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Eigenvector-based intergroup connection of low rank
for hierarchical multi-agent dynamical systems
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bDepartment of Information Physics and Computing, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan

Abstract

This paper proposes an eigenvector-based method for analysis and design of hierarchical networks for multi-agent systems. We
first define the concept of eigen-connection by characterizing low rank information flow between layers based on the eigenvector
of lower level interconnection structures. It is shown that the resulting intergroup interconnections affect only a few eigenvalues
of interconnection structures in the lower layer, and we derive explicit expressions for shifted eigenvalues. Then a procedure for
designing hierarchical networks that result in desirable eigenvalue distributions is proposed, where the eigen-connection is used for
a key to move undesirable eigenvalues selectively. The effectiveness of the procedure is demonstrated by a numerical example.
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1. Introduction

Networked multi-agent dynamical systems are one of the
classes of greatest concern in control engineering in recent
years. A great number of researchers have paid attention to
this field, especially consensus problems and cooperative con-
trol [1, 2, 3, 4]. Usually, eigenvalues of the matrix that rep-
resents the network structure play an important role in many
application concerned with multi-agent systems. However, for
systems with large-scale networks, it is extremely difficult to
design an information protocol that results in a desirable eigen-
value distribution. In nature, it is often observed that an in-
teraction, which seems to be large and complex from a global
point of view, consists of a number of local interactions in small
groups and weak interactions among the groups (see e.g. [5]).
This hierarchical structure can be expected to be one of effec-
tive ways to handle systems with large scale network structure.

This is not the first attempt to introduce a hierarchy to
network structures for multi-agent systems. For example,
Smithet al. [6] proposed a hierarchical cyclic pursuit scheme
and Hamilton and Broucke [7, 8] introduced a framework
named patterned linear system which is capable of dealing with
a class of hierarchy. This paper is related to [6], where agents,
which are modeled as the integrator, are divided into some
groups and the hierarchy means that cyclic pursuit is achieved
both on a micro and a macro levels. That is, each agent pur-
sues the next agent cyclically within a group and the centroid
of each group also pursues that of the next group in the same
manner. The scheme requires that an agent in a group receive
information about two agents: the next agent in the group and a
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corresponding agent in the next group. However, if we focus on
information flow among groups, all information about agents in
each group must be transmitted to the next groups. Hence, the
proposed scheme does not seem to capture the weakness of in-
tergroup connections.

Motivated by this fact, Shimizu and Hara generalized the hi-
erarchical cyclic pursuit scheme and focused on an effect of the
intergroup connection [9, 10, 11]. The difference from the pre-
vious scheme is the fashion of information exchange among the
groups. In the newly proposed scheme, the only aggregated in-
formation about the agents in each group is transmitted to the
next group. They related the aggregation to the matrix that ap-
pears in an off-diagonal block of the overall system matrix and
regarded the strength of the intergroup connection as its rank.
This new view leads to the concept oflow rank interconnec-
tion. It is a realistic situation since the capacity of a commu-
nication channel is usually limited. Furthermore, it was shown
that the low rank intergroup connections result in rapid conver-
gence compared with the scheme in [6].

The superiority of the hierarchical schemes with low rank
interconnection discussed by deriving explicit expressions of
eigenvalues of the system matrix for hierarchical schemes. A
remarkable fact is that eigenvalues are decomposed into some
sets and members of each set coincide with eigenvalues of ma-
trices representing local interconnection structures except a few
eigenvalues. Interestingly, a similar result has been reported in
[12], which employs a hierarchy in a study of vehicle forma-
tions. Whereas the network structure considered there is not a
cyclic pursuit type, exchange of low rank information among
groups is observed. Hence, we can expect that general hier-
archical networks with low rank interconnections induce such
specific eigenvalue distributions. If this is true, the property
will give us an effective procedure for designing hierarchical
network structures.
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The final goal of the present paper is to establish a frame-
work for designing general hierarchical networks based on low
rank properties. In particular, we concentrate on the fundamen-
tal case where each group contains the same number of agents
as a first step. There are two main contributions in this pa-
per, namely a new characterization of interlayer low rank in-
formation flow and an associated systematic design procedure
for hierarchical multi-agent dynamical systems. Unfortunately,
low rank interconnections do not always result in the specific
eigenvalue distributions. Hence, an essential structure implic-
itly used in the previous works is clarified in this paper. It
should be noticed that there is no trivial answer for this issue,
since the explicit expressions of eigenvalues are derived by di-
rect computation in the previous works.

As a solution of this problem, we first define a new class of
low rank interlayer information flow based on eigenvectors of
matrices corresponding to local network structure. It is shown
that general hierarchical network structures together with in-
tergroup connections belonging to the proposed class induce
specific eigenvalue distributions. More precisely, intergroup
connections in the proposed class affect only a few eigenval-
ues of local network structure. This completely explains the
previous results in [9, 10, 11, 12]. Furthermore, we can obtain
explicit expressions describing how the corresponding eigen-
values are shifted. By utilizing this result, we next propose an
efficient design method of hierarchical networks that result in
desirable eigenvalue distributions. Briefly speaking, the pro-
posed method is to design intergroup network so that undesir-
able eigenvalues of local interconnection structure are shifted
selectively.

