ in a 5 m stratum. In March, the pycnocline depth was defined as the inflection point of the vertical profile of σ_t because the pycnocline was often very weak.

3. Results

3.1 Physical properties and chlorophyll-a concentration

During the OECOS cruises, seawater properties varied from cast to cast; however, all of the hydrography was within the previously observed ranges of the Oyashio current system (Hanawa and Mitsudera, 1987; Kono and Sato, this issue) (Fig. 1). In addition, the waters seemed to change by horizontal advection without respect to storm events at the station (Kono and Sato, this issue). In March, the waters were vertically homogenous down to 145 or 190 m with high temperature (5–6°C) and salinity (33.55–33.65). Then colder (−1°C) and warmer (−6°C) waters alternated in the upper 50 m during April to May, with coincident changes of salinity and σ_t (Fig. 1a, b, c). Relatively warm, saline intrusions were observed in the 50 to 100 m stratum on 10-April and 18-April. Thus, the pycnocline depth depended on the water exchanges, but not on the thermocline or halocline alone; i.e. temperature and salinity were...
little changed by local environmental forcing, and the water properties were conserved during the present study (Fig. 1a, b, c; see also Kono and Sato, this issue). Chl-a in the surface mixed layer during March to May observation periods varied approximately 2 orders of magnitude, ranging from 0.38 µg L\(^{-1}\) on 6-March to 17.4 µg L\(^{-1}\) at 5m on 7-April (Fig. 1d). The higher Chl-a concentrations occurred in the cold water system (<4°C) and *vice versa* (discussed below).

The pycnocline below the surface mixed layer fluctuated from 8 to 129 m during the April cruise (avg. 50.6 ± 33.5 m), extremes observed on 7-April and 16-April, respectively. In March, the average was 170 m. Therefore, the present study describes the data from the upper 150 m, which we treat as an approximate seasonal maximum MLD in the Oyashio region. However, the MLD in the Oyashio region during winter does fluctuate from year to year (Harrison et al., 2004), varying in both location and timing of vertical shifts. The relationship between physical properties and macronutrients was different below 150 m (see below).

3.2 Nutrient and iron dynamics in spring

Macronutrient concentrations below the MLD were less at higher temperatures. Ranges were 11.3–27.5 µmol L\(^{-1}\) for N+N, 1.25–2.46 µmol L\(^{-1}\) for P, and 15.1–59.1 µmol L\(^{-1}\) for Si (Fig. 2). The relationships of nutrients with salinity below the MLD were weaker than those with temperature (data not shown), possibly because salinity-nutrient ratios differ between cold oceanic Oyashio and cold coastal Oyashio waters (these water types are described by Kono and Sato, this issue). The relationships among temperature and macronutrients are different below 200 m from those in the upper 150 m. That is, macronutrient concentrations increased with increase in temperature (data not shown). A deep temperature maximum (>200 m) is one of the characteristics of the Oyashio region during winter and into spring (e.g. Kono, 1997). In the upper mixed layer, N+N, P, and Si ranges were 1.88–18.8, 0.64–1.85, and 3.14–35.7 µmol L\(^{-1}\), respectively (Fig. 2), concentrations significantly lower compared to those below the MLD (p<0.001, ANOVA).

The molar ratio of (N+N):P was always less than the Redfield ratio of 16 (Redfield et al., 1963), ranging from 2.8 to 11.4. The lowest values were observed in the colder waters (Fig. 3a). The Si:P ratio was highly variable in the upper mixed layer, 4.4 to 22.8 whereas
below the MLD the range was 13.0 to 24.1 (Fig. 3b). Below the MLD, Si:(N+N) slightly
decreased as temperature increased; it was greater than the Redfield ratio (Redfield et al.,
1963; Brzezinski, 1985) even in the warmer waters. The Si:(N+N) ratio varied in the upper
mixed layer from 0.55 to 3.39 with the high ratios in the colder waters and vice versa (Fig. 3c).
The (N+N):P:Si ratio in March observations was close to constant at 10.9 ± 0.4:1:19.6 ± 1.1
(mean ratio to P ± 1 SD), whereas 1 SD of the Si:(N+N) ratio was 0.07. Thus, wide variations
of nutrient stoichiometry were observed only in the 6-April to 1-May period, which was also
the case for Chl-α variation. The concentrations of T-Fe and D-Fe also seemed to decrease
with increase in temperature, with significantly higher T-Fe and D-Fe concentrations below
the MLD than near the surface (p<0.001, ANOVA). In the water above ~4°C, T-Fe was lower
than 5.5 nmol L⁻¹, while in colder waters T-Fe concentrations were sometimes above 10 nmol
L⁻¹ (Fig. 4b, see also Nakayama et al., this issue).

The NH₄ concentration was <0.2 µmol L⁻¹ in the upper 50 m stratum and <0.1 µmol
L⁻¹ below 75 m during the pre-bloom period in March (Fig. 5a). In general, a subsurface NH₄
maximum with values from 0.5–1.3 µmol L⁻¹ was observed during April–early May below
the surface layer with high chlorophyll (Fig. 5b). However, 5 out of 19 hydro-casts (10-, 13-, 24-, 25- and 26-April) when the different water mass intrusions into the subsurface (20–100
m) were observed (Fig. 1), a relatively broad zone of high subsurface NH₄ (>1 µmol L⁻¹
maximum) occurred within the upper mixed layer (Fig. 5c). There was no consistent
relationship between NH₄ and physical or other chemical properties.

