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We have solved the two-dimensional time-dependent Schrödinger equation for a single particle in the pres-
ence of a non-uniform magnetic field for initial speed of 10–100 m/s, mass of the particle at 1–10 mp, where mp

is the mass of a proton. Magnetic field at the origin of 5–10 T, charge of 1–4 e, where e is the charge of the
particle and gradient scale length of 2.610 × 10−5–5.219 m. It was numerically found that the variance, or the
uncertainty, in position can be expressed as dσ2

r /dt = 4.1�v0/qB0LB, where m is the mass of the particle, q is the
charge, v0 is the initial speed of the corresponding classical particle, B0 is the magnetic field at the origin and LB

is the gradient scale length of the magnetic field. In this expression, we found out that mass, m does not affect
our newly developed expression.
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1. Introduction
It is well known that a charged particle in the presence

of a non-uniform magnetic field B tend to move to regions
of weak magnetic field via collisions/interaction with other
particles. In quantum mechanics the probability density
function (PDF) for a charged particle in the presence of a
uniform magnetic field B = B0ez along the z-axis in the
x-y plane perpendicular to the field is given by

ρ(r, t) =
qB0

π�
exp

[
−qB0

�
(r − 〈r (t)〉)2

]
, (1)

where 〈r (t)〉 stands for the expectation value of the po-
sition that is the same as the time-dependent position of
the corresponding classical particle. The tendency towards
weak B = |B| field region stated above makes the proba-
bility density function (PDF) of the particle broader than
that for a uniform field case. This makes the PDF of the
particle broad compared with that for a uniform magnetic
field.

In the case of a non-uniform field, we have developed
a code to solve the time-dependent Schrödinger equation
in the presence of a non-uniform magnetic field. In the
previous paper [1], we have shown that the quantum me-
chanical variance in position may reach the square of the
interparticle separation in a time interval of the order of
10−4 sec for typical magnetically confined fusion plasmas
with a number density of n∼ 1020 m−3 and a temperature
of T ∼ 10 keV.

In this paper, as an extension of the paper [1], we in-
vestigated the dependence of the variance σ2

r in position
on parameters such as m, q, v0, B0, and LB, where m is the
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mass of the particle, q is the charge, v0 is the initial speed
of the corresponding classical particle, B0 is the magnetic
field at the origin and LB is the gradient scale length of the
magnetic field.

In section 2, we use two dimensional Schrödinger
equation for a wavefunction ψ at position r and time t. In
section 3, we show methodology we use for numerical sub-
traction and the final results of our finding after subtracting
its numerical error.

2. Schrödinger Equation
In this research we have solved the two-dimensional

Schrödinger equation for a wavefunction ψ at position r
and time t,

i�
∂ψ

∂t
=

[
1

2 m
(−i�∇ − qA)2 + qϕ

]
ψ, (2)

where ϕ and A stand for the scalar and vector potentials,
m and q the mass and electric charge of the particle under
consideration, i ≡ √−1 the imaginary unit, and � = h/2π
the reduced Planck constant.

The initial condition for wavefunction at r = r0 with
r0 being the initial centre of ψ, is given by

ψ (r, 0) =
1√
πσ0

exp

⎡⎢⎢⎢⎢⎣− (r − r0)2

2σ2
0

+ ik0 · r
⎤⎥⎥⎥⎥⎦ , (3)

where σ0 is the initial standard deviation, and k0 = mv0/�

is the initial wavenumber vector. Where m is the mass of
the particle under consideration, v0 is the initial velocity of
the corresponding classical particle.

By using the finite difference method in space with
Crank-Nicolson scheme for the time integration, Eqs. (2)
and (3) above become as
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(
I − Δt

2i�
H

) {
ψn+1

}
=

(
I +
Δt
2i�

H

)
{ψn} , (4)

where I is a unit matrix, H the numerical Hamiltonian ma-
trix, and {ψn} stands for the discretized set of the two di-
mensional time-dependent wavefunction ψ (x, y, t) at a dis-
crete time tn = nΔt to be solved numerically.

