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Abstract

This paper proposes an eigenvector-based method for analysis and design of hierarchical networks for multi-agent systems.
first define the concept of eigen-connection by characterizing low rank information flow between layers based on the eigenvect
of lower level interconnection structures. It is shown that the resulting intergroup interconnedfenialy a few eigenvalues

of interconnection structures in the lower layer, and we derive explicit expressions for shifted eigenvalues. Then a procedure f
designing hierarchical networks that result in desirable eigenvalue distributions is proposed, where the eigen-connection is used
a key to move undesirable eigenvalues selectively. Tieetveness of the procedure is demonstrated by a numerical example.

Keywords: multi-agent dynamical system, hierarchical network, low rank interconnection, eigenvector-based method

1. Introduction corresponding agent in the next group. However, if we focus on
information flow among groups, all information about agents in
Networked multi-agent dynamical systems are one of theach group must be transmitted to the next groups. Hence, the
classes of greatest concern in control engineering in recefroposed scheme does not seem to capture the weakness of in-
years. A great number of researchers have paid attention tergroup connections.
this field, especially consensus problems and cooperative con- Motivated by this fact, Shimizu and Hara generalized the hi-
trol [1, 2, 3, 4]. Usually, eigenvalues of the matrix that rep- erarchical cyclic pursuit scheme and focused onféeceof the
resents the network structure play an important role in manynhtergroup connection [9, 10, 11]. Thefigirence from the pre-
application concerned with multi-agent systems. However, fogious scheme is the fashion of information exchange among the
systems with large-scale networks, it is extremelfficlilt to  groups. In the newly proposed scheme, the only aggregated in-
design an information protocol that results in a desirable eigenformation about the agents in each group is transmitted to the
value distribution. In nature, it is often observed that an in-next group. They related the aggregation to the matrix that ap-
teraction, which seems to be large and complex from a globgdears in an fi-diagonal block of the overall system matrix and
point of view, consists of a number of local interactions in smallregarded the strength of the intergroup connection as its rank.
groups and weak interactions among the groups (see €.9. [Slrhis new view leads to the concept lofv rank interconnec-
This hierarchical structure can be expected to be onéfe€€ tion. It is a realistic situation since the capacity of a commu-
tive ways to handle systems with large scale network structuresjcation channel is usually limited. Furthermore, it was shown
This is not the first attempt to introduce a hierarchy tothat the low rank intergroup connections result in rapid conver-
network structures for multi-agent systems. For examplegence compared with the scheme in [6].
Smithet al. [6] proposed a hierarchical cyclic pursuit scheme  The superiority of the hierarchical schemes with low rank
and Hamilton and Broucke [7, 8] introduced a frameworkinterconnection discussed by deriving explicit expressions of
named patterned linear system which is capable of dealing witBigenvalues of the system matrix for hierarchical schemes. A
a class of hierarchy. This paper is related to [6], where agentsemarkable fact is that eigenvalues are decomposed into some
which are modeled as the integrator, are divided into somgets and members of each set coincide with eigenvalues of ma-
groups and the hierarchy means that cyclic pursuit is achieveglices representing local interconnection structures except a few
both on a micro and a macro levels. That is, each agent pukigenvalues. Interestingly, a similar result has been reported in
sues the next agent cyclically within a group and the centroiq12], which employs a hierarchy in a study of vehicle forma-
of each group also pursues that of the next group in the samgns. Whereas the network structure considered there is not a
manner. The scheme requires that an agent in a group recei¥gclic pursuit type, exchange of low rank information among
information about two agents: the next agent in the group and Q,roups is observed. Hence, we can expect that genera| hier-
archical networks with low rank interconnections induce such
“Corresponding author, Tek81-11-706-6452 specific eigenvalue distributions. If this is true, the property
Email addressestsubakino@ssi .ist.hokudai.ac.jp (Daisuke will give us an éfective procedure for designing hierarchical
Tsubakino)shinji_hara@ipc.i.u-tokyo.ac.jp (Shinji Hara) network structures.
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The final goal of the present paper is to establish a frame- h(s)
work for designing general hierarchical networks based on low u h(s) y
rank properties. In particular, we concentrate on the fundamen-
tal case where each group contains the same number of agents h(s)
as a first step. There are two main contributions in this pa-
per, namely a new characterization of interlayer low rank in- A
formation flow and an associated systematic design procedure
for hierarchical multi-agent dynamical systems. Unfortunately,
low rank interconnections do not always result in the specific
eigenvalue distributions. Hence, an essential structure implic-
itly used in the previous works is clarified in this paper. It space realization is expressed as
should be noticed that there is no trivial answer for this issue, {

Figure 1: Interconnection structure.

since the explicit expressions of eigenvalues are derived by di- X = AThX' + bt
rect computation in the previous works. Yi=Ch X