This paper is organized as follows. Section 2 introduces a
general model of two-layer hierarchical multi-agent dynamical
systems. In Section 3, a fundamental framework is developed
for the rank one and the rank two cases. First, the concept of
eigen-connectionis defined. Then, we derive an expression
for eigenvalue distributions of hierarchical network structures
with eigen-connections. Section 4 investigates group behavior
of agents over hierarchical networks with eigen-connections.
Section 5 is devoted to a design procedure for hierarchical in-
terconnections based on our framework. We will show that
a low rank intergroup connection stabilizes unstable locally-
connected systems of dynamical agents by a numerical simu-
lation. Some topics of extension to further general cases are
discussed in Section 6.

Notation: The imaginary unit
√
−1 is denoted byi. For a

square matrixM, σ(M) denotes the set of all eigenvalues of
M. M⊤ andM∗ represent the transpose and the conjugate trans-
pose ofM, respectively.Id is thed× d identity matrix and1d is
a d-dimensional column vector with all the components equal
to one, that is,1d = (1, . . . ,1)⊤ ∈ Rd.

2. Hierarchical multi-agent dynamical systems

We here introduce a general model for hierarchical multi-
agent dynamical systems that is investigated throughout this pa-
per. The system consists ofN identical SISO agents whose state

Figure 1: Interconnection structure.

space realization is expressed as{
ẋi = Ahxi + bhui

yi = c⊤h xi
, i = 1, . . . ,N

and the transfer function is given by

h(s) = c⊤h (sIn0 − Ah)−1bh,

wherebh, ch ∈ Rn0 andAh ∈ Rn0×n0. The agents are connected
to each other through the input and output according to the fol-
lowing rule:

u = Ay,

wherey := (y1, . . . , yN)⊤, u := (u1, . . . , uN)⊤ and A ∈ RN×N.
The situation is depicted in Fig. 1. If thei j th entry ofA is non-
zero, theith agent receives output from thejth agent. We refer
to A as aninterconnectionor an interconnection structurein
the remaining part of the paper. The closed-loop system is then
represented by

ẋ = Ax, x :=
(

x⊤1 · · · x⊤N
)⊤
, (1)

whereA ∈ R(n0N)×(n0N) is the system matrix of the total system
defined by

A = IN ⊗ Ah + A⊗ (bhc⊤h ). (2)

Stability of the closed-loop system is completely determined by
eigenvalues ofA. Massioni and Verhaegen proposed a proce-
dure to design distributed controllers for systems that have a
similar structure to (2) in [13]. Unlike this work, we would like
to designA so that the eigenvalue distribution ofA becomes
desirable. This is not an easy task in direct methods, especially
whenN is very large. Fortunately, the closed-loop system be-
longs to the class of LTI systems with generalized frequency
variables [14]. Thus, we only have to check if all the eigenval-
ues ofA (not,A) lie on the associated stability region deter-
mined byh(s). Note that two types of necessary and sufficient
stability condition, namely Hurwitz type and Lyapunov type, in
terms of the coefficients ofh(s) were derived in [15].

As mentioned in Introduction, we consider hierarchical inter-
connection structures in this paper. Let agents be divided into
n2 groups includingn1 agents, whereN = n1n2. The augmented
statex is parted as follows:

x =
(
X⊤1 X⊤2 · · · X⊤n2

)⊤
,

where Xi2 :=
(
x⊤(i2−1)n1+1, · · · , xi2n1

)⊤
is the state of thei2th

group. A two-layer hierarchical interconnection structure is
given by

A = In2 ⊗ A1 + K2 ⊗ ∆1, (3)
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Figure 2: Two-layer hierarchically interconnected system.

whereA1, ∆1 ∈ Rn1×n1 andK2 ∈ Rn2×n2. Figure 2 illustrates the
network structure schematically. Agents locally interact with
each other in each group. The hierarchy means that the groups
also interact with each other in the upper layer. The matrices
A1 andK2 are models of the local interaction in the lower layer
and the intergroup interaction in the upper layer, respectively.
Hence, non-zero entries ofK2 indicate the existence of commu-
nication between the corresponding groups. The matrix∆1 de-
termines what kind of information of each group is exchanged
among the groups and which agents receive the effect of the
interaction in the upper layer. In other words,∆1 models inter-
layer information flow. We refer to∆1 as anintergroup connec-
tion matrixor, simply, aconnection matrix.