We use successive over relaxation (SOR) scheme for
time integration in our numerical calculation. Calcula-
tion is done on a GPU (Nvidia GTX-580: 512 cores/3 GB
@1.54 GHz) [1, 2].

2.1 Exact wavefunction in a uniform mag-
netic field

The exact solution ψ (r, t) for the two-dimensional
Schrödinger Eq. (2) with a uniform magnetic field with a
Landau gauge [3], of Ax = −By, Ay = 0, Az = 0, is shown
below,

ψ (r, t) =
eikx

√√
π�B

exp

⎛⎜⎜⎜⎜⎜⎝− 1

2�2
B

(
y − u (t)

ω

)2⎞⎟⎟⎟⎟⎟⎠

× exp

⎡⎢⎢⎢⎢⎣i
⎛⎜⎜⎜⎜⎝y

2
0 sin 2ωt

4�2
B

− yy0 sinωt

�2
B

− ωt
2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ,
(5)

where �B ≡
√
�/qB is the magnetic length [3], the ω ≡

qB/m is the cyclotron frequency, y0 = k�2
B, and u (t) is

classical velocity of the particle in x-direction. By refer-
ring to Eq. (4) above, we can conclude that the standard
deviation, variance, or uncertainty, in position remain con-
stant throughout the time. In case of uniform magnetic
field, LB = ∞, σ2

r (t) = �2
B = const.

3. Numerical Results
In our numerical calculation, we normalized the

following parameters for analysis, as listed in Table 1.
Lengths are normalized by cyclotron radius of a proton
with a speed of 10 m/s in a magnetic field of 10 T. The cy-
clotron frequency in such a case is used for normalization
of the time.

Throughout the calculation, we use normalized grid
size of Δx = Δy = 0.02 and normalized time step of Δt =
2π × 10−5. This normalized grid size is sufficiently small
to use as noted in Ref. [1].

Table 1 Normalized parameter for mass of the particle, charge,
magnetic flux density, velocity, length and time.

3.1 Numerical conservation of momentum
and energy

The canonical momentum in x-direction, Px = mvx +

qAx, is conserved as much as 10–11 digits. In this case, we
used a normalized initial momentum of mv = (0, 1). Re-
sults shown in Fig. 1, errors of momentum in x-direction,
are sufficiently small enough for validity.

We obtain energy error in the particle at a certain time
by comparing our numerical results with initial value. The
results are proven small enough for validity as shown in
Fig. 2. Energy in our calculation is conserved as much
as 10–11 digits. In this research, our normalized initial
energy, E � 95.3∼102, is used to compare with our nu-
merical calculation. Note that initial energy is of order of
E = 102, thus the relative error in energy is around 10−11.

Figure 3 compares the trajectory of the particle r in
non-uniform magnetic field in the normalized x-y plane
between the quantum-mechanical expectation 〈r〉 and the
classical orbit r (t) with a normalized initial position of
r (0) = (−10, 0). Comparison of guiding-centre position
rG is shown in the Ref. [1].

Fig. 1 Numerical Error in momentum in x-direction for non-
uniform magnetic field LB = 5.219 × 10−4 m.

Fig. 2 Numerical error in energy of non-uniform magnetic field
with LB = 5.219 × 10−4 m.
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Fig. 3 Comparison of the trajectory of the particle r in non-
uniform magnetic field, LB = 5.219 × 10−11 m between
quantum-mechanical expectation 〈r〉 in red, classical or-
bit r (t) in blue.

Fig. 4 Comparison of σ2
r between uniform magnetic field

LB = ∞, red plot, and non-uniform magnetic field LB =

5.219 × 10−4 m, in blue.

3.2 Variance in position
The variance, or the uncertainty, in position of a par-

ticle is shown in Fig. 4. In our numerical calculation, we
numerically calculate the particle until 5 gyrations. Both
uniform magnetic field LB = ∞, and non-uniform mag-
netic field LB = 5.219 × 10−4 m variance in position, σ2

r ,
have small difference in value.