As a solution of this problem, we first define a new class ofand the transfer function is given by
low rank interlayer information flow based on eigenvectors of . a
matrices corresponding to local network structure. It is shown h($) = Gy (Shy — An)™"bn,
that general hierarchical network structures together with inwhereby, c, € R™ andA, € R, The agents are connected
tergroup connections belonging to the proposed class indugg each other through the input and output according to the fol-
specific eigenvalue distributions. More precisely, intergroupowing rule:
connections in the proposed claggeat only a few eigenval- u=Ay,

ues of local network structure. This completely explains theWherey = (Yo )T U= (U )T aNdA € RNXN,

previous results in [9, 10, 11, 12]. Furthermore, we can Obtair:\'he situation is depicted in Fig. 1. If thgth entry ofA is non-

explicit expressions describing how the corresponding e|genz—ero, theth agent receives output from tith agent. We refer

values are shifted. By utilizing this result, we next propose a5 A as aninterconnectionor an interconnection structurén

efficient design method of hierarchical networks that result e remaining part of the paper. The closed-loop system is then
desirable eigenvalue distributions. Briefly speaking, the pro '

posed method is to design intergroup network so that undesiF—epreSented by
able eigenvalues of local interconnection structure are shifted X= AX, X:= (XI X )r’ )
selectively.

This paper is organized as follows. Section 2 introduces avhereA € R(eN*(WN) js the system matrix of the total system
general model of two-layer hierarchical multi-agent dynamicaldefined by

systems. In Section 3, a fundamental framework is developed A=1y® A+ A® (brc)). 2

for the rank one and the rank two cases. First, the concept &yapility of the closed-loop system is completely determined by
eigen-connections defined. Then, we derive an expressiongjgenvalues of4. Massioni and Verhaegen proposed a proce-
for eigenvalue distributions of hierarchical network structuresy re to design distributed controllers for systems that have a
with eigen-connections. Section 4 investigates group behaviQimijar structure to (2) in [13]. Unlike this work, we would like

of agents over hierarchical networks with eigen-connectionsy, designA so that the eigenvalue distribution 6t becomes
Section 5 is devoted to a design procedure for hierarchical ingggjraple. This is not an easy task in direct methods, especially
terconnections based on our framework. We will show thatyhenN is very large. Fortunately, the closed-loop system be-
a low rank intergroup connection stabilizes unstable_ Ioca.IIy10ngS to the class of LTI systems with generalized frequency
connected systems of dynamical agents by a numerical simyziaples [14]. Thus, we only have to check if all the eigenval-
Igtlon. Some top|_cs of extension to further general cases argag of A (not, A) lie on the associated stability region deter-
discussed in Section 6. mined byh(s). Note that two types of necessary andfisient

. ) : . ) _ stability condition, namely Hurwitz type and Lyapunov type, in
Notation: The imaginary unitvV—1 is denoted byi. For a terms of the coficients ofh(s) were derived in [15].

square matri>:l\/|, (M) denotes the set of all eigenvalues of  ag mentioned in Introduction, we consider hierarchical inter-
M. MT andM" represent the transpose and the conjugate trangssnnection structures in this paper. Let agents be divided into

pose ofM, respectivelylq is thed x d identity matrix andly is ny groups includingy, agents, wher8l = nin,. The augmented
ad-dimensional column vector with all the components equakisiey is parted as follows:

to one, thatislq = (1,...,1)" € RY.

, 1=1...,N

X=(X1T X .- xgz)T’

2. Hierarchical multi-agent dynamical systems
where X;, := (xT

RETCTEEE ,xiznl)T is the state of theasth
We here introduce a general model for hierarchical multi-group. A two-layer hierarchical interconnection structure is

agent dynamical systems that is investigated throughout this paiven by

per. The system consistsifidentical SISO agents whose state A=1pn®A +Ky® 4y, 3)
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K Without loss of generality, we can exprestsas the product of

& ¢ .
WO vectors:
— —_— Ay =g, ()

) : SN wherey, ¢ aren;-dimensional column vectors. Note that this
// | ’," t \ decomposition is unique up to scalar multiplication. The above
| form tells us that™ andu represent ways of aggregation and

distribution of information, respectively. In what follows, we

A A characterizet; by eigenvectors ofy;.

Definition 1. Let A; be ann; xn; matrix that has an eigenvalue
A1. An intergroup connection matrix defined by (4) idedt
(resp., right) eigen-connection matri¥ A; associated with the

whereAy, 4, € R™M andK, € R™*™_ Figure 2 illustrates the eigenvalu@l_l, if £ (resp.,,u) .is a left (resp., right) eigenvector
network structure schematically. Agents locally interact withof A1 associated with the eigenvalie.

each other in each group. The hierarchy means that the groupspne may think that the above definition is somewhat artifi-
also interact with each other in the upper layer. The matriceg;,| However, ifA; is a graph Laplacian angd = (1/ny)1,,,