The connection matrix∆1 clearly plays an important role
in the hierarchical interconnection structure. In particular, if
agents have little interaction with the others in each group and
the resulting matrixA1 is sparse, the group interaction domi-
nates the total behavior. As a result, a choice of the matrix∆1

is significant for the achievement of global objectives. Shimizu
and Hara claimed that the rank of∆1 captures a degree of aggre-
gation of information flow among the group [9, 10]. We follow
the idea of focusing on the low rank property of∆1. A problem
considered in this paper is how we can utilize∆1 in the design
of a hierarchical interconnectionA with a desirable eigenvalue
distribution. The key feature is to characterize∆1 based on the
eigenvector ofA1.

3. Eigenvalue distribution

In this section, we define a class of intergroup connection
matrices based on the eigenvector of the local interconnection.
This new characterization allows us to obtain analytical eigen-
value distribution of the resulting hierarchical interconnection.
We mainly focus on the rank one and rank two cases. However,
the extensions to higher rank cases are systematically possible.

For convenience of analysis, all matrices and vectors are al-
lowed to have complex entries in this section. However, results
below are still valid for real matrices and vectors.

3.1. Rank one interconnection

Consider rank one interconnections. That is, we have

rank∆1 = 1.

Without loss of generality, we can express∆1 as the product of
two vectors:

∆1 = µζ
∗, (4)

whereµ, ζ aren1-dimensional column vectors. Note that this
decomposition is unique up to scalar multiplication. The above
form tells us thatζ∗ andµ represent ways of aggregation and
distribution of information, respectively. In what follows, we
characterize∆1 by eigenvectors ofA1.

Definition 1. Let A1 be ann1×n1 matrix that has an eigenvalue
λ1. An intergroup connection matrix defined by (4) is aleft
(resp., right) eigen-connection matrixof A1 associated with the
eigenvalueλ1, if ζ (resp.,µ) is a left (resp., right) eigenvector
of A1 associated with the eigenvalueλ1.

One may think that the above definition is somewhat artifi-
cial. However, ifA1 is a graph Laplacian andζ = (1/n1)1n1,
then the resulting intergroup connection matrix∆1 is an eigen-
connection matrix ofA1. This setting corresponds to the case
where group averages are exchanged among the groups in the
upper layer and it is a quite natural situation. With this new
characterization of intergroup connection matrices, we can de-
rive the following theorem that shows the eigenvalue distribu-
tion of A can be decomposed into two set. This is the first fea-
ture of this paper.

Theorem 1. Let A1 be an n1 × n1 matrix that has at least one
simple eigenvalueλ1 and letµ andζ be n1-dimensional column
vectors. If∆1 = µζ

∗ is a left or a right eigen-connection matrix
of A1 associated withλ1, then, for any n2×n2 matrix K2, the set
of all the eigenvalues of A defined by (3) is given by

σ (A) = {λ1 + γ ζ
∗µ | γ ∈ σ(K2)} ∪

(
σ(A1) \ {λ1}

)
,

Furthermore, ifλi ∈ σ(A1) \ {λ1} is an mi times repeated eigen-
value of A1, thenλi has algebraic multiplicity n2mi .

Proof. See Appendix A.

Theorem 1 tells us that an intergroup eigen-connection ma-
trix of rank one affects only one eigenvalue of the local inter-
connectionA1. In the previous research [9],A1 is a Laplacian
matrix, ζ is an arbitrary stochastic vector, andµ = 1n1. This
condition corresponds to the case where the resulting intergroup
connection matrix∆1 is a right eigen-connection because the
Laplacian matrix always has1n1 as a right eigenvector associ-
ated with an eigenvalue 0. This means that the previous result
in [9] is led by the fact that∆1 is not only a matrix of rank one
but also an eigen-connection matrix. Actually, general rank one
intergroup connection matrices do not always affect only one
eigenvalue ofA1. The theorem also contains the result shown
in [12]. In their research, the matrixA1 is the Laplacian matrix
whose entries in the first row are all zero and∆1 is the matrix
that has a non-zero number only at (1, 1) entry. The matrix
∆1 can be expressed by∆1 = en1

1 en1⊤
1 , whereen1

1 is a vector
(1,0, . . . ,0)⊤ ∈ Rn1. Obviously,∆1 is a left eigen-connection
matrix of A1 associated with an eigenvalue 0.

Theorem 1 has another feature. It enables us to design eigen-
value distribution ofA explicitly by adjustingA1, K2, and∆1.
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This means that we can develop a global interconnection struc-
ture from local ones. This is an advantage to introduce a hierar-
chical structure with low rank eigen-connection. In particular,
the termγζ∗µ is important. Ifγζ∗µ does not change, no change
of eigenvalue distribution occurs even thoughK2 and∆1 may
change. We will propose an design procedure ofA by using
this property in Section 5.

A problem that arises in an application is that we can not al-
ways chooseζ from the eigenvectors ofA1. Furthermore, the
corresponding eigenvector may be a complex vector. Although
the theorem holds even ifζ is a complex vector,ζ must be a
real vector for practical reasons. One of the methods to over-
come such a situation is to chooseζ from linear combinations
of eigenvectors ofA1. Actually, this is a special case of a higher
rank eigen-connection. The details will be discussed in the next
section. Hence, we move on to the rank two case without dis-
cussing this topic here.

