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Numerical Analysis of Quantum Mechanical ∇B Drift∗)
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We have solved the two-dimensional time-dependent Schrödinger equation for a single particle in the pres-
ence of a nonuniform magnetic field for initial speeds of 10-100 m/s. By linear extrapolation, it is shown that
the variance, or the uncertainty, in position would reach the square of the interparticle separation n−2/3 with a
number density of n = 1020 m−3 in a time interval of the order of 10−4 sec. After this time the wavefunctions of
neighboring particles would overlap, as a result the conventional classical analysis may lose its validity: Plasmas
may behave more-or-less like extremely-low-density liquids, not gases, since the size of each particle is of the
same order of the interparticle separation.
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1. Introduction
We have solved the two-dimensional time-dependent

Schödinger equation for a particle with and without the
interparticle potential in a fusion plasma [1], and similar
analysis was made with a semi-classical diffusion model
[2]. It was shown in such analyses, especially in Ref. [1],
that spatial extent of a free particle grows monotonically
in time. Such expansion leads to a spatial extent or size
of a proton of the order of the average interparticle sep-
aration Δ� ≡ n−1/3 ∼ 2 × 10−7 m in a time interval of
106 ×Δ�/vth ∼ 10−7 sec for a plasma with a density n ∼
1020 m−3 and a temperature T = mv2

th/2 ∼ 10 keV. It was
also shown that, under a Coulomb potential, the wavefunc-
tion of a charged particle first shrink and expand in time.
In the expansion phase, at times t ≥ 10−10 sec, the size
of particle in the presence of a Coulomb potential is much
larger than that in the absence of it.

In analyses by the authors mentioned above, however,
the magnetic field B was not explicitly taken into account.
The magnetic length �B ≡

√
�/qB [3] was introduced only

as the initial condition for the time-dependent Schrödinger
equation. In this paper, the time-dependent Schrödinger
equation will be solved for the ∇B-drift case to find the
expansion times in position and in momentum. It is noted
that the E × B case was also analyzed in Ref. [4].

2. Schrödinger Equation
The unsteady Schrödinger equation for wavefunction

ψ (r, t), at a position r and a time t, is given by

i�
∂ψ

∂t
=

[
1

2m

(
−i�∇ − qA(r)

)2
+ qϕ

]
ψ, (1)
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where ϕ and A stands for the scalar and vector potentials,
m and q the mass and electric charge of the particle under
consideration, i ≡ √−1 the imaginary unit, and � ≡ h/2π
the reduced Planck constant. When the corresponding
classical particle has an initial momentum p0 = mu0 at a
position r = r0, the initial condition for the wavefunction
is given by

ψ(r, 0) =
1√
πσ0

exp
⎡
⎢⎢⎢⎢⎣− (r − r0)2

2σ2
0

+ ik0 · r
⎤
⎥⎥⎥⎥⎦ , (2)

where r0 is the initial center of ψ, σ0 is the initial stan-
dard deviation, and k0 = mu0/� is the initial wavenumber
vector.

2.1 Approximation methods
We will solve Eqs. (1) and (2) using the finite differ-

ence method in space with the Crank-Nicolson scheme [5]
(

I − Δt
2i�

H
) {
ψn+1

}
=

(
I +
Δt
2i�

H
)
{ψn} , (3)

where I is a unit matrix, H the numerical Hamiltonian ma-
trix, and {ψn} stands for the discretized set of the two-
dimensional time-dependent wavefunction ψ (x, y, t) at a
discrete time tn = nΔt to be solved numerically.

We will adopt the successive over relaxation (SOR)
scheme for time integration in Eq. (3). The SOR iteration
is implemented on a GPU (Nvidia GTX-480: 480 cores
@1.40 GHz) [6]. The corresponding classical equation of
motion will also be solved in order to check the validity of
the numerical results.

2.2 Restriction on the grid spacing
In the numerical analysis of one-dimensional

Schrödinger equation for a free particle, the initial mo-
mentum is given, using a one-dimensional version of
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Eq. (2), as

〈p0〉 = �k0

∞∑

i=−∞

sin k0Δx
k0Δx

|ψi|2 Δx, (4)

which becomes �k0 in the limit of Δx→ 0, i.e., sin k0Δx →
k0Δx. Therefore, the size of spatial discretization for the
two-dimensional FDM in (x, y) plane should be sufficiently
small to satisfy

Δx ∼ Δy  1/k0 = λ0/2π, (5)

where λ0 is the de Broglie wavelength. This restriction
Eq. (5) on Δx and Δy demands a lot of computer memory
for fast particles.

The analysis of the two-dimensional time-dependent
Schrödinger equation in the presence of a uniform mag-
netic field [5] showed that the numerical errors are dictated
by the grid spacing Δx (= Δy) when time-step size Δt sat-
isfies the condition

Δt � 0.3 × (m/�) × (Δx)2 [sec], (6)

where the factor 0.3 is found numerically [5]. It should be
noted that Eq. (6) is not a stability criterion for Δt, since the
Crank-Nicolson scheme is unconditionally stable. Instead,
we will always choose Δt satisfying Eq. (6) to ensure the
numerical errors being a function of Δx = Δy.