A andK; are models of the local interaction in the lower layer o, the resulting intergroup connection matfixis an eigeln—

and the intergroup interaction in the upper layer, respectivelye,nnection matrix ofs,. This setting corresponds to the case
Hlenge, non-zero entries Kb |nd|cqte the existence of COMMU- \yhere group averages are exchanged among the groups in the
nication between the corresponding groups. The maide- ,, or [aver and it is a quite natural situation. With this new
termines what kind of mformaﬂon of each group 1S exchangeqiaracterization of intergroup connection matrices, we can de-
among the groups and which agents receive fieceof the 0 the following theorem that shows the eigenvalue distribu-

interaction in the upper layer. In other words, models inter- i, of A can be decomposed into two set. This is the first fea-
layer information flow. We refer td; as anntergroup connec- ture of this paper

tion matrixor, simply, aconnection matrix

The connection matrix!; clearly plays an important role Theorem 1. Let A be an n x n; matrix that has at least one
in the hierarchical interconnection structure. In particular, ifSimple eigenvalug; and letu and{ be n-dimensional column
agents have little interaction with the others in each group andectors. If4; = ul* is a left or a right eigen-connection matrix
the resulting matrixA; is sparse, the group interaction domi- of A associated with;, then, for any Bx np matrix Ky, the set
nates the total behavior. As a result, a choice of the matyix of all the eigenvalues of A defined by (3) is given by
is significant for the achievement of global objectives. Shimizu .
and Hara claimed that the rank4f captures a degree of aggre- oA ={h+yiulyeaKu (G(Al) \ {’11})’
gatipn of informqtion flow among the group [9, 10]. We follow Furthermore, ifl; € o(Aq) \ (A1)
the idea of focusing on the low rank propertyff A problem
considered in this paper is how we can utilizgin the design
of a hierarchical interconnectioh with a desirable eigenvalue Proor. See Appendix A.

distribution. The key feature is to characterizebased on the ) ) )
eigenvector of\;. Theorem 1 tells us that an intergroup eigen-connection ma-

trix of rank one #&ects only one eigenvalue of the local inter-
connectionA;. In the previous research [9); is a Laplacian
3. Eigenvalue distribution matrix, £ is an arbitrary stochastic vector, apd= 1,,. This
condition corresponds to the case where the resulting intergroup
In this section, we define a class of intergroup connectiorfonnection matrix; is a right eigen-connection because the
matrices based on the eigenvector of the local interconnectiohaplacian matrix always hak, as a right eigenvector associ-
This new characterization allows us to obtain analytical eigenated with an eigenvalue 0. This means that the previous result
value distribution of the resulting hierarchical interconnection.in [9] is led by the fact that!; is not only a matrix of rank one
We mainly focus on the rank one and rank two cases. Howevebut also an eigen-connection matrix. Actually, general rank one
the extensions to higher rank cases are systematically possibié@tergroup connection matrices do not alwaykeet only one
For convenience of analysis, all matrices and vectors are apigenvalue ofA;. The theorem also contains the result shown
lowed to have complex entries in this section. However, result§ [12]. In their research, the matri is the Laplacian matrix
below are still valid for real matrices and vectors. whose entries in the first row are all zero adis the matrix
that has a non-zero number only at L1 entry. The matrix
4, can be expressed hyy = €'€]'’, where€]" is a vector
(1,0,...,0)" € R™. Obviously,4; is a left eigen-connection

Figure 2: Two-layer hierarchically interconnected system.

is an m times repeated eigen-
value of A, thenJ; has algebraic multiplicity pm.

3.1. Rank one interconnection

Consider rank one interconnections. That is, we have matrix of A; associated with an eigenvalue 0.
Theorem 1 has another feature. It enables us to design eigen-
rank4; = 1. value distribution ofA explicitly by adjustingA;, K,, and4;.



This means that we can develop a global interconnection struenatrix Ky, the set of all the eigenvalues of A defined by (3) is

ture from local ones. This is an advantage to introduce a hieragiven by

chical structure with low rank eigen-connection. In particular,

the termy*u is important. Ify,*u does not change, no change

of eigenvalue distribution occurs even though and4; may

change. We will propose an design proceduréddfy using

this property in Section 5. Here, for a complex valug, @, is a2 x 2 matrix defined by

A problem that arises in an application is that we can not al-

ways choose& from the eigenvectors oh;. Furthermore, the A1 v; .

( /12)+7(V§)(/J1 MZ)Ts

o (A) = o (D)) [V (@A) \ {41, 12))

yea(Kz)

(6)

corresponding eigenvector may be a complex vector. Although Py =
the theorem holds even ifis a complex vector; must be a

real vector for practical reasons. One of the methods to ovewhere \ and s are the left eigenvectors associated withand
come such a situation is to choasérom linear combinations 4z and T is a2 x 2 matrix satisfying

of eigenvectors of;. Actually, this is a special case of a higher

rank eigen-connection. The details will be discussed in the next (41 éVz) = (Vl V2 ) T.

section. Hence, we move on to the rank two case without dishz See Appendix B
cussing this topic here. OOF. pp .