3.2. Rank two interconnection

The concept of eigen-connection, which is introduced in the
previous subsection, can be naturally extended to the rank two
case. In this subsection, we define a class of eigen-connection
matrices for intergroup connection matrices of rank two and
prove a theorem similar to Theorem 1. Since rank∆1 = 2, we
can decompose∆1 into a product of two 2× n1 matrices:

∆1 =
(
µ1 µ2

) (
ζ1 ζ2

)∗
. (5)

In contrast to the rank one case, this decomposition is not
unique since there is a degree of freedom of the linear com-
bination. We define the eigen-connection of rank two by taking
into account this freedom.

Definition 2. Let A1 be ann1 × n1 matrix and letλ1 andλ2 be
two eigenvalues ofA1. An intergroup connection matrix given
by (5) is aleft (resp., right) eigen-connection matrixof A1 asso-
ciated with the eigenvaluesλ1 andλ2, if ζ1 andζ2 (resp.,µ1 and
µ2) are linearly independent and belong to the linear subspace
spanned by the left (resp., right) eigenvectors associated with
the eigenvaluesλ1 andλ2.

The above definition is a natural extension of the rank one
case. Note that if an intergroup connection matrix∆1 given by
(5) is a left (resp., right) eigen-connection ofA1, there exist a
2× 2 matrixT (resp.,S) such that(
ζ1 ζ2

)
=

(
v1 v2

)
T,

(
resp.,

(
µ1 µ2

)
=

(
w1 w2

)
S
)
,

wherev1 andv2 (resp.,w1 andw2) are left (resp., right) eigen-
vectors ofA1. We show the main result for hierarchical inter-
connections with eigen-connections of rank two.

Theorem 2. Let A1 be an n1 × n1 matrix that has two sim-
ple eigenvaluesλ1 and λ2 and let µ1, µ2, ζ1, and ζ2 be n1-
dimensional column vectors. If∆1 given by (5) is a left eigen-
connection of A1 associated withλ1 andλ2, then, for any n2×n2

matrix K2, the set of all the eigenvalues of A defined by (3) is
given by

σ (A) =

 ∪
γ∈σ(K2)

σ
(
Φγ

) ∪ (σ(A1) \ {λ1, λ2}) .

Here, for a complex valueγ,Φγ is a2× 2 matrix defined by

Φγ :=

(
λ1

λ2

)
+ γ

(
v∗1
v∗2

) (
µ1 µ2

)
T∗, (6)

where v1 and v2 are the left eigenvectors associated withλ1 and
λ2 and T is a2× 2 matrix satisfying(

ζ1 ζ2
)
=

(
v1 v2

)
T.

Proof. See Appendix B.

As in the rank one case, we can obtain an analogous result
for right eigen-connection matrices.

Corollary 1. In the same setting in Theorem 2, if∆1 is a right
eigen-connection matrix of A associated withλ1 and λ2, then
the same statement of Theorem 2 holds by replacingΦγ by

Ψγ :=

(
λ1

λ2

)
+ γS

(
ζ∗1
ζ∗2

) (
w1 w2

)
,

where w1 and w2 are the right eigenvectors of A1 associated
with λ1 andλ2 and S is a2× 2 matrix satisfying(

µ1 µ2

)
=

(
w1 w2

)
S.

Note that the above theorem does not depend on the choice
of µ1 andµ2 and that its corollary does not depend onζ1 and
ζ2, either. We can conclude that intergroup connection matrices
of rank two can change at least two eigenvalues ofA1. Un-
like the rank one case, the resulting eigenvalues are not explic-
itly obtained even if the connection matrix is a rank two eigen-
connection matrix. They are, however, given as the eigenvalues
of a 2× 2 matrix, which can be easily calculated.

This result covers the previous result in [10] as a special case.
In their setting,µ1 and µ2 are the sum and the difference of
two eigenvectors ofA1 by chance. Thus,∆1 is a right eigen-
connection matrix ofA1. In comparison with the previous re-
search, our characterization of intergroup connection matrix of
rank two is applicable to any class ofA1 andK2. Besides, an
expression of the 2×2 matrix that determines the shifted eigen-
values is explicitly obtained.

4. Group behavior

In Section 3, we showed that the eigenvalue distribution of
a hierarchical interconnection structure with a low rank eigen-
connection matrix is divided into two parts. We here relate this
structure to behavior of each group.

Consider the rank one case, that is,∆1 is defined by (4). As-
sume that∆1 is a left eigen-connection matrix ofA1 associated
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with a simple eigenvalueλ1. We also assume thatζ is not or-
thogonal toµ, that is, ζ⊤µ , 0, to prevent∆1 from being a
nilpotent matrix. For each group, we define the representative
stateYi2(t) ∈ Rn0, i2 = 1, . . . ,n2 by

Yi2 =

n1∑
i1=1

ζi1 x(i2−1)n2+i1 =
(
ζ⊤ ⊗ In0

)
Xi2,

whereζi1 (i1 = 1, . . . , n1) is the i1th component ofζ andXi2 is
the state ofi2th group. Namely,Yi2 is a weighted sum of the
agents’ state in thei2th group. The collection of allYi2, which
is denoted byY, can be written as

Y =
(
Y⊤1 · · · Y⊤n2

)⊤
= (In2 ⊗ ζ⊤ ⊗ In0)x.