We recorded each maximum or top peak of the nor-
malized variance for both uniform magnetic field LB = ∞,
and non-uniform magnetic field LB = 5.219×10−4 m Thus,
we have 5 maximum or top peak values as shown in Fig. 5.

3.3 Numerical error subtraction
For uniform magnetic field, LB = ∞, the variance in

position should remain constant: σ2
r (t) = �2

B as given by
Eq. (4). However, there is slight increment in variance as
shown in Fig. 5. The difference between numerical calcu-
lation and theoretical value in this research is attributed to
numerical errors due to inevitable non-zero grid size and
time step as well as the finite bit calculation.

In our numerical calculation, both non-uniform mag-

Fig. 5 Comparison of σ2
r , normalized peak variance in position

of uniform magnetic field LB = ∞, between numerical
calculation, in red and theoretical σ2

r , in blue dotted line.

Fig. 6 Comparison of σ2
r , normalized increment of peak vari-

ance in position σ2
r between uniform magnetic field LB =

∞, in blue circle, compare with LB = 5.219 × 10−4 m, in
red square.

netic field and uniform magnetic fields’ increments in vari-
ance are assumed to consist the same numerical errors. In
this case, both non-uniform magnetic field variance and
uniform magnetic field variances behave non-linearly, as
shown in Fig. 6. Since this numerical error is undesirable
in our calculation, we subtract the increment in variance
for the non-uniform magnetic field from that for the non-
uniform magnetic field.

After subtraction of non-uniform magnetic field’s
peak variance with uniform magnetic field’s peak variance,
we get a linear relationship for the increment in variance
with time as shown in Fig. 7.

3.4 Expansion rate of variance
In this paper, we use multiple set of parameters; ini-

tial speed of 10–100 m/s, mass of the particle at 1.6722 ×
10−27–1.6722 × 10−26 kg, magnetic field at the origin of
5–10 T, gradient scale length of 2.610× 10−5–5.219 m and
charge of 1.602 × 10−19–6.408 × 10−19 C. Total 29 sets of
data were used.

Using numerical results for these parameter sets, we
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Fig. 7 Normalized increment of peak variance in position σ2
r for

non-uniform magnetic field LB = 5.219 × 10−4 m after
subtraction with uniform magnetic field LB = ∞ peak
variance in position σ2

r .

Fig. 8 Expansion rate of variance with different sets of parame-
ters of m, q, v0, B0 and LB.

found a new relation between expansion rate of variance
and the physical parameters. The final results are shown in
Fig. 8 with logarithm of base 10 scale. Figure 8 is graph of
physical parameter, log10 (�v0/qB0LB) against expansion
rate of variance, log10

(
dσ2

r/dt
)
.

Expansion rate increases linearly with different set of
parameters such as m, q, v0, B0 and LB. We found that
changes of mass, m, do not affect on our newly developed
expression for the expansion rate of variance.

Using numerical analysis method, we developed new
expression for expansion rate as a function of m, q, v0, B0

and LB,

log10

(
dσ2

r

dt

)
= log10

(
�

qLB

v0

B0

)
+ log 0.6097, (6)

which leads to

dσ2
r

dt
= 4.1

�

qB0

v0

LB
[m2/s]. (7)

It is interesting to note that there is no mass, m, dependence
for the expression above. In plasmas, however, the mass
dependence, or the isotope effect, may appear through the
replacement of v0 ∼ vth =

√
2kBT/m, where vth is the ther-

mal speed, kB is the Boltzmann constant and T is the tem-
perature.

4. Summary
We have solved the two-dimensional time-dependent

Schrödinger equation for a single particle in the presence
of a non-uniform magnetic field for difference set of pa-
rameters such as m, q, v0, B0 and LB. It is shown that the ex-
pansion rate increases linearly as dσ2

r/dt = 4.1�v0/qB0LB.
This expression has been derived using numerical calcula-
tion. We are also interested in developing theoretical ex-
pansion rate of variance. For these studies, we left it for
future work.
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