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Abstract 

 

Background Although intention-to-treat analysis is a standard approach, additional 

supplemental analyses are often required to evaluate the biological relationship among 

interventions, intermediates, and outcomes. Therefore, we need to evaluate whether the 

effect of an intervention on a particular outcome is mediated by a hypothesized 

intermediate variable.  

Purpose To evaluate the size of the direct effect in the total effect, we applied the 

marginal structural model to estimate the average natural direct and indirect effects in a 

large-scale randomized controlled trial. 

Method The average natural direct effect is defined as the difference in the probability 

of a counterfactual outcome between the experimental and control arms, with the 

intermediate set to what it would have been had the intervention been a control 

treatment. We considered 2 marginal structural models to estimate the average natural 

direct and indirect effects introduced by VanderWeele (Epidemiology 2009) and applied 

them in a large-scale randomized controlled trial—the Candesartan Antihypertensive 

Survival Evaluation in Japan (CASE-J trial)—that compared angiotensin receptor 

blockers and calcium-channel blockers in high-risk hypertensive patients. 
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Results There were no strong blood pressure-independent or dependent effects; 

however, a systolic blood pressure reduction of about 1.9 mmHg suppressed all events. 

Compared to the blood pressure-independent effects of calcium channel blockers, those 

of angiotensin receptor blockers contributed positively to cardiovascular and cardiac 

events, but negatively to cerebrovascular events. 

Limitations There is a particular condition for estimating the average natural direct 

effect. It is impossible to check whether this condition is satisfied with the available 

data. 

Conclusion We estimated the average natural direct and indirect effects through the 

achieved systolic blood pressure in the CASE-J trial. This first application of estimating 

the average natural effects in an RCT can be useful for obtaining an in-depth 

understanding of the results and further development of similar interventions. 

 

Keywords: randomized controlled trial, natural direct effect, marginal structural model, 

causal inference 
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Introduction 

 

In randomized controlled trials (RCTs), intention-to-treat analysis is the 

standard approach used to compare the treatment effects of an experimental arm to a 

control arm. This approach is based on the principle that the effect of an intervening 

policy is best assessed by an evaluation based on the intention to treat a subject (i.e., the 

planned treatment regimen) rather than the actual intervention used [1]. However, 

additional supplemental analyses are often required to evaluate the biological 

relationship among interventions, intermediates, and outcomes. For example, if there is 

a statistically significant difference in the primary outcome between the two arms, some 

investigators examine whether the intervention could work through a hypothesized 

mechanism. If no statistically significant difference is found, investigators will 

determine which pathway in the intervention did not work well in the RCT. This kind of 

analysis is important for an in-depth understanding of the results and further 

development of similar interventions. 

For this analysis, we need to evaluate whether the effect of an intervention on a 

particular outcome is mediated by a hypothesized intermediate variable. Statistically 

speaking, this concept relates to the decomposition of the total effect to the direct and 
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indirect effects. In practice, this investigation has sometimes been conducted using a 

statistical regression model with adjustment for an intermediate variable. For example, 

Freedman et al. [2] proposed that the effect of treatment on the clinical outcome after 

adjustment for the intermediate should be compared with the effect without adjustment. 

Thereby, they demonstrated that the effect of cholestyramine treatment on coronary 

heart disease was clearly indicated by the cholesterol-lowering effect of the treatment. 

However, to adjust such intermediate variables measured after randomization as 

covariates of standard regression models is considered problematic in most cases [3, 4]. 

In addition, subtracting the direct effect, estimated from the regression model, from the 

total effect does not generally yield a quantity that can be interpreted as an indirect or 

mediated effect [5]. Until recently, there was no statistical method to decompose a total 

effect into direct and indirect effects, especially when there was a nonlinear relationship 

between an intervention and an outcome or the interaction between the effects of an 

intervention and an intermediate on the outcome. 

The introduction of a new definition for direct and indirect effects by Robins 

and Greenland [6] and Pearl [7] promoted assessment of the mediation under the 

counterfactual framework. If we follow the terminology introduced by Pearl, there are 2 

classes of direct effect: ―controlled‖ and ―natural‖ [7]. There are several differences 
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between these 2 direct effects, which can result in different interpretations when these 

evaluations are applied to clinical data, for example, in the interpretation as an effect 

being ―prescriptive‖ or ―descriptive‖ [5, 7]. Moreover, the difference between a total 

effect and a natural direct effect can be interpreted as an indirect effect but not a 

controlled direct effect, in general [6-9]. In recent years, there have been many 

discussions about the conditions to identify a direct and indirect effect, especially in an 

epidemiologic research, and some analytical methods for this identification have been 

properly developed on the basis of counterfactual definitions [10-13].  