We now investigate the time rate of change ofY to clarify why
the wordrepresentativeis used.

Let P be ann1 × n1 matrix defined by

P :=
(
ζ v2 · · · vn1

)⊤
,

wherev2, . . . , vn1 aren1−1 linearly independent vectors orthog-
onal toµ. From the assumption thatζ⊤µ , 0, P is non-singular
and its inverse has the form

P−1 =
(
(ζ⊤µ)−1µ w2 · · · wn1

)
for some appropriate vectorsw2, . . . ,wn1. It follows immedi-
ately from the definition that

PA1P−1 =

(
λ1

∗ ∗

)
, P∆1P−1 =

(
ζ⊤µ

)
, (7)

where empty blocks mean that all the entries are 0. Next, con-
sider the coordinate transformationx 7→ z = T x, whereT is
defined by

T := In2 ⊗ P⊗ In0.

Note that the transformation by the above matrix preserves the
hierarchical structure shown in Fig. 2. Then,Y satisfies the
following relation:

Y =
(
In2 ⊗

(
1 0 · · · 0

)
⊗ In0

)
z. (8)

Since the transformed system matrix is represented by

TAT −1 = In2 ⊗ In1 ⊗ Ah + In2 ⊗ (PA1P−1) ⊗ (bhc⊤h )

+ K2 ⊗ (PA1P−1) ⊗ (bhc⊤h ),

substituting (7) into the above equation and left-multiplying by
the matrix in (8) yield

Ẏ =
(
In2 ⊗ Ah +

(
λ1In2 + (ζ⊤µ)K2

)
⊗ (bhc⊤h )

)
Y.

This implies that the representative state evolves by itself. Com-
pared with (1)–(2), this is an interconnected system of identical
n2 agents that have the same state space realization (Ah,bh, c⊤h )
as that of the original agents (see Fig. 3). We can regard the
representative stateYi2 as the state of the leader ofi2th group.
As is clear from (7), this virtual leader communicates only with

Figure 3: Feedback configuration of the representative state.

the other leaders. The other agents in each group interact with
the agents in the other groups through the leader. Ifλ1 = 0
andK2 is a Laplacian matrix, the situation corresponds to that
in [12]. Hence, we can conclude that a hierarchical intercon-
nection structure with the rank one eigen-interconnection im-
plicitly assigns a virtual leader in each group. Since the inter-
connection structure of leaders is given byλ1In2 + (ζ⊤µ)K2, the
first set of the eigenvalues ofA in Theorem 1 is related with the
behavior of leaders.

In the case where∆1 is given by (5), a similar result is avail-
able under the same condition as in Theorem 2. The number of
the virtual leaders in each group is two in this case.

5. Design procedure

We here show our procedure for designing hierarchical net-
works for multi-agent dynamical systems based on the eigen-
connection that has been developed in Section 3. The proposed
procedure is examined by a numerical simulation.

5.1. Procedure based on eigen-connections

In control of multi-agent dynamical systems, an information
exchange protocol among agents must be designed appropri-
ately so that the corresponding interconnection structureA has
a desirable eigenvalue distribution. As seen in Section 3, eigen-
connections can move eigenvalues of a local interconnection
structureA1 selectively. Assume thatA1 has an undesirable
eigenvalue. Then, we can move it by lettingµ or ζ be the
corresponding eigenvector. IfA1 has two undesirable eigenval-
ues, eigen-connections of two rank are available to move them.
Hence, we propose the following procedure for designing a hi-
erarchical interconnection structure:

1. design the local interconnection structureA1,

2. identify undesirable eigenvalues ofA1,

3. construct connection matrix∆1 based on the correspond-
ing eigenvectors, and

4. design intergroup interconnection structureK2 and adjust
∆1 so that shifted eigenvalues become desirable.

It should be noted that our procedure is applicable in the case
whereA1 has more than two undesirable eigenvalues along with
eigen-connections of higher rank as we shall discuss in the next
section. In what follows, we demonstrate the above procedure
by a numerical simulation.
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5.2. Numerical simulation

Consider the cooperative stabilization of 50 agents (i.e.N =
50) whose transfer function is given byh(s) = 2/(s3 + s2 + 5s).
According to the stability analysis of LTI systems with gener-
alized frequency variables [14], the augmented system matrix
A given by (2) is stable if and only if all the eigenvalues of in-
terconnectionA lie in Ωc

+. Here,Ωc
+ is the complement ofΩ+

in C, that isΩc
+ = C \ Ω+ andΩ+ is defined as follows. Let

ϕ(s) := 1/h(s) andC+ = {s ∈ C |Res≥ 0}. Then the regionΩ+
is defined by

Ω+ := ϕ(C+) = {λ ∈ C | ∃s ∈ C+ such thatϕ(s) = λ} .