As in the rank one case, we can obtain an analogous result
3.2. Rank two interconnection for right eigen-connection matrices.

The concept of eigen-connection, which is introduced in theCoroIIary 1. In the same setting in Theorem 2/if is a right
previous subsection, can be naturally extended to the rank tW&gen-connection matrix of A associated withand 1, then

case. In this subsection, we define a class of eigen-connectiQRs same statement of Theorem 2 holds by replaginby
matrices for intergroup connection matrices of rank two and

prove a theorem similar to Theorem 1. Since rdpk= 2, we 1 Ve
i ices: w, ="t +yS| 32 (W W, )
can decompos#; into a product of two Z n; matrices: y - A Y IS 1 W2,

A1 = (111 ,ug)(gl ) )* (5) where w and w, are the right eigenvectors ofifAassociated
with 2; and 1, and S is & x 2 matrix satisfying
In contrast to the rank one case, this decomposition is not

unigue since there is a degree of freedom of the linear com- (,U1 /Jz) = (W1 Wz)S.
bination. We define the eigen-connection of rank two by taking )
into account this freedom. Note that the above theorem does not depend on the choice

of u; andu, and that its corollary does not depend &gnand
Definition 2. Let A; be ann, x n; matrix and letl; andi, be %2 either. We can conclude that intergroup connection matrices
two eigenvalues oA, An intergroup connection matrix given ©Of rank two can change at least two eigenvaluesof Un-
by (5) is aleft (resp., right) eigen-connection matik A; asso- like the rank one case, the resulting eigenvalues are not explic-
ciated with the eigenvaluel and.l,, if £, ands, (resp. w1 and itly obtained even if the connection matrix is a rank two eigen-
u2) are linearly independent and belong to the linear subspadg®Nnection matrix. They are, however, given as the eigenvalues

spanned by the left (resp., right) eigenvectors associated witff & 2% 2 matrix, which can be easily calculated. _
the eigenvalueg; and.L,. This result covers the previous result in [10] as a special case.

In their setting,;; andu, are the sum and the féitrence of
dwo eigenvectors oA, by chance. Thus{; is a right eigen-
connection matrix ofA;. In comparison with the previous re-
search, our characterization of intergroup connection matrix of
rank two is applicable to any class Af andK,. Besides, an
expression of the 2 matrix that determines the shifted eigen-

({1 52) _ (Vl v2)T, (resp.,(pl #2) _ (W1 WQ)S), values is explicitly obtained.

The above definition is a natural extension of the rank on
case. Note that if an intergroup connection matrpgiven by
(5) is a left (resp., right) eigen-connection &f, there exist a
2x 2 matrixT (resp.,S) such that

wherev; andv; (resp.,wi andws,) are left (resp., right) eigen- 4 Group behavior

vectors ofA;. We show the main result for hierarchical inter-

connections with eigen-connections of rank two. In Section 3, we showed that the eigenvalue distribution of
a hierarchical interconnection structure with a low rank eigen-

Theorem 2. Let A, be an n x n; matrix that has two sim- connection matrix is divided into two parts. We here relate this

ple eigenvaluesl; and A, and letus, up, {1, and &, be n- structure to behavior of each group.

dimensional column vectors. Af; given by (5) is a left eigen- Consider the rank one case, thatds,is defined by (4). As-

connection of Aassociated witil; and A, then, for any axn, sume thatt; is a left eigen-connection matrix @&, associated



with a simple eigenvalug;. We also assume thgtis not or-
thogonal toy, that is,{Tu # 0, to prevent4; from being a
nilpotent matrix. For each group, we define the representative
stateY,(t) e R™, i, =1,...,n by

h(s)I,,

Al + (T K,

N
Yi2 — Z Glx(iz—l)nz+i1 _ (§T ® |n0) Xiz, Figure 3: Feedback configuration of the representative state.

i1=1

whereg, (in = 1,...,m) is theisth component of andX;, is  the other leaders. The other agents in each group interact with
the state of,th group. Namelyy;, is a weighted sum of the the agents in the other groups through the leaden; I£ O
agents’ state in thigth group. The collection of alY;,, which ~ andK; is a Laplacian matrix, the situation corresponds to that

is denoted byy, can be written as in [12]. Hence, we can conclude that a hierarchical intercon-
. nection structure with the rank one eigen-interconnection im-
Y= (YlT YnTz) =(ln, ®" ® Iny)X. plicitly assigns a virtual leader in each group. Since the inter-

. . ] ] connection structure of leaders is giventy,, + (" 1)Kz, the
We now investigate the time rate of change¥db clarify why  first set of the eigenvalues éfin Theorem 1 is related with the
the wordrepresentativés used. behavior of leaders.