In this article, we will first provide an overview of the statistical methods under 

the counterfactual model to estimate the direct and indirect effects. To evaluate the size 

of the direct effect in the total effect, we focus on the estimation of the natural direct and 

indirect effects. Finally, we apply our analysis strategy based on the marginal structural 

model proposed by VanderWeele [10] to the Candesartan Antihypertensive Survival 

Evaluation in Japan (CASE-J trial), which is a large-scale RCT that compared the 

effects of 2 antihypertensive agents on cardiovascular events in high-risk hypertensive 

patients [14]. 
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Methods 

 

Definition of Direct and Indirect Effects 

 

We first consider an RCT for antihypertensive treatments with 2 drug treatment 

conditions and 2 outcomes: a blood pressure level as an intermediate outcome and a 

cardiovascular event as a primary outcome. Let Z denote the randomized interventions 

(i.e., antihypertensive agents); S, a post-treatment intermediate variable (i.e., blood 

pressure after treatment); and Y, outcomes of interest in the trial (i.e., cardiovascular 

events) (Figure 1). Let 𝑋 denote a set of baseline confounders and 𝑈, unmeasured 

confounders between intermediate-outcome relationships. In the ideal RCT, intervention 

and both the intermediate condition and outcome have no common causal pathway from 

other variables. Unfortunately, in the presence of the unmeasured confounders 𝑈, the 

direct and indirect effects are not identifiable [15]. We will assume that there are no 

unmeasured confounders 𝑈 between intermediate-outcome relationships or that even if 

they exist, all unmeasured confounders completely influence the intermediate variables 

through the measured confounders. Under this assumption, we can remove 𝑈 from 

Figure 1. The problem of the unmeasured confounders will be examined in the 



9 
 

Discussion. Next, we will consider the definitions of direct and indirect effects in this 

situation. 

Hereafter, we will assume that the intervention and outcome are binary and the 

intermediate is continuous. Robins and Greenland [6] and Pearl [7] formalized the 

notion of direct and indirect effects in the counterfactual framework. For a random 

sampled individual 𝑖, the observed variables are shown as Zi, Si, Yi, and 𝑋i. Yi,z is an 

individual’s potential outcome if the intervention Zi is set to z (0 for control treatment, 

1 for experimental treatment), and the individual causal total effect is denoted as the 

difference between the potential outcomes (Yi,1 − Yi,0). Such potential variables are 

termed ―counterfactual,‖ because only one variable is observed for each individual in 

reality [16]. Throughout this study, we have assumed that when an individual actually 

receives a treatment z, the individual’s observed outcome Yi equals the potential 

outcome Yi,z, provided the intervention is set to the same treatment. This assumption 

connects the observed data to the potential outcomes and is known as a ―consistency 

assumption‖ [17].  

Since it is impossible to observe both counterfactuals in an individual, we 

consider the marginal distribution for the entire population of the potential outcomes 

Y i,1 and Yi,0. The average total effect can be shown as Pr(Yi,1 = 1) − Pr(Yi,0 = 1), 
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and the unbiased average total effect can be estimated by using the observed data 

through an intention-to-treat analysis under the random allocation as follows: 

Pr(Yi,1 = 1) − Pr(Yi,0 = 1) =  Pr(Yi = 1|Zi = 1) − Pr(Yi = 1|Zi = 0) under the 

random allocation. Similarly, we further consider the counterfactuals for S and Y as 

follows.  

Si,z: An individual’s counterfactual value of the intermediate S if intervention Z is set 

to the value z. 

Yi,z,s: An individual’s counterfactual value of the outcome Y if intervention Z is set to 

the value z and intermediate S is set to the value s. 