Thus, we must design a 50× 50 matrixA that has all the eigen-
values inΩc

+.
In this example, we divide agents into 10 groups containing

5 agents each (i.e.n2 = 10, n1 = 5) to design a hierarchical
interconnection. The first task in our procedure is the design of
A1. Let the local interconnection structureA1 be given by

A1 =


−1 0 0 1 0

1 −1 0 0 0
0 1 −2 1 0
0 0 1 −2 1
1 1 0 0 −2

 .
This A1 corresponds to the communication topology shown in
Fig. 4. All the eigenvalues ofA1 are plotted in Fig. 5 together
with the stability region generated byh(s). If no interaction
occurs among the groups, that is,∆1 = 0 orK2 = 0, the resulting
interconnection structure becomesA = In2 ⊗ A1. Hence, one
may expect that the augmented system is stable because all the
eigenvalues ofA are the same asA1 and they are in the left half
plane of complex plane. However, this is not true. There are
two eigenvalues 0 and−3 that do not belong toΩc

+. Thus, we
design∆1 andK2 so that the unstable eigenvalues 0 and−3 are
shifted intoΩc

+
1.

To this end, we next construct∆1 based on eigenvectors of
A1 associated with the unstable eigenvalue 0 and−3. Right
eigenvectors ofA1 associated with 0 and−3 are

w1 =
(
1 1 1 1 1

)⊤
, w2 =

(
−2 1 −5 4 1

)⊤
,

respectively. Now we set

S =
1
3

(
2 1
1 −1

)
,

which leads to(
µ1 µ2

)
=

(
w1 w2

)
S =

(
0 1 −1 2 1
1 0 2 −1 0

)⊤
.

The vectorsζ1 andζ2 are chosen as

ζ1 =
1
3

(
0 1 1 0 1

)⊤
, ζ2 =

1
3

(
0 1 0 1 1

)⊤
.

1Note that this is not the only method of stabilization. Actually, modification
of h(s) or A1 allows the augmented system to be stable.

Figure 4: Local communication topology.

Figure 5: Eigenvalue distribution ofA1 and stability regionΩc
+ generated by

h(s).

It follows from the definition that the resulting∆1 is a rank two
right eigen-connection matrix ofA1 associated with 0 and−3.
The situation can be explained intuitively as follows. Two kinds
of aggregated information are shared among the groups. The
former, which is determined byζ1, is the average output of the
second, the third, and the fifth agents in each group. An effect
of the intergroup interaction based on this aggregated informa-
tion is transmitted to agents in each group according toµ1. In
this case, all the agents except the first one receive it. On the
other hand, the latter is the average output of the second, the
fourth, and the fifth agents. In each group, the first, the third,
and the fourth agents receive an effect of the intergroup interac-
tion based on the aggregated information of second kind.

We apply Corollary 1 to compute eigenvalues of the total in-
terconnection structure. Simple computation yields the follow-
ing expression ofΨγ:

Ψγ =

(
γ 0
0 −3− γ

)
.

Hence, we haveσ(Ψγ) = {γ,−3 − γ}. The remaining task in
our procedure is to designK2 such that for each eigenvalueγ of
K2, γ and−3− γ belong toΩc

+. The followingK2 satisfies the
requirement:

K2 = −
1
4

L2 −
5
4

I10,
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Figure 6: Eigenvalue distributions ofA (‘�’) and A1 (‘×’).

where a 10× 10 matrixL2 is defined by

L2 =



1 −1
. . .

. . .

. . . −1
−1 1

−1 1
−1 −1/2 3/2


.

This means that 8 groups are in cyclic pursuit but the rest are
not. Consequently, the network structure in the upper layer is
not a cyclic type.

The resulting eigenvalue distribution ofA is plotted with ‘�’
in Fig. 6. All the eigenvalues ofA are included inΩc

+. Thus,
we have accomplished our objective. We also plot the eigenval-
ues ofA1 with ‘×’ for comparison. It is easily seen that only
0 and−3 are moved with the rest of the eigenvalues ofA1 re-
maining. This is one of the notable properties of hierarchical
systems with eigen-connection of low rank. Initial condition
responses of all agents are shown in Fig. 7. A point we should
emphasize is that, even though the local interconnection is un-
stable, the outputs of all the agents converge to zero thanks to a
good combination of hierarchical interconnection.

6. Further general interconnections

There are some directions of extension of the results in the
previous sections. We briefly comment on them in this section.
The first is to increase the rank of the intergroup connection
matrix. The extension is more or less straightforward. A rankr
intergroup eigen-connection would changer eigenvalues ofA1

and the affected eigenvalues would be given as the eigenvalues
of a certainr × r matrix. An increase in dimension of matrices
makes it difficult to calculate the resulting eigenvalue distribu-
tion. Thus, such an extension is not necessarily useful. We can
interpret the result in [6] based on the eigen-connection2. Any

2Normally, it is interpreted as a property of Kronecker sum [16].