3.3 Biogenic silica

The BSi concentration increased with Chl-α concentration (Fig. 6a). During
pre-bloom period, the BSi and Chl-α concentrations were approximately constant at ~0.45
µmol L⁻¹ and ~0.4 µg L⁻¹, respectively (insert in Fig. 6a). The BSi concentration at 5 m
ranged from 1.4 (17-April) to 16.7 µmol L⁻¹ (6-April) during the bloom. About a half of
measured BSi concentration measurements taken below the MLD during the bloom were
higher than those during the pre-bloom period. In the upper mixed layer, the regression slope
between BSi and Chl-α concentration was significantly higher in the warmer (>4°C) water
than in the colder (<4°C) water (F-test; Fig. 6b).
3.4 Culture experiment

We conducted one culture experiment during colder conditions with high D-Fe and T-Fe, and two experiments during warmer conditions with low T-Fe (Table 2). The initial phytoplankton communities in March were dominated by pico- and nano-eukaryotic phytoplankton taxa such as Parmophyceae (2–5 µm) (Ichinomiya et al., this issue). On 6 April, large chain-forming diatoms (Bacillariophyceae) (>20 µm) predominated: *Thalassiosira nordenskioeldii* (abundance contribution: 22.6%), other *Thalassiosira* spp. (33.5%), and *Chaetoceros* subgenus *Hyalochaete* (38.0%), followed by *Odontella aurita* (2.1%) and *Porosira* sp. cf. *pentaporta* (1.4%). On 20-April, the numerically dominant diatom species was *Chaetoceros* subgenus *Hyalochaete* (78.0%), followed by *T. nordenskioeldii* (4.1%), *T. anguste-lineata* (4.0%), other *Thalassiosira* spp. (8.5%), *Fragilariopsis* sp. cf. *oceanica* (1.4%) and *Neodenticula seminae* (1.3%) (see also Sato and Furuya, this issue, for dynamics of small phytoplankton). The un-screened natural diatom community examined by SEM (Hattori-Saito, et al., unpublished data), had similar generic composition to that observed in the present study. It is notable that the temperate-zone diatom *Asteromphalus flabellatus* (Kawarada et al., 1968; Hasle and Syvertsen, 1997) was detected in the 20-April community but not in that of 6-April. In addition, approximately 6% of the diatoms such as *Chaetoceros* subgenus *Hyalochaete* and *Stephanopyxis nipponica* formed resting spores at the start of the 20-April culture experiment (Sugie et al., in press).

The Chl-α growth rate during the 6-April cultivation was 0.55 d⁻¹ during the first day. Due to both N- and Si-depletion after 3 d of cultivation, Chl-α biomass reached stationary phase (Fig. 7a, b, d). In the March and 20-April incubations, Chl-α biomass increased exponentially throughout the 5-d cultivation periods with Chl-α-specific growth rates of 0.29 and 0.14 d⁻¹, respectively (Fig. 7a). In the 20-April cultivation, Si was exhausted after 5 d without N- or P-depletion. The non-siliceous flagellate *Phaeocystis globosa* and/or *P. pouchetii* (Prymnesiophyceae) increased, which may have contributed to Chl-α increase in days 3 to 5 of cultivation. Phosphate remained more than 0.2 µmol L⁻¹ at the end of the experiment in all cultivations (Fig. 7c). Ammonia concentrations did not vary during the cultivation period of March, whereas both April cultivations exhausted ammonia at 5 d as
well as N+N (data not shown). The nutrient utilization rate per unit Chl-α during culture
growth was calculated from the initial level to that before any nutrient exhaustion, i.e. the
initial 5 d for the March incubation, initial 1 d for 6-April, and initial 3 d for 20-April (Fig. 7).
The ΔNut / ΔChl-α ratios differed among experiments, which may have derived from the
differences in the phytoplankton communities and iron concentrations (Table 2).

3.4 Macronutrients below the MLD

The AOU below the MLD ranged from 11.1 to 113.5 µmol L⁻¹, except for one
negative AOU at 30 m depth on 8-April when the MLD was 21 m. This indicates N+N, P and
Si remineralization amounting to 1.0–10.7, 0.07–0.67 and 0.9–10.0 µmol L⁻¹, respectively, in
the 150 m stratum (excluding the one negative AOU datum). The remineralized
macronutrient concentrations indicate that 5.9–39% of the N+N, 3.6–28% of P, and 2.6–18%
of Si were already regenerated during the bloom periods. The lower amounts of remineralized
macronutrients were generally observed in the colder, high-Chl-α waters. The [Nut]winter
values were negatively correlated with an increased contribution of warm, saline Modified
Kuroshio Water (MKW) (Fig. 8 a, b, c; and see the water mass mixing ratio described by
Kono and Sato, this issue). However, as stated earlier, respiration of organisms other than
bacteria and microzooplankton was ignored in the present estimates, and they may contribute
up to a third of the community respiration (Shinada et al., 2001). This missing third
(approximately) implies that the estimated macronutrient remineralizations potentially were
8.7–58% of N+N, 5.3–41% of P, and 3.8–26% of Si. However, the correlation coefficient
decreased from 0.70 to 0.17 for N+N, 0.77 to 0.31 for P, and 0.53 to 0.35 for Si by taking into
account respiration other than that of bacteria and microzooplankton (data not shown). Even
with such uncertainty, the macronutrient concentrations during winter estimated by equation
(1), decreased significantly when there was an increased contribution of MKW (Fig. 8a, b and
c). The [N+N]winter:[P]winter ratio slightly decreased from ~10 to 8.7 (mol:mol) during
increased contribution of the MKW (Fig. 8d). The [Si]winter:[P]winter and [Si]winter:[N+N]winter
significantly decreased (F-test, p<0.001) with increased MKW contribution (Fig. 8d).