2.3 Exact wavefunction in a uniform B field
When the electric field is zero, i.e. ϕ = const, the exact

solution ψ (r, t) to Eq. (1), in the case of uniform magnetic
field with a Landau gauge [3], A = (−By, 0, 0), is given by

ψ (r, t) =
eikx

√√
π�B

exp

⎡
⎢⎢⎢⎢⎢⎣−

1
2�2

B

(
y − u (t)

ω

)2⎤⎥⎥⎥⎥⎥⎦

× exp
⎡
⎢⎢⎢⎢⎣i

⎛
⎜⎜⎜⎜⎝
y2

0 sin 2ωt

4�2
B

− yy0 sinωt
�2

B

− ωt
2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ , (7)

where �B ≡
√
�/qB is the magnetic length [3], ω ≡ qB/m

the cyclotron frequency, y0 ≡ k�2
B, and u (t) stands for the

x-component of the classical velocity of the particle, i.e.
ẋ (t) = u (t). The y-dependence of ψ (r, t) is essentially the
same as that of a one-dimensional harmonic oscillator with
the center of the force at y = −y0. It is apparent in Eq. (7)
that the standard deviation, or uncertainty, in position does
not change in time; σ2

r (t) = �2
B = const.

3. Quantum Mechanical ∇B Motion
Now, let the electrostatic potential ϕ = const. and the

vector potential be

A = (−y (1 − y/2LB) B,0, 0) , (8)

where LB represents the gradient length scale for the mag-
netic field. The corresponding classical motion is called
the grad-B drift along x-axis. We will solve the time-
dependent Schrödinger equation given in Eq. (1) with the

Fig. 1 Time evolution of the probability density function (PDF),
ψ∗ψ at the normalized times ωt of 0, π/2, π, and 3π/2 in
the normalized x-y plane. The smallest circle on the left
represents the initial PDF at a time ωt = 0, and it rotates
clockwise.

Coulomb gauge given in Eq. (8), for several cyclotron pe-
riods.

The numerical results to be presented in the following
sections are normalized by the cyclotron radius of a proton
for B = 10 T with v0 = 10 m/s. The normalized system
size is −50 ≤ x, y ≤ 50. The normalized spatial grid-
sizes are Δx = Δy = 0.02, and the normalized time-step
is Δt = 2π × 10−5, which corresponds to the numerical
factor of 0.05 instead of 0.3 appeared in Eq. (6) for Δt. The
normalized length scale is LB = 5×108, dimensional value
of which is 5.219 m. We judge the convergence in the SOR
scheme being reached when

∣∣∣ri, j

∣∣∣2 < 10−32, where ri, j is the
complex residual of Eq. (3) at each grid point (xi, y j).

Figure 1 shows the time evolution of the probability
density function (PDF), ψ∗ψ, for an initial particle speed
of v0 = 100 m/s at the normalized times ωt of 0, π/2, π,
and 3π/2 in the normalized x-y plane. In this figure, the
smallest and brightest circle on the left represents the initial
PDF at a time ωt = 0, and it rotates clockwise. It is noted
that the shape of the PDF are circle at the normalized time
of ωt = 0 and π, whereas they are ellipse when ωt = π/2
and 3π/2, because of the distribution of vector potential
A = A (y).

Figure 2 compares the guiding-center position rG in
the normalized x-y plane between the classical orbit rG (t)
and the quantum-mechanical expectation 〈rG〉, which is
defined as

〈rG〉 =
∫

Σ

ψ∗ (r, t)
(
r + u ×ω/ω2

)
ψ (r, t) d2r, (9)

in the normalized x-y plane Σ. Here ω = qB/m is the
cyclotron frequency vector, and the operator u is

mu = −i�∇ − qA. (10)

The amplitude of 〈yG〉 is smaller than yG(t) due to the finite
grid size, however, the∇B drift along x-direction is in good
agreement.

Figure 3 shows the time evolution of the variances in
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Fig. 2 Comparison of the guiding-center position rG in the nor-
malized x-y plane: the quantum-mechanical expectation
〈rG〉 and the classical orbit rG (t) with rG (0) = 0.

Fig. 3 Normalized variances σ2
r and σ2

p vs. normalized time ωt
for v0 = 10 m/s and LB = 5.219 m; σ2

r in position, and σ2
p

in momentum.

position and in mechanical momentum for v0 = 10 m/s,
respectively, which are defined as

σ2
r =

∫

Σ

ψ∗ (r − 〈r〉)2 ψ d2r, (11)

σ2
p =

∫

Σ

ψ∗ (−i�∇ − qA − 〈p〉)2 ψ d2r, (12)

where 〈p〉 is the expectation value of the mechanical mo-
mentum:

〈p〉 =
∫

Σ

ψ∗ (−i�∇ − qA)ψ d2r. (13)

These variances oscillate with the cyclotron period in posi-
tion and with half the cyclotron period in mechanical mo-
mentum. It should be noted that their peaks grow in time.