Figure 7: Outputs of all agents.

vector inRn1 is an eigenvector ofIn1. Thus,A1 and In1 have
all the eigenvectors in common. This meansIn1 is a full rank
eigen-connection matrix ofA1 and all the eigenvalues ofA1 are
affected.

The second extension is to increase the number of eigenvec-
tors of A1 that consist intergroup connection matrices without
increasing the rank. Consider the rank one case. Letζ be a lin-
ear combination of two eigenvectors ofA1, that is, there exist
two constantsa1 anda2 such that

ζ = a1v1 + a2v2 (9)

holds, wherev1 andv2 are eigenvectors ofA1 associated with
two distinct eigenvalues. Note thatv1 andv2 are not necessary
real even ifζ is a real vector. Without loss of generality, we can
seta1 = a2 = 1 since the scalar multiple of an eigenvector re-
mains to be an eigenvector. The resulting intergroup connection
matrix∆1 is given by

∆1 = µζ
∗ = µ

(
1 1

) ( v∗1
v∗2

)
=

(
µ µ

) ( v∗1
v∗2

)
.

The matrix∆1 is of the same form as a rank two intergroup
connection matrix (5), although the rank of∆1 is one. This
means that the rank one intergroup connection matrix written
as the product of an arbitrary vector and a linear combination
of two eigenvectors ofA1 is equivalent to a degenerate rank
two eigen-connection matrix. Thus, we can apply Theorem 2
to such matrices if the associated eigenvalues are simple. The
matrix T in (6) is always the second order identity matrixI2 in
this case. Thus, (6) can be written as

Φγ =

(
λ1 + γv∗1µ γv∗1µ
γv∗2µ λ2 + γv∗2µ

)
.

This is a simple 2× 2 matrix, thus we can calculate the eigen-
values as follows:

λ1 + λ2 + γ(ζ∗µ)
2

±

√
(λ1 − λ2 + γ(v1 − v2)∗µ)2 + 4γ2(v∗1µ)(v

∗
2µ)

2
.

(10)
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It is clear that the resulting eigenvalues depend on the sum, dif-
ference and product of two quantityγv∗1µ andγv∗2µ. This fact
gives an index to design desirable eigenvalue distribution. To
treat linear combinations of an arbitrary number of eigenvectors
of A1, we need results for higher rank interconnections, which
is mentioned in the previous paragraph. Therefore, those two
extensions are essentially same.

The final possibility of extensions is to increase the number
of intergroup connections. If we employmconnection matrices,
the total interconnection structure is given by

A = In2 ⊗ A1 +

m∑
k=1

K(k)
2 ⊗ ∆

(k)
1 .

It is immediate from the proofs of Theorem 1 and Theorem 2
that similar results can be obtained ifK(1)

2 , . . . ,K
(m)
2 are simulta-

neously triagularizable and∆(1)
1 , . . . , ∆

(m)
1 are eigen-connections

of A1 associated with the same simple eigenvalues. Ifm = 2,
an interconnection of this form appears in hierarchical dis-
cretization of a class of distributed parameter systems [17]. If
A1, ∆

(1)
1 , . . . , ∆

(m)
1 are circulant matrices andK(1)

2 , . . . ,K
(m)
2 are

defined by

K(k)
2 =

(
In2−1

1

)k

,

the resulting interconnection coincides with a model consid-
ered in [18]. Furthermore, the intergroup connection matrices
∆(1)

1 , . . . , ∆
(m)
1 are eigen-connection matrices ofA1 since all the

circulant matrices have the same eigenvector in common.

7. Conclusion

In this paper, we have analyzed and designed hierarchical
interconnection structures for large-scale multi-agent systems
based on the eigenvector. We have defined a class of low rank
interlayer information flow that can affect on a few eigenvalues
of local interconnection structures selectively. Based on this
property, we have developed a procedure for constructing hier-
archical interconnections that result in desirable eigenvalue dis-
tributions. Whereas large-scale networks are usually modeled
as high-dimensional matrices, the proposed procedure enable
us to design such a matrix by dealing with a number of lower
dimensional matrices. This is a superiority of our method.

We point to two issues as future works. Instead of homo-
geneous groups, the case where the numbers of agents in each
groups are different is more realistic. This is an ongoing topic
and is partly tackled in [19]. An extension to the multi-layer
case is also interesting.
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Appendix A. Proof of Theorem 1

In some related works [13, 20, 21], the matrix of the form
in (3) can be similarity-transformed to a block upper triangular

matrix. Indeed, let the Schur form ofK2 be given byUK2U∗,
that is,U is a unitary matrix andUK2U∗ is an upper triangular
matrix whose diagonal entries are the eigenvalues ofK2. Then,
U ⊗ In1 is a unitary matrix and we have

(U ⊗ In1)A(U∗ ⊗ In1) = In2 ⊗ A1 + (UK2U∗) ⊗ ∆1.