Under these counterfactual models, two types of direct effects are formalized: a 

controlled direct effect and natural direct effect [6-10]. The individual controlled direct 

effect of intervention on outcome, comparing Zi = 1 with Zi = 0 and setting Si as s, 

is defined by Yi,1,s − Yi,0,s and measures the effect of intervention on the outcome not 

mediated through the intermediate. Since we cannot calculate the individual controlled 

direct effect in reality, we will consider the average controlled direct effect as 

Pr(Yi,1,s = 1) − Pr(Y i,0,s = 1). This formula shows that the controlled direct effect of 

intervention on the outcome can vary from the value of the intermediate to the ―set‖ 

value; hence, this type of direct effect has no counterpart indirect effect [7].  



11 
 

On the other hand, another definition of the direct effect, namely, the natural 

direct effect, has been proposed. The individual natural direct effect of intervention on 

outcome, comparing experimental with control treatment, under the value of the 

intermediate ―set‖ to what it would have been if the intervention had been a control 

treatment, Si,0, is formally defined by Yi,1,Si,0
− Yi,0,Si,0

. The average natural direct 

effect is given as Pr(Y i,1,Si,0
= 1) − Pr(Y i,0,Si,0

= 1). In the case of the average natural 

direct effect, the average indirect effect can be calculated simply by subtracting the 

average natural direct effect from the average total effect [7]. If an intervention and 

intermediate interact to yield the outcome, estimation of the controlled direct effect 

depends on the level at which the intermediate is set, whereas the average natural direct 

effect provides a single summary of the average controlled direct effect in the entire 

population [9]. If there is no interaction between the effects of the intervention and the 

intermediate on the outcome, the average controlled direct effect and the natural direct 

effect are equivalent [18].  

We will assume that the data strings (Zi, Si, Yi, 𝑋i, Yi,z, Si,z, Yi,z,s), 

i = 1, … , N are realizations of N independently and are identically distributed random 

vectors, and henceforth, we will suppress their dependence on the subject index i. In the 

ideal RCT setting, the randomized intervention Z and potential variables (Sz, Y z,s) are 
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independent from the baseline variables 𝑋. Several authors have investigated the 

conditions to estimate the average controlled and natural effects. First, we need a 

condition such that all confounders between S and Yz,s are measured, that is, 𝑌𝑧,𝑠|𝑧 ∈

*0,1+∐𝑆|*𝑍, 𝑋+, in order to estimate both the average controlled and natural direct effect 

(no unmeasured confounder condition exists in the intermediate-outcome relationship) 

[10]. To estimate the average natural direct effect, we need the additional condition of a 

relationship between two potential variables (Yz,s and Sz). Pearl showed that the 

average natural direct effect is identifiable if Yz,s∐S0|X holds for all S [7]. This 

condition can be interpreted as a potential outcome Yz,s does not depend on the level of 

the intermediate in the control arm Z = 0 given a set of confounders X.  

 

Marginal structural models 

We considered the average causal effect as the contrast of 2 marginal 

probabilities. This causal risk difference can be expressed in terms of the parameter of 

the linear model like Pr(Yz = 1) = α0 + α1z. As stated in the previous section, this 

causal parameters are equal to the corresponding parameters of the following 

association model under the random allocation (no confounding), Pr(Yz = 1|Z = z) =

α′0 + α′1z, and thus it is possible to estimate the causal parameters from the observed 
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data. The former model is called as a marginal structural model because this models the 

marginal distribution (= entire population) of counterfactual random variables. On the 

other hand, the latter is called as an associational model because this is a model for 

associations observed when comparing subpopulations (defined by levels of treatment) 

of the entire population [19]. However, the parameters of the associational model will 

not equal to the corresponding causal parameter if there is confounding. Robins et al. 

have proposed a weighted analysis procedure for this association model, which in turn 

gives unbiased estimates of causal parameter [19]. This weighting technique to estimate 

the causal parameter is well known as standardization in epidemiology. Sato and 

Matsuyama reviewed why this technique provides an unbiased estimate with a simple 

example [20]. We will later describe how to calculate the causal parameters of the 

marginal structural model to estimate the direct and indirect effects in our data. 