4. Discussion
During the OECOS-West study at Stn. A5, the variations of macronutrients and iron concentrations covered the entire range observed from winter to summer in the Oyashio region (Kasai et al., 2001; Nishioka et al., 2007). Those large variations derived from variable amounts of biological utilization (Figs. 1, 2, 4, 5 and 6) and variable nutrient supply due to recurring water mass exchanges (Figs. 2, 3 and 8). The spring phytoplankton bloom progression and the chemical and hydrographical conditions did not seem to be strictly time-dependent changes (Fig. 1). That is, seasonality was a minor component of the characteristics for each bloom patch in the present study. In addition, nutritional status especially iron availability for phytoplankton, was different among the bloom patches during spring in the Oyashio region (Figs. 6 and 7). Relatively large amounts of macronutrients were already remineralized in the upper 150 m stratum; however, the remineralized nutrient concentrations also varied by an order of magnitude (Figs. 5 and 8). That variability had never been detected before due to low-frequency sampling.

4.1 Nutritional status of the spring phytoplankton community

The siliceous phytoplankton community was quite different between the March and April experiments. In March there were Parmophyceae (Ichinomiya et al., this issue), while in April there were predominantly large chain-forming diatoms, as reported previously during spring in the western subarctic Pacific (Saito and Tsuda, 2003; Liu et al., 2004). The nutrient drawdown ratios of the March cultivation experiment may have derived from pico- and nano-phytoplankton; however, their nutritional status could not be discerned further. That is because one of the dominant siliceous phytoplankters belonged to the Parmophyceae (Heterokontophyta, Chrysophytes: Booth and Marchant, 1987). Parmophyceae have spherical or quasi-spherical siliceous skeleton surrounding a cell approximately 2–5 µm in size. They are sometimes the dominant phytoplankton during non-bloom periods in the North Pacific regions (Booth et al., 1980; Taniguchi et al., 1995; Komuro et al., 2005) and the Southern Ocean (Silver et al., 1980). However, they have not been cultured, and belong to taxa for which little information is available (Ichinomiya et al., this issue).

The phytoplankton cultivated from the 6-April community, were predominantly
centric diatoms growing in nearly optimum conditions with a nearly optimum Si:N drawdown ratio of 0.73 ± 0.07 (Saito and Tsuda, 2003); hence there was a high Chl-α specific growth rate of 0.55 d^{-1}, comparable to the optimal rates of *T. nordenskioeldii* in unialgal culture at 5°C. That was the strain isolated during this cruise (Sugie and Kuma, 2008) and one of the dominant species in the incubation bottle. On the other hand, in the 20-April experiment, relatively ample macronutrient but low D-Fe concentrations (<0.2 nmol L^{-1}) possibly made phytoplankton community growth rate slow (0.14 d^{-1}: the initial 3 days) with nearly double Si:N drawdown ratio (1.22 ± 0.06) compared to the 6-April experiments. However, two dominant diatom genera such as *Thalassiosira* spp. and *Chaetoceros* subgenus *Hyalochaete* spp. were conservative in both experiments. Thus, the higher Si:N drawdown ratio of the 20-April community was associated with heavily silicified and/or N-quota reduced iron-limited diatoms (Takeda, 1998; Marchetti and Harrison, 2007) and diatom resting spores under either N- or Fe-limited conditions (Sugie and Kuma, 2008; Sugie et al., in press). Because the diatom resting spores have several-fold higher Si quota than N quota (e.g. Kuwata et al., 1993), even if resting spores were only 6% of the total diatom community, that would significantly increase the Si drawdown (Sugie et al., in press). In addition, iron-limited diatoms reduce their Chl-α cell quota, increase their C:Chl-α ratio and maintain relatively constant C:N ratio (Price, 2005). Thus, Chl-α-specific nutrient drawdown rates (Table 2) possibly increased due to iron-limitation of the phytoplankton community in the 20-April cultivation.

The BSi to Chl-α ratio also increased significantly in the warmer water mass and decreased in the colder waters (Fig. 6). In the in situ phytoplankton community analysis, the Chl-α content of the >10 µm fraction was at least 80% of the total, and diatoms were predominant in the community throughout the bloom period (Isada et al., this issue; Hattori-Saito A., unpublished data). Approximately 2-fold higher BSi to Chl-α ratio in the warm water than cold water was due to the physiological response of diatoms affected by iron- and/or light-limited conditions. However, the MLD was deeper in the warm water system than in the cold water system (Fig. 9). Light-limited phytoplankton have high intracellular Chl-α concentration (Thompson et al., 1989), and so likely, the increase in BSi to Chl-α ratio in the warm water represents an increase in Si quota of the diatoms caused mainly
by iron-limitation. Therefore, the iron status of the phytoplankton community in the spring bloom may vary from iron-replete to iron-limited in colder and warmer waters, respectively (Figs. 6 and 7, Table 2).