Let P be ann, x n matrix defined by In the case wherg; is given by (5), a similar result is avail-

v )T able under the same condition as in Theorem 2. The number of
Ny s

P:= (5 V2 the virtual leaders in each group is two in this case.

wherev,, . .., vy, aren; —1 linearly independent vectors orthog-
onal tou. From the assumption thatu # 0, P is non-singular

and its inverse has the form 5. Design procedure
P—l — T,)-1 W . W,
(({ W We nl) We here show our procedure for designing hierarchical net-
for some appropriate vectovs,, ..., W,,. It follows immedi- ~ works for multi-agent dynamical systems based on the eigen-
ately from the definition that connection that has been developed in Section 3. The proposed

procedure is examined by a numerical simulation.

.
PAP = (Jﬁ/l1 - ) PA P! = (Jﬁf = ) @)
5.1. Procedure based on eigen-connections

where empty blocks mean that all the entries are 0. Next, con-

sider the coordinate transformatian— z = 7 x, where7 is In control of multi-agent dynamical systems, an information
defined by exchange protocol among agents must be designed appropri-
T =, ®P®Ily,. ately so that the corresponding interconnection structunas

Note that the transformation by the above matrix preserves th desirable eigenvalue distribution. As seen in Section 3, eigen-
hierarchical structure shown in Fig. 2. Then satisfies the connections can move eigenvalues of a local interconnection

following relation: structureA; selectively. Assume thaf; has an undesirable
' eigenvalue. Then, we can move it by lettipgor ¢ be the

Y = <|n2 ® ( 1 0 --- 0) ® |n0) z (8)  corresponding eigenvector. Ay has two undesirable eigenval-
ues, eigen-connections of two rank are available to move them.
Since the transformed system matrix is represented by Hence, we propose the following procedure for designing a hi-

1 1 erarchical interconnection structure:
TAT 7 = ln, ® In, ® An + I, ® (PAIP) ® (b))

+Ko® (PAPY) ® (bnc), 1. design the local interconnection structése
2. identify undesirable eigenvaluesAf,
3. construct connection matriz based on the correspond-
ing eigenvectors, and
Y = (In, ® An + (Aaln, + ((T)K2) ® (b)) V. 4. design intergroup interconnection structzeand adjust
4, so that shifted eigenvalues become desirable.

substituting (7) into the above equation and left-multiplying by
the matrix in (8) yield

This implies that the representative state evolves by itself. Com-

pared with (1)—(2), this is an interconnected system of identicalt should be noted that our procedure is applicable in the case
nz agents that have the same state space realizaiph(c])  whereA; has more than two undesirable eigenvalues along with

as that of the original agents (see Fig. 3). We can regard theigen-connections of higher rank as we shall discuss in the next
representative statg, as the state of the leader igth group.  section. In what follows, we demonstrate the above procedure
As is clear from (7), this virtual leader communicates only withby a numerical simulation.
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5.2. Numerical simulation 1

Consider the cooperative stabilization of 50 agents [i.es

50) whose transfer function is given bys) = 2/(s® + s> + 59). / \\
According to the stability analysis of LTI systems with gener- 20

alized frequency variables [14], the augmented system matrix

A given by (2) is stable if and only if all the eigenvalues of in-

terconnectiorA lie in QS. Here, QS is the complement of2,

in C, that isQ$ = C\ Q, andQ, is defined as follows. Let O
#(9) := 1/h(s) andC, = {se C|Res > 0}. Then the regioif2, 3 4
is defined by

Figure 4: Local communication topology.
Q, = ¢(C,) = {1 e C|Ise C, such that(s) = 1}.

Thus, we must design a 5050 matrixA that has all the eigen- ;
values inQS. 2r | P Qg
In this example, we divide agents into 10 groups containing ' +
5 agents each (i.en, = 10, n; = 5) to design a hierarchical 1 N 4 1
interconnection. The first task in our procedure is the design of Y y i
A;. Let the local interconnection structufe be given by £ i
= Or X S X
-1 0 0 1 ?
1 -1 0 0 0 ik S j
A=l 0 1 -2 1 o ; .
o o 1 -2 1 / y
1 1 0 0 -2 B
This A; corresponds to the communication topology shown in - 3 2 Re ! 0 !

Fig. 4. All the eigenvalues oAy are plotted in Fig. 5 together

with the stability region generated Wy(s). If no interaction  Figure 5: Eigenvalue distribution &%, and stability regiom2¢ generated by
occurs among the groups, thatds,= 0 orK, = 0, the resulting  N(s):

interconnection structure becomas= |,, ® A;. Hence, one

may expect that the augmented system is stable because all the o o
eigenvalues oA are the same a&, and they are in the left half It follows from the definition that the resultingy is a rank two

plane of complex plane. However, this is not true. There ardight €igen-connection matrix d% associated with 0 anel3.
two eigenvalues 0 and3 that do not belong t€°. Thus, we The situation can be explained intuitively as follows. Two kinds
+ ,

design/; andK., so that the unstable eigenvalues 0 afidare of aggregated information are shared among the groups. The
shifted intoQc? former, which is determined hg, is the average output of the
¢t

second, the third, and the fifth agents in each group. ffece

of the intergroup interaction based on this aggregated informa-
tion is transmitted to agents in each group according;toln

this case, all the agents except the first one receive it. On the

To this end, we next construd based on eigenvectors of
A; associated with the unstable eigenvalue 0 a3d Right
eigenvectors of; associated with 0 and3 are