Figures 4 and 5, respectively show the grid size and
the timestep dependence of the increment of peak variance.
The normalized grid size of Δx = Δy � 0.1 is sufficiently
small to use. Thus we have used Δx = Δy = 0.02 and
Δt = 2π × 10−5 throughout the calculation. As for the
numerical errors in variance, it is noted in Ref. [1] that
our code is capable of accurately reproducing the time-
dependent variance in position σ2

r (t) for a free particle, for
which an exact solution is available.

Fig. 4 Normalized incremental variances per gyration vs. nor-
malized grid spacing Δx = Δy with Δt = 2π×10−5. Other
parameters are the same as those in Fig. 3.

Fig. 5 Normalized incremental variances per gyration vs. nor-
malized grid spacing Δt with Δx = Δy = 0.02. Both
vaiances converge for Δt � 5 × 10−4. Other parameters
are the same as those in Fig. 3.

Fig. 6 Normalized increment of peak variance σ2
r in position

with red squares and σ2
p in momentum with blue circles

for v0 = 10 m/s with LB = 5.219 m.

Figure 6 shows the increments, due to nonuniformity
of the magnetic field, of peaks of the variances in position
and in momentum, respectively. Both increments in posi-
tion and momentum are in proportion to the time t. This
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Fig. 7 Initial speed v0 dependence of the expansion times in po-
sition τr

exp and in mechanical momentum τp
exp in sec, for

LB = 5.219 m, the normalized timestep of Δt = 2π×10−5,
and the normalized grid size of Δx = Δy = 0.02.

means that the variances would reach some critical values
as time goes, such as the square of the interparticle separa-
tion for variances in position, and the square of the thermal
speed for variance in velocity (or momentum).

Let us define the expansion time in position τr
exp and

in mechanical momentum τ
p
exp, respectively, as

τr
exp ≡

(Δ�)2

Δσ2
r

Tc, (14)

τ
p
exp ≡ (mv0)2

Δσ2
p

Tc, (15)

where Δσ2
r and Δσ2

p represent the increments of the vari-
ance in position and in mechanical momentum, respec-
tively, per cyclotron period Tc = 2π/ω.

The red squares in Fig. 7 represent the initial speed
dependence of the expansion time τr

exp, during which the
variance in position reaches the square of interparticle sep-
aration (Δ�)2 ≡ n−2/3 with the number density of n = 1020

m−3 for various initial speeds of v0 = 10, 30, 50 and 100
m/s. If the particle is in a typical fusion plasma with such
a number density, the variance in position would reach the
square of the interparticle separation n−2/3m2 for v0 = 106

m/s by linear extrapolation τr
exp = τ

r
exp (v0), in a time inter-

val of 2× 10−4 sec. After this time the conventional classi-
cal analyses, especially on diffusion, may be invalid: plas-
mas may behave more-or-less like extremely-low-density
liquids, not gases, since the size of each particle is the same
as the interparticle separation, accordingly the neighboring
wavefunctions overlap.

Also depicted with blue circles in Fig. 7 are the ex-
pansion time in mechanical momentum τ

p
exp, during which

the variance in mechanical momentum reaches the square
of its initial momentum, (mv0)2. The classical counter-

part of the expansion time in momentum τ
p
exp is the mo-

mentum transfer time, or the deflection time τd. Thus, if
τ

p
exp  τd, the expansion in momentum could make col-

lision frequency and cross-section much larger than that
with classical theories [7–9]. By linear extrapolation, how-
ever, the expansion time in momentum would be of the or-
der of 104 sec for v0 ∼ 106 m/s, and is of little interest for
fast particles.

4. Summary and Discussion
We have solved the two-dimensional time-dependent

Schödinger equation for a single particle in the presence of
a nonuniform magnetic field. It is shown that the variance,
or the uncertainty, in position would reach the square of the
interparticle separation Δ� for v0 = 106 m/s and n = 1020

m−3 in a time interval of 2 × 10−4 sec. After this time the
conventional classical analysis may be invalid.

In real plasmas, since charged particles suffer fluctu-
ations of microscopic electrostatic potentials due to other
particles, deviations could grow much faster.

The expansion time of τr
exp ∼ 10−4 sec estimated in this

study is obtained from numerical calculations for a single
charged particle during a short time interval of ∼10−7 sec
by using linear extrapolation. Several many-body effects
may reduce or enhance the quantum-mechanical expan-
sion, such as the potential screening by electrons and/or
interparticle Coulomb force. Such studies will be left for
future work.
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