4.2 The MLD and spring bloom

The pycnocline (\(\sigma_t = 26.49 \pm 0.05\), avg. ± 1SD) was generally coincident with the layer in which Chl-\(a\) decreased to <1 \(\mu g\) Chl-\(a\) L\(^{-1}\); this ‘chlorocline’ was usually in the layer between 26.5 and 26.6 sigma-\(t\) (avg. 26.52 ± 0.04; Fig. 1c, d). The MLD and temperature had significantly negative correlations with surface-layer (5 m) Chl-\(a\) (Fig. 9a, b), while T-Fe correlated positively with surface Chl-\(a\) (Fig. 9c). The correlation was weaker for Chl-\(a\) vs. \textit{in situ} macronutrient concentrations (shown only for N+N, Fig. 9d). In addition, there was no relationship of Chl-\(a\) with D-Fe (Fig. 9e), which implies variable phytoplankton utilization and growth under different macro- and micronutrient environments. Apparently surface Chl-\(a\) was controlled by light availability and physical dilution of phytoplankton biomass in the mixed layer, as reported previously for the Oyashio region (Saito et al., 2002) and for mesoscale \textit{in situ} iron-fertilization experiments (de Baar et al., 2005). That is, in the present study, the cold water mass with shallower MLD had higher Chl-\(a\) concentration, while the warmer water mass with deeper MLD had lower Chl-\(a\) (Fig. 9a, f). In general, the initiation and development of a spring phytoplankton bloom is a seasonal phenomenon driven by increase in irradiance and day-length, and by shoaling of the MLD during the transition from winter to spring (Smetacek and Passow, 1990). Initiation and seasonal timing of the spring bloom in the Oyashio region have been investigated by a combination of satellite imagery and Argo float data, described elsewhere (Okamoto et al., this issue). However, in the present study, the variation of the water column conditions generated a mosaic of bloom patches rather than a simple seasonal succession driven by progressive thermal stratification (Figs. 1 and 9).

4.3 Nutrients and spring bloom dynamics in the western subarctic Pacific Ocean

4.3.1 Colder water system

Below the MLD of the Oyashio region, there is a tendency for decreasing
macronutrient concentrations with increasing in temperature (Fig. 2), as previously observed in the Western Subarctic Gyre (Andreev et al., 2002). In addition, Si decreases preferentially with increasing temperature compared to N and P (Fig. 3), which could be caused by greater contributions of MKW (Fig. 8). Variable macronutrient utilization by phytoplankton with different nutritional status may also change the relative macronutrient concentrations (Fig. 2). A substantial macronutrient drawdown occurred during the spring bloom period (Fig. 2), and surprisingly, relatively great macronutrient remineralization occurred at the same time in the upper 150 m stratum, as supported by our ammonium data (Fig. 5).

The (N+N):P:Si ratio below the MLD and the ratio during the March pre-bloom period in the Oyashio region indicate that the exhaustion of nitrogenous nutrient would terminate the spring phytoplankton bloom in the region within the temperature range observed in the present study (Figs. 3 and 8), provided that phytoplankton utilize macronutrients at the Redfield ratio (Redfield et al., 1963; Brzezinski, 1985). The residual Si:(N+N) would increase with the bloom progression, if the diatoms utilize macronutrients at the Redfield ratio and/or if non-diatom species increased. The increase would persist until just before N exhaustion. In the iron-rich subarctic water of Funka Bay, Japan where the pre-bloom periods of in situ Si:N ratio is ~2, the spring phytoplankton bloom is terminated by nitrate depletion (Kudo et al., 2000; Kuma et al., 2000). The Si:N ratio increased because the Si:N drawdown ratio of a predominantly diatom community is <1 before nitrate depletion (Kudo et al., 2000). In the present study, in the 6- to 8-April period under cold and iron-replete conditions, the Si:(N+N) ratio in the upper mixed layer increased to a maximum of ~3.4 with the progress of the diatom bloom (Fig. 3c). In addition, the dominant diatom species are reported to form heavily silicified resting spores under N-deplete conditions (McQuoid and Hobson, 1996; Sugie et al., in press). These diatoms would exhaust Si soon after N-depletion by formation of resting spores in the colder water system, as suggested for Funka Bay (Kudo et al., 2000) and for the Oyashio region (Saito and Tsuda, 2003). Unfortunately, in our culture experiment of 6-April, the contribution of resting spores to the diatom community was <1%, probably due to the short cultivation time after N-exhaustion or to inhibition of further silicification of the spore frustules by Si-depletion (Fig. 7). Therefore, the bloom in the colder, iron- and nutrient-rich water with shallower MLD (Figs. 1, 8 and 9) develops rapidly and achieves quite high
biomass. Thereafter, the bloom is terminated by nitrogenous nutrient exhaustion.