 

Application Data 

 

We briefly describe the CASE-J trial, which is a prospective, multicenter, 

randomized, open-label, active-controlled, 2-arm parallel-group comparison with a 

response-dependent dose titration and blinded assessment of the endpoints in high-risk 
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hypertensive patients [21]. The purpose of this trial was to compare the long-term 

effects of the angiotensin receptor blocker candesartan and the calcium-channel blocker 

amlodipine on the incidence of cardiovascular events, represented as a composite of 

sudden death and cerebrovascular, cardiac, renal, and vascular events in high-risk 

hypertensive patients. After informed consent was obtained, 4,728 high-risk 

hypertensive patients aged 20–84 years were randomized to receive either of the 2 

antihypertensive agents (the candesartan and amlodipine arms) and followed up for at 

least 3 years. The same target for the control of blood pressure was set according to the 

guidelines proposed by the Japanese Society of Hypertension [22]. Data were collected 

every 6 months for blood pressure, medication (treatment period, drug compliance, and 

concomitantly used antihypertensive or other drugs), and other clinical conditions. Each 

patient had a maximum of 8 follow-up visits, from the baseline to the last visit, and 

information on adverse events, dropouts, and cardiovascular events was periodically 

collected until the death of the patient or completion of the study (December 2005). 

The CASE-J trial revealed that the 2 treatment arms equally suppressed the 

incidence of cardiovascular events during the mean follow-up period of 3.2 years, with 

a 97.1% follow-up rate. The hazard ratio of the primary endpoint was 1.01 (95% 

confidence interval [CI] = 0.79–1.28; P = 0.969) [14]. On the other hand, the achieved 
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systolic blood pressure at 6 months after enrolment was 143.5 mmHg in the candesartan 

arm and 141.4 mmHg in the amlodipine arm. The difference in systolic blood pressure 

was 1.7 mmHg after 3 years, and there was a small but statistically significant 

difference in the achieved blood pressure between the candesartan and amlodipine arms 

in the follow-up period.  

 

Models for Estimating the Natural Direct Effect 

 

To estimate the average natural direct and indirect effects in the CASE-J trial, 

we can utilize the marginal structural models introduced by VanderWeele [10]. Figure 2 

is a causal graph that represents the CASE-J trial up to time of the second visit. In these 

longitudinal settings, data string (Z, S, Y, 𝑋, Y z, Sz, Yz,s) corresponds to (Z, S(t), 

Y(t + 1), 𝐿(𝑡), Y z(t + 1), Sz(t), Yz,s(t + 1)). The visit time (t) is represented as 

semiannual visits, and Y(t + 1) is an indicator of the first onset of the outcome between 

visit t and t + 1 (t = 0 to 5). The outcomes of interest are the onset of cardiovascular, 

cerebrovascular, or cardiac events. Let 𝐿(t) be a vector of baseline variables and 

time-varying covariates measured before visit t and S(t) be the achieved systolic blood 

pressure (intermediate variable) at the visit (t). Therefore, 𝐿(t) is measured prior to 
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S(t) (Figure 2). Let 𝑆(𝑡)̅̅ ̅̅ ̅̅  be the historical pattern of the achieved systolic blood 

pressure. Since the percentage of patients who received more than 80% of the allocated 

drugs during follow-up was 96.5% and 96.0% for the candesartan and amlodipine, 

respectively [14], we will consider the randomized intervention Z not to be a 

time-varying variable.  

For the present analysis, 𝐿(0) is a vector of the following covariates measured 

at the baseline: age, sex, body mass index, systolic blood pressure, diastolic blood 

pressure, pre-existing type 2 diabetes, a history of cerebrovascular events (including 

stroke or transient ischemic attacks more than 6 months prior to the screening), left 

ventricular hypertrophy, a history of ischemic heart disease (including angina pectoris or 

myocardial infarction more than 6 months prior to the screening), renal disease 

(proteinuria or renal dysfunction), hyperlipidemia, antihypertensive drug use at the time 

of enrolment, smoking history, and alcohol drinking. 𝐿(t) further comprises age and 

concomitant use of diuretics, beta blockers, alpha-beta blockers, lipid-lowering drugs, 

and anti-diabetic drugs. The time-varying covariates were carried forward from the most 

updated value, although there were few missing data in the covariates in the CASE-J 

trial. We will use 𝐿(𝑡)̅̅ ̅̅ ̅̅  as the history of the time-varying covariates up to the time of 

visit (t), including both the time-varying and non-time-varying covariates measured at 



17 
 

the baseline.  