Wy = (1 1 1 1 1)T’ Wo = (_2 1 -5 4 1)T’ other hand, the latter is the average output of the second, the
fourth, and the fifth agents. In each group, the first, the third,
respectively. Now we set and the fourth agents receive dfeet of the intergroup interac-
tion based on the aggregated information of second kind.
S = 1 (2 1), We apply Corollary 1 to compute eigenvalues of the total in-
3\l -1 terconnection structure. Simple computation yields the follow-
which leads to ing expression o,
01 -1 2 1\ 0
(Hl ,Uz)—(Wl Wz)S—(l 0o 2 -1 0) . ‘Pyz(g —3—7)'

The vectorg; andZ, are chosen as Hence, we haver(¥,) = {y,—3 — y}. The remaining task in

our procedure is to desidgt, such that for each eigenvalyef
K2, ¥y and-3 — y belong toQ¢. The followingK; satisfies the
requirement:

INote that this is hot the only method of stabilization. Actually, modification 1 5
of h(s) or A; allows the augmented system to be stable. Kz = —Z Lo - leo’

41:%(0 110 1), gzzé(o 101 1),




1
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Figure 6: Eigenvalue distributions &f(‘(J") and Aq (‘x). Figure 7: Outputs of all agents.

where a 10« 10 matrixL, is defined by vector inR™ is an eigenvector of,. Thus,A; andl,, have

all the eigenvectors in common. This medpsis a full rank

1 -1 eigen-connection matrix &%; and all the eigenvalues &f are
affected.
The second extension is to increase the number of eigenvec-
L, = -1 tors of A; that consist intergroup connection matrices without
-1 1 increasing the rank. Consider the rank one case/ beta lin-
-1 1 ear combination of two eigenvectors Af, that is, there exist
-1 -1/2 3/2 two constants, anda, such that

This means that 8 groups are in cyclic pursuit but the rest are

not. Consequently,

not a cyclic type.
The resulting eigenvalue distribution Afis plotted with 7’

in Fig. 6. All the eigenvalues oA are included inQS. Thus,

we have accomplished our objective. We also plot the eigenva

ues of A; with *x’ for comparison. It is easily seen that only . L

0 and-3 are moved with the rest of the eigenvaluesigfre- matrix 4y is given by

maining. This is one of the notable properties of hierarchical . v; v

systems with eigen-connection of low rank. Initial condition Ay =pd = “(1 1)(\/;) - ("“‘ '“)(v*z)‘

responses of all agents are shown in Fig. 7. A point we should i ) )

emphasize is that, even though the local interconnection is untNe matrix4; is of the same form as a rank two intergroup

stable, the outputs of all the agents converge to zero thanks tg®@nnection matrix (5), although the rank 4f is one. This
good combination of hierarchical interconnection. means that the rank one intergroup connection matrix written

as the product of an arbitrary vector and a linear combination
of two eigenvectors of\; is equivalent to a degenerate rank
two eigen-connection matrix. Thus, we can apply Theorem 2

There are some directions of extension of the results in th(tao such matrices if the associated eigenvalues are simple. The

. : . L . Matrix T in (6) is always the second order identity matiixn

previous sections. We briefly comment on them in this section,, . .
L . . . this case. Thus, (6) can be written as

The first is to increase the rank of the intergroup connection
matrix. The extension is more or less straightforward. A nank
intergroup eigen-connection would changeigenvalues of\;
and the #&ected eigenvalues would be given as the eigenvaluesh, ) ol i th Ul he ei
of a certairr x r matrix. An increase in dimension of matrices | IIS IS a S;rTIp € % 2 matrix, thus we can calculate the eigen-
makes it dificult to calculate the resulting eigenvalue distribu- Y&'U€S @S T0llOWS.
tion. Thus, such an extension is not necessarily useful. We can A1 + A2 + y({"1)
interpret the result in [6] based on the eigen-conneétidmy 2

V0L = 2o+ 91 = Vo) 0)? + Ay2 (i) (V31)
: ; |

{ =3V + Vo )

the network structure in the upper layer IIsﬂlolds, wherev; andv, are eigenvectors ofy associated with
two distinct eigenvalues. Note that andv, are not necessary
real even if/ is a real vector. Without loss of generality, we can
Eetal = ap = 1 since the scalar multiple of an eigenvector re-
mains to be an eigenvector. The resulting intergroup connection

6. Further general interconnections

o [TV Vi
7 Wor A+ yVou )

(10)

2Normally, it is interpreted as a property of Kronecker sum [16].