The bloom duration (n-days) in the cold (1°C), iron-rich, eventually N-limited water can be calculated as follows:

\[
[N\text{ut}]_{\text{winter}} - \left(\sum_{t=0}^{n} [\text{Chl-a}]_{\text{winter}} \times e^{\mu \times t} \right) \times \Delta[N\text{ut}] / \Delta[\text{Chl-a}] = 0, \quad (2)
\]

we took the initial Chl-a (day 0) to be approximately the March value of 0.4 µg L⁻¹ (Fig. 1d), the growth rates (\(\mu\)) to be 0.55 d⁻¹ (Fig. 5a), and \(\Delta N / \Delta \text{Chl-a}\) to be 1.32 (Table 2). The quantity \([N\text{ut}]_{\text{winter}}\) represents estimated macronutrient concentration during winter of the element limiting the carrying capacity. We took the maximum nutrient concentration to be approximately that below the MLD without any admixture of MKW, that is 18.7 µmol L⁻¹ for \([N+N]_{\text{winter}}\) (Fig. 8a). Then, the calculated duration is only 6–7 days, and maximum [Chl-a] would be ca. 14 µg L⁻¹, similar to the [Chl-a] in the nearly N-depleted (~2 µmol L⁻¹), iron-rich (T-Fe ≈ 20 nmol L⁻¹), and colder water (~2°C) bloom condition (Chl-a: 17 µmol L⁻¹) of 7-April at 5 m (Fig. 1).

The calculated duration would change if mesozooplankton grazing could be taken into account. Nevertheless, mesozooplankton grazing is thought to be low because mesozooplankton metabolism is depressed by cold water temperature during the bloom period (Ikeda, 1985; Rose and Caron, 2007; Kobari et al., this issue a). In fact, short-term massive blooms have been observed to sink to depth without significant mesozooplankton grazing in the other regions characterized by near-zero water temperatures (Michel et al., 2002; Thompson et al., 2008). The high biomass at N-limitation may enhance formation of fast-sinking aggregates, including heavy resting spores (Sugie and Kuma, 2008), accelerating the bloom collapse by sedimentation (Grimm et al., 1997; Kudo et al., 2000; Kristiansen et al., 2001; Michel et al., 2002). Unfortunately, we could not detect the bloom-collapse, at least partly due to the recurring shifts of the water mass at the sampling station. We should try in future work to determine the fate of the bloom in the Oyashio region.

4.3.2 Warmer water system

Silicic acid decreased preferentially compared to the other macronutrients in the warmer water mass (Figs. 2, 3 and 8). Although there was higher [Si]_{\text{winter}} compared to
in the warm water (Fig. 8), the iron-limited heavily silicified diatoms (Takeda,
1998; Marchetti and Harrison, 2007) and diatom resting spores (Kuwata et al., 1993; Sugie
and Kuma, 2008; Sugie et al., in press) would have decreased the in situ $\text{Si}:(N+N)$ ratio to <1
with progress the bloom (Fig. 3c). In the present study, lower D-Fe concentration (<0.2 µmol
L$^{-1}$) compared to previously measured values in the western subarctic Pacific region
(Nishioka et al., 2003, 2007; Takata et al., 2006) was observed in the warmer water (>3–4°C).
Saito et al. (2002) also reported that two-thirds of the Oyashio waters at 20–30 m depth in
August retained relatively abundant macronutrients, similarly to HNLC conditions. The D-Fe
and T-Fe seem to decrease with increase in temperature, similarly to macronutrients (Figs. 2
and 4), and the 20-April incubation indicated that the in situ diatom community was
iron-limited in even mildly warmer waters (Fig. 7, Table 2). Additionally, the warm water
generally had a deep MLD (Fig. 9e) and chlorocline (>50 m, Fig. 1d), often deeper than the
level of 1% of photosynthetically active radiation at the surface (Isada et al., this issue).
Therefore, the development of a bloom in the warmer waters would be affected by iron- and
light-colimitation and by dilution of the phytoplankton biomass in the deep mixed layer.

The relationship between $[\text{Si}]_{\text{winter}}$ and temperature has a lower correlation coefficient
than those of $[\text{N}]_{\text{winter}}$ and $[\text{P}]_{\text{winter}}$, possibly associated with the variability of the BSi
dissolution kinetics in the water column (Michel et al., 2002; Bidle et al., 2002, 2003). In
addition, the variability of diatom silicification, due to their nutritional status in the upper
mixed layer, could change the remineralization stoichiometry below the mixed layer.
However in the present estimation, we used remineralization stoichiometry at constant
Redfield ratios (Redfield et al., 1963; Brzezinski, 1985). Another possibility may involve the
difference of the $[\text{Si}]_{\text{winter}}$ value between Coastal Oyashio Water and Oyashio Water, however,
we could not characterize that from our data. Although silicon dynamics have these
uncertainties, a decrease in $[\text{Si}]_{\text{winter}}$ with temperature is a significantly conservative trend.