Let Sz(t) denote a counterfactual intermediate after the visit (t) at an 

intervention Z value of z, and let Y z,s̅(t + 1), be a counterfactual outcome at the time 

of the visit (t+1) at an intervention Z value of z and an intermediate 𝑆(𝑡)̅̅ ̅̅ ̅̅  value of the 

intermediate history 𝑠̅. In longitudinal settings, the conditions for identifying natural 

direct and indirect effects at a single point setting need to be generalized for estimating 

the natural direct and indirect effects. In the ideal RCT setting without time-varying 

treatment, it follows from the results of VanderWeele [10] that if the following 2 

conditions hold the natural direct and indirect effects are identified:  

𝑌𝑧,𝑠̅(𝑡 + 1)|𝑧 ∈ *0,1+∐𝑆(𝑡)|*𝑍, 𝐿̅+ 

Yz,s̅(t + 1)∐S0(t)|𝐿(0) 

The first condition requires that for every time period t, the effect of the intermediate 

𝑆(𝑡) on the outcome 𝑌 is not confounded given the covariate history 𝐿̅ up to time t 

and the allocated treatment. In this situation, the treatment Z is fixed through the trial. 

The second condition requires that the treatment should not affect any time-varying 

confounders in the mediator-outcome relationship for any time t. If the treatment is also 

time varying, we need to consider the treatment history up to time t and modify these 2 

conditions accordingly.  
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We will apply a weighted pooled logistic regression model with repeated 

measurement to estimate Pr (Y1,𝑆̅0
) and Pr (Y 0,𝑆̅0

). 𝑆0̅ denotes the counterfactual 

intermediate history if the intervention Z is set to control treatment. For this estimation, 

we need to specify 2 marginal structural models, as follows [10]: 

1) E,Sz(t)|𝐿(0) = 𝑙(0)- = θ0(t) + θ1z + θ′2𝑙(0) and 

2) logit Pr .Y z,s(t + 1)|𝐿(0) = 𝑙(0)/ = β
0

(t) + β
1

z + β
2

s(t) + β
3

z × s(t) + β′
4

𝑙(0). 

where 𝜃0(t) and β0(t) are time-specific intercepts for each visit. The second model 

assumes that the outcome depends only on the most recent value of systolic blood 

pressure, as shown in Figure 2. Note, both models are models for distribution of the 

counterfactual random variables conditioned by a set of confounders 𝐿(0). This 

conditioning is for substituting E,Sz(t)- in the second marginal structural model at the 

end, and not for controlling the confounders [10]. Since the CASE-J trial was an RCT 

and non-compliance for the use of the allocated drugs was negligible, we can assume 

that there is no confounding between the intervention-intermediate relationships. 

Therefore, the causal parameters of the first marginal structural model can be estimated 

by simply fitting a linear model with repeated measurements. On the other hand, we 

need to adjust for the confounding between the intermediate-outcome relationships to 

estimate the causal parameters of the second marginal structural model, which models 
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the marginal distribution of the potential outcome Y z,s̅. These parameters can be 

unbiasedly estimated by using the inverse probability weighting (IPW) technique, in 

which there are no unmeasured confounders between the intermediate and outcome [19, 

23, 24]. Each patient’s IPW is the inverse of the probability that the systolic blood 

pressure level has been controlled to a specific value si at visit (t). We specify the 

time-varying stabilized weight (sw) as swi(t) = ∏
f (S(k)=si|Z=zi,L(0)=li)

f(S(k)=si|Z=zi,L̅(k)=li)

t
k=0 , where 

f (S(k)|Z, 𝐿(0)) is the conditional density of the continuous variable S(k), given 

Z and 𝐿(0). S(k) is assumed to be normally distributed with mean (α0 + α1Z +

α′
2𝐿(0)) and variance 𝜎2. These parameters can be obtained by the least square 

regression for each separate visit (k), and f (S(k)|Z, 𝐿(0)) can be estimated by the 

normal density with the estimated means and variance [19]. We further account for the 

selection bias, which is due to censoring of loss to follow-up and non-cardiovascular 

death. Specifically, let C(t) = 1 if a patient was lost to follow-up or died from 

non-cardiovascular causes by the time of visit (t), and C(t) = 0 otherwise. To 

unbiasedly estimate the causal parameters in the second marginal structural model in the 

presence of censoring, we use both swi(t) and the inverse probability of censoring 

weight, that is, sw†
i(t) = ∏

Pr(C(k)=0|C̅(k−1)=0,Z=zi,𝐿(0)=𝑙i)