It is clear that the resulting eigenvalues depend on the sum, difnatrix. Indeed, let the Schur form &, be given byUK,U",
ference and product of two quantipyw;u andyv;u. This fact  thatis,U is a unitary matrix and) K,U* is an upper triangular
gives an index to design desirable eigenvalue distribution. Tonatrix whose diagonal entries are the eigenvaluds,ofThen,
treat linear combinations of an arbitrary number of eigenvectort) ® |, is a unitary matrix and we have
of A;, we need results for higher rank interconnections, which
is mentioned in the previous paragraph. Therefore, those two (U ® In))AU ®In) = In, ® Ay + (UKU") @ 4.
extensions are essentially same. L . e

The final possibility of extensions is to increase the numbep—hIS implies that the set of all the eigenvaluesias given by
of intergroup connections. If we emplayconnection matrices, _
the total interconnection structure is given by T(A) = U 7 (As+y4).

yea(Kz)
m
A=ly, ®A + Z ng) ®A(1k)- Hence, we oqu haye to derive th_e elgen\{alu@\pfr*741.
= If 41 is a right eigen-connection matrix &, 47 is aleft

o . eigen-connection matrix of]. Thus, we prove the theorem
It is immediate from the proofs of Theorem 1 and Theorem Zonly for left eigen-connection matrices. Sinde = ul* is a
that similar results can be obtaineddf”, .., K{™ are simulta-  |eft eigen-connection matrix is a left eigenvector ofy. Left
neously triagularizable and", ..., 4™ are eigen-connections multiplying A; + y4; by *, we obtain the following relation:
of A; associated with the same simple eigenvaluesn ¥ 2,
an interconnection of this form appears in hierarchical dis- (AL +yd1) = (4 +yd )

cretization of a class of distributed parameter systems [17]. If_ i , )
ALA(ll)’ N ’A(lm) are circulant matrices anuél)’ . Kgm) are This means thaf is a left eigenvector of\; + y4; associated

defined by with an eigenvalu@; + yZ*u.
| k We show the remaining eigenvalues. ket ..., w, be (gen-
KY = (T‘Ll) , eralized)right eigenvectors of; associated with all the eigen-
values exceptl;. Since/ is aleft eigenvector ofA; and a
the resulting interconnection coincides with a model considleft eigenvector is orthogonal to right (generalized) eigenvec-
ered in [181. Furthermore, the intergroup connection matricesors except the corresponding one, we haie; = 0 for all

A(ll), e ,A(lm are eigen-connection matrices &f since all the j =2,... n. This fact implies that

circulant matrices have the same eigenvector in common.
41wy = ud*wj =0,

7. Conclusion which yields the following relation:

n this paper, we have analyzed and desigped hierarchical (Ar + 4w = Ajw;, j=2,....n.
interconnection structures for large-scale multi-agent systems
based on the eigenvector. We have defined a class of low rankis means thatw,, ..., w, are also (generalized) right eigen-
interlayer information flow that carffect on a few eigenvalues vectors ofA; + y4; and, thus, we have
of local interconnection structures selectively. Based on this
property, we have developed a procedure for constructing hier- o (A1) \ {1} = o(As + y41) \ (A + y{ )
archical interconnections that result in desirable eigenvalue dis-, .
tributions. Whereas large-scale networks are usually modele-ﬁhIS completes the proof.
as high-dimensional matrices, the proposed procedure enable
us to design such a matrix by dealing with a number of lowerAppendix B. Proof of Theorem 2
dimensional matrices. This is a superiority of our method.
We point to two issues as future works. Instead of homo- Asin the prOOf of Theorem 1, we consider the Eigenvalues of
geneous groups, the case where the numbers of agents in edtht ¥41 only.
groups are dierent is more realistic. This is an ongoing topic L€t 4s...., 4 be all the eigenvalues ok, excepti, and
and is partly tackled in [19]. An extension to the multi-layer 42, Where they are not necessary distinct. Denote (general-

case is also interesting. ized) right eigenvectors of; associated withs,..., 1, by
W, ..., Wy, respectively. Then, we havwé,w; = 0 for all
Acknowledgment j = 3,...,n, because; and ¢, are right eigenvectors oA;.

This work was supported in part by Grant-in-Aid for JSPS Thus, we obtain

Fellows (217445).
( ) (A1+)/A1)Wj =A1Wj, j =3,...,N

Appendix A. Proof of Theorem 1 This fact implies thatw; is also a right eigenvector @, + y4;.