Our results indicate that diatom production in the warmer water with relatively deep
MLD was reduced not only by lesser amounts of Si but possibly also by formation of heavily
silicified diatom vegetative cells and resting spores under iron-limitation (Takeda, 1998;
Marchetti and Harrison, 2007; Sugie and Kuma, 2008; Sugie et al., in press), combined with
further silicification due to light-limitation (Saito and Tsuda, 2003). However, the specific
factors limiting diatom production (de Baar, 1994) could not be assessed from stoichiometry. There is a much higher concentration of particulate iron in the Oyashio region compared to the eastern subarctic Pacific region (Nishioka et al., 2003; Takata et al., 2006; Nakayama et al., this issue), which could release bioavailable D-Fe. On the other hand, the [D-Fe] could be decreased by particle scavenging. However, the amount of D-Fe released from particulate iron or scavenged is unknown. In addition, relatively high ammonium concentration in the mixed layer (Fig. 5) may decrease nitrate uptake (Dortch et al., 1991), which would enhance Si utilization compared to N+N and/or lead to N+N remaining utilized, as observed for HNLC-like conditions in the Oyashio region (Saito et al., 2002). The present study partly illustrates that the warmer water type could be significantly linked to HNLC-like conditions in subsurface layer of the Oyashio region (Saito et al., 2002).

Another interest of the warmer water type is the bloom duration and favorable food environment for herbivorous zooplankton. The bloom duration in water with the highest MKW contribution water (~0.65) can be calculated from equation (2). The bloom duration in the iron- and Si-limited ([Si]_winter ≈ 19 µmol L⁻¹) water lasted ~19 days, using 0.14 d⁻¹ as the growth rate (Fig. 5a), and ΔSi / ΔChl-a of 3.29 (Table 2). From the viewpoint of trophodynamics, warm water accelerates overall metabolism of herbivorous heterotrophs including their grazing activities (Ikeda, 1985; Rose and Caron, 2007; Kobari et al., this issue a). Significant implications of the increased grazing activity of herbivorous heterotrophs are (1) to improve transfer efficiency between phytoplankton and higher trophic levels, and (2) to act as one of significant factors terminating the bloom (Takahashi et al., 2008; Kobari et al., this issue b), especially after the phytoplankton growth is limited by iron- and/or Si-limitation.

The present study indicated that (1) the physical water properties during winter in the Oyashio region determined nutrient and iron concentrations in the water mass, (2) iron and MLD regulate the development rate, and (3) these same factors probably control the fate of the spring diatom bloom. We found that the carrying capacity of the Oyashio region for phytoplankton in the spring bloom period is a spatial and advective mosaic. The annual new production may vary a great deal due to the differences between the water masses present at a given time or site in the Oyashio region. These bloom dynamics would affect the biological pump and the transfer efficiency to higher trophic levels, although such frequent variability...
also seemingly supports high productivity in the Oyashio region.

Acknowledgments

We thank the captain, crews and colleagues aboard the TS Oshoro-Maru and RV Hakuho-Maru for their efforts at sea. We are grateful to Dr. Kono T. in the Tokai University for providing the water mass mixing-ratio analysis. We would like to thank Dr. Ichinomiya M. in the Tohoku National Fisheries Research Institute, Dr. Gomi Y. in the Seikai National Fisheries Research Institute, Dr. Kobari T in the Kagoshima University, Dr. Ota T. in the Ishinomaki Sensyu University, Dr. Sato M. in the University of Tokyo, and Dr. Suzuki K. and Ms. Omata A. in the Hokkaido University for their technical support for microscopic observations and useful discussions. We also thank Mr. Isada T. and Ms. Hattori-Saito A. in the Hokkaido University for supporting our sampling. We acknowledge three anonymous reviewers for valuable comments. This work was supported by grants for Scientific Research (18201001) from the Ministry of Education, Culture, Sports, Science and Technology and for the Sasakawa Scientific Research Grant from the Japan Science Society.

References

efficiency in the oceanic silica pump caused by bacteria mediated silica dissolution.

Limnology and Oceanography 48, 1855–1868.

Ichinomiya, M., Gomi, Y., Nakamachi, M., Ota, T., Kobari, T., Temporal patterns in silica deposition among siliceous plankton during the spring bloom in the Oyashio region. Deep-Sea Research II, this issue.

Isada, T., Hattori-Saito, A., Saito, H., Ikeda, T., Suzuki, K., Primary productivity in the Oyashio region of the northwest subarctic Pacific during the spring bloom as measured with 13C technique and satellite remote sensing. Deep-Sea Research II, this issue.

Kuwata, A., Hama, T., Takahashi, M., 1993. Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology Progress Series 102,

Sugie, K., Kuma, K., Fujita, S., Ikeda, T., in press. Increase in Si:N drawdown ratio due to

Table and Figure captions

Table 1. Cast, sampling date and measurements. Abbreviations; CTD: conductivity-temperature-depth, Nuts: nutrients, NO$_3$+NO$_2$, PO$_4$ and Si(OH)$_4$, Fe: dissolved Fe (<0.22 µm) and total Fe (unfiltered), Chl: chlorophyll a, and BSi: biogenic silica. Initials in cast numbers, OS and KH, indicates Oshoro-maru and Hakuho-maru cruises, respectively.

Table 2. D-Fe and T-Fe concentrations and nutrient utilization per unit Chl-a increment in the each of the culture experiments. Data for ΔNutrients/ΔChl-a represent the means of triplicate bottles ± 1SD.

Fig. 1. Temporal variations in (a) temperature, (b) salinity, (c) sigma-t, and (d) Chl-a in the upper 150 m. Experiments were conducted aboard the TS Oshoro-Maru from 8- to 14-March 2007, and the RV Hakuho-Maru from 5-April to 2-May 2007. Four storms prevented sampling during 11- to 13-March, 14- to 15-April, 21- to 22-April, and 27- to 28-April.