Pr(C(k)=0|C̅(k−1)=0,Z=zi,𝐿̅(k)=𝑙i)

t
k=0 , where C̅(t) =

(C(0),…, C(t)) = 0, and C(−1) = 0. Then, the required patient-specific IPW is 
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swi(t) × sw†
i(t). Note, 𝐿(0) is already included in the denominator of swi(t) and 

sw†
i(t), and the most recent covariate values 𝐿̅ are included as the history of 

covariates until the visit (t) in these particular models. We can obtain the causal 

parameters in the second marginal structural model by fitting the weighted pooled 

logistic model with repeated measurements using the time-varying patient-specific IPW. 

In both the first and second marginal structural models, we choose an independent type 

variance-covariance matrix of repeated measurements for the same individuals in the 

―repeated‖ statement of SAS ―proc genmod‖ (SAS ver. 9.2; SAS Institute Inc., Cary, 

NC, USA). 

Finally, we can estimate the probability Pr (Yz,𝑆̅0
(t)|𝑙(0)) by substituting 

E,S0(t)|𝑙(0)- estimated through the first marginal structural model for S(t) in the 

second marginal structural model as Pr̂(Yz,𝑆̅0
(t)|𝑙(0)) = expit[β̂0(t) + β̂1z +

β̂2E,S0(t)|𝑙(0)- + β̂3z × E,S0(t)|𝑙(0)- + β′̂4𝑙(0)]. By substituting the individual value 

of 𝑙(0) in this formula, we obtain Pr̂(Y1,𝑆̅0
(t)|𝑙(0)) and Pr̂(Y0,𝑆̅0

(t)|𝑙(0)) for each 

individual. Thus, we can estimate the marginal probability Pr̂(Y1,𝑆̅0
(t)) and 

Pr̂(Y0,𝑆̅0
(t)) from the average of Pr̂(Y 1,𝑆̅0

(t)|𝑙(0)) and Pr̂(Y 0,𝑆̅0
(t)|𝑙(0)), 

respectively, for the entire population. If the intervention Z is set to the value z and 

intermediate S is set to that corresponding to control treatment, the incidence 
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probability by the end of the trial can be estimated as Pr̂(Y z,𝑆̅0
) = 1 − ∏k=0

5 {1 −

Pr̂(Y z,𝑆̅0
(k))}. The estimated average natural direct effect is Pr̂(Y 1,𝑆̅0

) − Pr̂(Y0,𝑆̅0
), and 

the average natural indirect effect = average total effect – average natural direct effect, 

as defined above. The re-sampling-based CIs for each estimate of the natural direct and 

indirect effects were calculated on the basis of the normal approximations with 500 

bootstrap samples and their standard deviations [25]. The CI of the total effect is 

constructed on the basis of the normal approximation (i.e., 1.96 × standard error of 

the risk difference). All statistical analyses were conducted using SAS ver. 9.2.  
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Results 

 

Table 1 shows the baseline characteristics, concomitant therapies, and average 

systolic blood pressure and diastolic blood pressure during the follow-up and the 

number of cardiovascular, cerebrovascular, and cardiac events. Of the 4703 patients in 

the intention-to treat population in the CASE-J trial, 150 patients never underwent 

systolic blood pressure measurements before they were censored or experienced 

cardiovascular events during follow-up; therefore, they were excluded from the analysis. 

As shown in Table 1, the patients excluded from the analysis had higher baseline 

systolic and diastolic blood pressures than the remaining 4,553 patients analyzed and 

did not receive antihypertensive drugs at the baseline, but there were no statistical 

significant differences in the other baseline variables between the groups. During 

follow-up, concomitant antihypertensive drugs were more often taken in the candesartan 

arm than in the amlodipine arm. The mean achieved systolic and diastolic blood 

pressures in the candesartan arm were higher by 1.7 and 1.0 mmHg, respectively, than 

those in the amlodipine arm (Table 1). Figure 3 shows the time course of the changes in 

systolic blood pressure in the candesartan and amlodipine arms. The achieved systolic 

blood pressure gradually decreased with the follow-up time.  
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Table 2 shows the results of the associations between the baseline 

characteristics and the achieved systolic blood pressure through the linear regression 

model with repeated measurements. These parameter estimates are the causal 

parameters estimated in the first marginal structural model explained above. Several 

baseline variables, also considered strong risk factors for cardiovascular events, were 

found to be strongly associated with the achieved systolic blood pressure. In this 

analysis, the systolic blood pressure in the candesartan arm was 1.9 mmHg higher than 

that in the amlodipine arm (P < 0.001). There was no association between the treatment 

arm and time at which the decreased systolic blood pressure was observed (data not 

shown). 