This implies that the set of all the eigenvalues ofA is given by

σ(A) =
∪
γ∈σ(K2)

σ (A1 + γ∆1) .

Hence, we only have to derive the eigenvalue ofA1 + γ∆1.
If ∆1 is a right eigen-connection matrix ofA1, ∆∗1 is a left

eigen-connection matrix ofA∗1. Thus, we prove the theorem
only for left eigen-connection matrices. Since∆1 = µζ

∗ is a
left eigen-connection matrix,ζ is a left eigenvector ofA1. Left
multiplying A1 + γ∆1 by ζ∗, we obtain the following relation:

ζ∗ (A1 + γ∆1) =
(
λ1 + γζ

∗µ
)
ζ∗.

This means thatζ is a left eigenvector ofA1 + γ∆1 associated
with an eigenvalueλ1 + γζ

∗µ.
We show the remaining eigenvalues. Letw2, . . . ,wn be (gen-

eralized)right eigenvectors ofA1 associated with all the eigen-
values exceptλ1. Sinceζ is a left eigenvector ofA1 and a
left eigenvector is orthogonal to right (generalized) eigenvec-
tors except the corresponding one, we haveζ∗w j = 0 for all
j = 2, . . . , n. This fact implies that

∆1w j = µζ
∗w j = 0,

which yields the following relation:

(A1 + γ∆1)w j = A1w j , j = 2, . . . , n.

This means thatw2, . . . ,wn are also (generalized) right eigen-
vectors ofA1 + γ∆1 and, thus, we have

σ(A1) \ {λ1} = σ(A1 + γ∆1) \ {λ1 + γζ
∗µ} .

This completes the proof. �

Appendix B. Proof of Theorem 2

As in the proof of Theorem 1, we consider the eigenvalues of
A1 + γ∆1 only.

Let λ3, . . . , λn be all the eigenvalues ofA1 exceptλ1 and
λ2, where they are not necessary distinct. Denote (general-
ized) right eigenvectors ofA1 associated withλ3, . . . , λn by
w3, . . . ,wn, respectively. Then, we have∆1w j = 0 for all
j = 3, . . . ,n, becauseζ1 and ζ2 are right eigenvectors ofA1.
Thus, we obtain

(A1 + γ∆1)w j = A1w j , j = 3, . . . , n.

This fact implies thatw j is also a right eigenvector ofA1+ γ∆1.
Thus, the following relation holds:

σ(A1) \ {λ1, λ2} = {λ3, . . . , λn} ⊂ σ(A1 + γ∆1).
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Let λ′1 andλ′2 be the remaining eigenvalues ofA1 + γ∆1. We
assume thatλ′1, λ

′
2 < σ(A1) \ {λ1, λ2}. Then, the eigenvectors

associated withλ′1 and λ′2 must be included in the subspace
spanned byv1 andv2, eigenvectors ofA1 associated withλ1, λ2,
because they are included in span(w3, . . . ,wn)⊥. Let v′1 andv′2
be the left eigenvectors ofA1 + γ∆1 associated withλ′1 andλ′2,
respectively, and they are represented by

v′l = αl1v1 + αl2v2, l = 1,2.

Left-multiplying A1 + γ∆1 by v′l yields

v′∗l (A1 + γ∆1) = λ′l v
′∗
l(

αl1

αl2

)∗ (
v∗1
v∗2

) (
A1 + γ

(
µ1 µ2

)
T∗

(
v∗1
v∗2

))
= λ′l

(
αl1

αl2

)∗ (
v∗1
v2

)
(
αl1

αl2

)∗ ((
λ1

λ2

)
+ γ

(
v∗1
v∗2

) (
µ1 µ2

)
T∗

) (
v∗1
v∗2

)
= λl

(
αl1

αl2

)∗ (
v∗1
v∗2

)
.

Hence, we have(
αl1

αl2

)∗ (
Φγ − λl I2

) ( v∗1
v∗2

)
= 0.

Sincev1(, 0) andv2(, 0) are linearly independent,αl1, αl2,
andλl must satisfy(

αl1

αl2

)∗ (
Φγ − λl I2

)
= 0.

Furthermore,(αl1, αl2) , 0 due tov′l , 0. These facts mean that
λl is an eigenvalue ofΦγ and that (αl1, αl2)⊤ is the correspond-
ing left eigenvector. IfΦγ has two distinct eigenvalues or one
repeated eigenvalue that has geometric multiplicity 2, thenu′l ’s
are eigenvectors ofA1 + γ∆1. Otherwise, the last eigenvalue of
A1 + γ∆1 still remains. However, this case corresponds to the
case where one ofλ′1 andλ′2 agrees with one of the elements in
the setσ(A1) \ {λ1, λ2}. This completes the proof. �
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