Fig. 2. The relationships temperature versus in situ nutrients of (a) N+N, (b) P and (c) Si in the upper 150 m of the water column. Filled and open symbols represent the nutrient concentrations below the MLD and in the upper mixed layer, respectively.

Fig. 3. The relationships of temperature versus in situ nutrient ratios for (a) (N+N):P, (b) Si:P, and (c) Si:(N+N) in the upper 150 m of the water column. Dashed line represents Redfield ratio of (a) N:P = 16, (b) Si:P = 15, and (c) Si:N = 0.93 (Redfield et al., 1963; Brzezinski, 1985). Filled and open symbols represent the ratios of macronutrients below the MLD and in the upper mixed layer, respectively.

Fig. 4. The relationships between temperature and (a) D-Fe, and (b) T-Fe in the upper 150 m of the water column. Filled and open symbols represent the iron concentrations below the MLD and in the upper mixed layer, respectively.

Fig. 5. Vertical profiles of NH$_4$ and Chl-a. (a) Pre-bloom of OS07005 (9-March) and OS07006 (10-March), (b) KH07c012 (8-April) and KH07c026 (12-April), and (c) KH07c054 (24-April) and KH07c057 (25-April).
Fig. 6. The relationship between Chl-α and (a) upper mixed layer (closed circle) and below the MLD (open diamond) of BSi, and (b) upper mixed layer BSi, distinguishing the data from <4°C (open circle) and >4°C (closed circle). The figure inserted in (a) expands the ranges from 0 to 1 μg L\(^{-1}\) for Chl-α and 0 to 2 μmol L\(^{-1}\) for BSi. The plotted lines in (b) were obtained by least-squares regression: \([\text{BSi}]_{<4^\circ C} \text{ (μmol L}^{-1}\) = (1.15 ± 0.14) × [Chl-α] + 18.0 \((r^2 = 0.93, n = 7, p<0.001)\) and \([\text{BSi}]_{>4^\circ C} \text{ (μmol L}^{-1}\) = (2.14 ± 0.08) × [Chl-α] + 6.9 \((r^2 = 0.94, n = 43, p<0.001)\). Dashed lines indicate 95% confidence limits of the regression.

Fig. 7. Temporal changes in (a) Chl-α, (b) N+N, (c) P and (d) Si during the culture experiments. Data are represented as the means ± 1SD of triplicate bottles.

Fig. 8. The relationships between the warmer Modified Kuroshio Water (MKW) mixing ratio and estimated macronutrient concentrations during winter for (a) \([\text{N+N}]_{\text{winter}}\), (b) \([\text{P}]_{\text{winter}}\) and (c) \([\text{Si}]_{\text{winter}}\), and (d) the ratios of \([\text{N+N}]_{\text{winter}}:[\text{P}]_{\text{winter}}, [\text{Si}]_{\text{winter}}:[\text{P}]_{\text{winter}}\) and \([\text{Si}]_{\text{winter}}:[\text{N+N}]_{\text{winter}}\) calculated from the regressions of Fig. 8a–c. The MKW ratio represents the contribution of MKW to MKW + Coastal Oyashio Water + Oyashio Water (Kono and Sato, this issue). The plotted lines were obtained by least-squares regression for (a) \([\text{N+N}]_{\text{winter}} \text{ (μmol L}^{-1}\) = (–13.3 ± 1.2) × (MKW ratio) + 18.7 \((r^2 = 0.70, n = 50, p<0.001)\), (b) \([\text{P}]_{\text{winter}} \text{ (μmol L}^{-1}\) = (–1.14 ± 0.09) × (MKW ratio) + 1.89 \((r^2 = 0.77, n = 50, p<0.001)\), and (c) \([\text{Si}]_{\text{winter}} \text{ (μmol L}^{-1}\) = (–38.0 ± 5.1) × (MKW ratio) + 43.6 \((r^2 = 0.53, n = 50, p<0.001)\). Dashed lines indicate 95% confidence limits of the regression. The thin line in (d) represents the approximate Redfield ratio (Redfield et al., 1963; Brzezinski, 1985).

Fig. 9. The relationship of Chl-α concentration at 5 m and (a) mixed layer depth (MLD, m), (b) temperature, (c) T-Fe, (d) N+N and (e) D-Fe, and (f) temperature at 5 m and MLD. The plotted line was obtained by least-square regression: (a) [Chl-α] (μg L\(^{-1}\)) = 290 × MLD\(^{-1.17}\) \((r^2 = 0.86, n = 19, p<0.001)\), (b) [Chl-α] (μg L\(^{-1}\)) = –2.79 × T (°C) + 16.6 \((r^2 = 0.75, n = 19, p<0.001)\), (c) [Chl-α] (μg L\(^{-1}\)) = 0.63 × [T-Fe] (nmol L\(^{-1}\)) + 0.57 \((r^2 = 0.74, n = 19, p<0.001)\), (d) [Chl-α] (μg L\(^{-1}\)) = –0.74 × [N+N] (μmol L\(^{-1}\)) + 11.1 \((r^2 = 0.31, n = 19, p<0.05)\), and (f) MLD = 5.56 × e\(^{0.514 × T (°C)}\) \((r^2 = 0.73, n = 19, p<0.001)\). No significant relationship among [D-Fe] and [Chl-α] (e).
Table 1. Cast, sampling date and measurements. Abbreviations; CTD: conductivity-temperature-depth, Nuts: nutrients, NO$_3$+NO$_2$, PO$_4$ and Si(OH)$_4$, Fe: dissolved Fe (<0.22 µm) and total Fe (unfiltered), Chl-α: chlorophyll α, and BSi: biogenic silica. Initial of cast numbers of OS and KH indicates Oshoro-maru and Hakuho-maru cruise, respectively.