Thus, the following relation holds:
In some related works [13, 20, 21], the matrix of the form

in (3) can be similarity-transformed to a block upper triangular (A \ {11, A2} = {43,..., A0} C o (AL + y47).
8



Let 27 and 2, be the remaining eigenvalues Af + y4;. We
assume that, 1, ¢ o(A1) \ {11,42}. Then, the eigenvectors
associated with] and 2, must be included in the subspace
spanned by; andv,, eigenvectors of\; associated withl;, 15,
because they are included in spagy( .., w,)*. Letv; andv,
be the left eigenvectors &; + y4; associated witl} and A,
respectively, and they are represented by

V|’ = 1V1 + q2Vo, =12

Left-multiplying A; + y41 by v/ yields

Vi (AL + A1) = 4V

(1 ﬂz)T*( (

11
)2

1

9)-+

V2

Hence, we have

o

Sincevy(# 0) andvy(# 0) are linearly independenty;, a2,
and.; must satisfy

Furthermore(a1, ai2) # 0 due tov] # 0. These facts mean that
Ay is an eigenvalue ob, and that {1, ai2)" is the correspond-
ing left eigenvector. I, has two distinct eigenvalues or one
repeated eigenvalue that has geometric multiplicity 2, thisn
are eigenvectors &, + y4;1. Otherwise, the last eigenvalue of
A; + y4, still remains. However, this case corresponds to the
case where one of, and), agrees with one of the elements in
the setr(Ay) \ {11, 12}. This completes the proof. |

a1
a2

1

v*):o_

V2

[19]

a1

alz)* (@, - Al2) =0.

References

[1] W. Ren, R. W. Beard, E. M. Atkins, A survey of consensus problems in
multi-agent coordination, in: Proc. Americal Control Conference, 2005,
pp. 1859-1864.

R. Olfati-Saber, J. A. Fax, R. M. Murray, Consensus and cooperation in
networked multi-agent systems, Proceedings of the IEEE 97 (1) (2007)
215-233.

R. M. Murray, Recent research in cooperative control of multivehicle sys-
tems, J. Dyn. Sys., Meas., Control 129 (5) (2007) 571-583.

M. Mesbahi, M. Egerstedt, Graph Theoretic Methods in Multiagent Net-
works, Princeton University Press, 2010.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Bagesi
Hierarchical organization of modularity in metabolic networks, Science
297 (2002) 1551-1555.

S. L. Smith, M. E. Broucke, B. A. Francis, A hierarchical cyclic pursuit
scheme for vehicle networks, Automatica 41 (2005) 1045-1053.

S. C. Hamilton, M. E. Broucke, Patterned linear systems: Rings, chains,
and trees, in: 49th IEEE Conference on Decision and Control, 2010, pp.
1397-1402.

(2]

(3]
[4]
(5]

(el
(7]

[10]

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(20]

(21]

[8] S. C. Hamilton, M. E. Broucke, Geometric control of patterned linear
systems, in: 49th IEEE Conference on Decision and Control, 2010, pp.
1403-1408.

H. Shimizu, S. Hara, Cyclic pursuit behavior for hierarchical multi-agent
systems with low-rank interconnection, in: Proc. SICE Annual Confer-
ence, 2008, pp. 3131-3136.

H. Shimizu, S. Hara, Hierarchical consensus for multi-agent systems with
low-rank interconnection, in: Proc. ICCAS-SICE, 2009, pp. 1063-1067.
S. Hara, H. Shimizu, T.-H. Kim, Consensus in hierarchical multi-agent
dynamical systems with with low-rank interconnections: Analysis of sta-
bility and convergence rates, in: Proc. American Control Conference,
2009, pp. 5192-5197.

A. Williams, S. Glavaki, T. Samad, Formations of formations: hierarchy
and stability, in: Proc. American Control Conference, 2004, pp. 2992—
2997.

P. Massioni, M. Verhaegen, Distributed control for identical dynamically
coupled systems: a decomposition approach, IEEE Trans. Autom. Con-
trol 54 (1) (2009) 124-135.

S. Hara, T. Hayakawa, H. Sugata, LTI systems with generalized frequency
variables: A unified framework for homogeneous multi-agent dynamical
systems, SICE JCMSI 2 (5) (2009) 299-306.

H. Tanaka, S. Hara, T. Iwasaki, LMI stability condition for linear sys-
tems with generalized frequency variables, in: Proc. the 7th Asian Control
Conference, 2009, pp. 136-141.

D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with
Application to Linear Systems Theory, Princeton University Press, 2005.
D. Tsubakino, S. Hara, Hierarchical modeling foffdsion systems:
Symmetrically-networked systems with rank one interconnection, in:
Proc. ICCAS-SICE, 2009, pp. 1068-1073.

Y. Wang, M. Morari, Structure of hierarchical linear systems with cyclic
symmetry, Systems & Control Letters 58 (2009) 241-247.

N. Fujimori, L. Liu, S. Hara, D. Tsubakino, Hierarchical network syn-
thesis for output consensus by eigenvector-based interlayer connections,
in: 50th IEEE Conference on Decision and Control and European Control
Conference, 2011.

J. A. Fax, R. M. Murray, Information flow and cooperative control of ve-
hicle formations, IEEE Trans. Autom. Control 49 (9) (2004) 1465-1476.
F. Borrelli, T. Keviczky, Distributed LQR design for identical dynamically
decoupled systems, IEEE Trans. Autom. Control 53 (8) (2008) 1901—
1912.

[9]