<table>
<thead>
<tr>
<th>Cast</th>
<th>Date</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS07005</td>
<td>09/03/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi, Culture (March)</td>
</tr>
<tr>
<td>OS07006</td>
<td>10/03/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>OS07008</td>
<td>14/03/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c005</td>
<td>06/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi, Culture (6-Apr)</td>
</tr>
<tr>
<td>KH07c008</td>
<td>07/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c012</td>
<td>08/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c020</td>
<td>10/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c026</td>
<td>12/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c029</td>
<td>13/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c033</td>
<td>16/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c037</td>
<td>17/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c041</td>
<td>18/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c045</td>
<td>19/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c048</td>
<td>20/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, Culture (20-Apr)</td>
</tr>
<tr>
<td>KH07c054</td>
<td>24/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c057</td>
<td>25/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
<tr>
<td>KH07c061</td>
<td>26/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c067</td>
<td>30/04/2007</td>
<td>CTD, Nuts, Fe, Chl-α, BSi</td>
</tr>
<tr>
<td>KH07c070</td>
<td>01/05/2007</td>
<td>CTD, Nuts, Fe, Chl-α</td>
</tr>
</tbody>
</table>
Table 2. D-Fe and T-Fe concentrations and nutrient utilization per unit Chl-α increment of the each culture experiments. Data for ΔNutrients/ΔChl-α represent the means of triplicate bottles ± 1SD.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Temperature (°C)</th>
<th>D-Fe (nmol L$^{-1}$)</th>
<th>T-Fe (nmol L$^{-1}$)</th>
<th>ΔN/ΔChl α</th>
<th>ΔP/ΔChl α</th>
<th>ΔSi/ΔChl α</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>6.2</td>
<td>0.38</td>
<td>3.57</td>
<td>0.81 ± 0.20</td>
<td>0.084 ± 0.059</td>
<td>0.24 ± 0.35</td>
</tr>
<tr>
<td>6-April</td>
<td>1.7</td>
<td>0.41</td>
<td>15.70</td>
<td>1.32 ± 0.11</td>
<td>0.058 ± 0.008</td>
<td>0.96 ± 0.09</td>
</tr>
<tr>
<td>20-April</td>
<td>3.6</td>
<td>0.17</td>
<td>3.38</td>
<td>2.69 ± 0.18</td>
<td>0.113 ± 0.009</td>
<td>3.29 ± 0.36</td>
</tr>
</tbody>
</table>
Fig. 3

(a)

(N+P):P (mol:mol)

(b)

Si:P (mol:mol)

(c)

Si:(N+P) (mol:mol)

Temperature (°C)
Fig. 4

(a) Scatter plot showing the relationship between temperature (°C) and D-Fe (nmol L⁻¹) with data points.

(b) Scatter plot showing the relationship between temperature (°C) and T-Fe (nmol L⁻¹) with data points.
Fig. 5

- Panel a:
 - Chl-a (µg L⁻¹)
 - NH₄ (µmol L⁻¹)
 - Depth (m)
 - OS07005
 - OS07006

- Panel b:
 - KH07c012
 - KH07c026

- Panel c:
 - KH07c054
 - KH07c057

- NH₄ (µmol L⁻¹) vs. Chl-a (µg L⁻¹)
Fig. 6

Chlorophyll a (µg L$^{-1}$)

Biogenic Silica (µmol L$^{-1}$)

[BSi] <4°C
[BSi] >4°C

Upper MLD
Below MLD

a) b)
Fig. 7

(a) Chl-a (µg L⁻¹) vs. Time (d)

(b) N+N (µmol L⁻¹) vs. Time (d)

(c) P (µmol L⁻¹) vs. Time (d)

(d) Si (µmol L⁻¹) vs. Time (d)

- (a) March
- (b) 6-Apr
- (c) 20-Apr
Fig. 8

-
 - [N+N]_{winter} (\text{µmol L}^{-1})
 - [P]_{winter} (\text{µmol L}^{-1})
 - [Si]_{winter} (\text{µmol L}^{-1})

- a) b) c) d)

- [Si]_{winter}:[N+N]_{winter}
 - Redfield ratio
 - N:P
 - Si:P
 - Si:N

- [N+N]_{winter}:[P]_{winter} and [Si]_{winter}:[P]_{winter}

- MKW mixing ratio
Fig. 9

(a) MLD (m) vs. Chl-a (µg L⁻¹) at 5 m (µg L⁻¹)

(b) Temperature at 5 m (°C) vs. D-Fe at 5 m (nmol L⁻¹)

(c) T-Fe at 5 m (nmol L⁻¹) vs. Chl-a (µg L⁻¹) at 5 m (µg L⁻¹)

(d) N+N at 5 m (µmol L⁻¹) vs. MLD (m)

(e) D-Fe at 5 m (nmol L⁻¹) vs. Temperature at 5 m (°C)