Table 3 presents the average total effect; two estimates of the counterfactual 

incidence probabilities; their difference (i.e., average natural direct effect); and the 

average natural indirect effects for cardiovascular, cerebrovascular, and cardiac events. 

The first row in Table 3 presents the estimated average total effect represented as a risk 

difference between the candesartan and amlodipine arms. No significant differences 

were observed in the average total effect between the candesartan and amlodipine arms 

with regard to the cardiovascular, cerebrovascular, and cardiac events. To explain this 

simply, in Table 3, Pr̂(Y 1,𝑆̅0
), is the incidence probability obtained when the entire 
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population received candesartan but with the achieved systolic blood pressure set to 

what it would have been had the entire population received amlodipine. On the other 

hand, Pr̂(Y 0,𝑆̅0
) is the incidence probability obtained when the entire population 

received amlodipine but with the achieved systolic blood pressure set to what it would 

have been had the entire population received amlodipine. The fourth and fifth rows 

show the corresponding average natural direct and indirect effects. With regard to 

cardiovascular events, the average natural direct effect was –1.14% (95% bootstrap CI = 

–3.12 to 0.84) and average natural indirect effect was 1.05% (95% bootstrap CI = –0.33 

to 2.43). These point estimates of the direct and indirect effects were in the opposite 

direction, and this is reflected in there being no difference in the average total effect 

(risk difference = –0.10; 95% CI = –1.44 to 1.25). For the cerebrovascular events, the 

achieved blood pressure differences between the candesartan and amlodipine arms 

during the follow-up had negative effects (average natural indirect effect = 0.25%; 95% 

bootstrap CI = –0.61 to 1.11). Further, candesartan influenced the cerebrovascular 

events negatively compared to amlodipine when the achieved systolic blood pressure 

was set to what it would have been had the entire population in the candesartan arm 

received amlodipine (average natural direct effect = 0.23%; 95% bootstrap CI = –1.04 

to 1.50). Although the 95% CIs were quite large, the average natural direct and indirect 
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effects contributed to the total effect (risk difference = 0.48; 95% CI= –0.39 to 1.35) to 

an equal degree. 
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Discussion 

 

In this paper, we have described a method for estimation of average natural 

direct and indirect effects by fitting the marginal structural model, and we have 

evaluated the contribution of the average natural direct and indirect effects to the 

average total effect in the CASE-J trial. To our knowledge, this is the first application of 

the average natural direct and indirect effects to real RCT data. Although the 95% CIs 

are wide and no strong effects are seen in this analysis, we can suggest that there are 

some small blood pressure-independent effects from candesartan on cardiovascular and 

cardiac events but not cerebrovascular events. Moreover, 3 outcomes in the CASE-J 

trial show that the contributions of blood pressure-independent and dependent effects 

were similar in cardiovascular and cardiac events but different in cerebrovascular events. 

These results are also consistent with the previous findings of the Blood Pressure 

Lowering Treatment Trialists’ Collaboration [26]. 

There are some merits of using average natural effects compared to average 

controlled effects. First, the average total effect can be decomposed into natural direct 

and indirect effects, and we can evaluate the proportion of direct effects (or indirect 

effects) in the total effect. This can be naturally considered as one measure for the 
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evaluation of a surrogate endpoint (e.g., the ratio of the absolute values of the average 

natural direct and indirect effects or the ratio of the indirect effect and the sum of the 

absolute value of the natural direct and indirect effects). This concept is similar to that 

of Freedman et al. [2] or Taylor et al. [27], and it could be considered a different 

approach from the classical validation approach [28]. Secondly, when the intermediate 

variable is continuous and since it is well known that the lower the systolic blood 

pressure the better, it is difficult to interpret the results of the controlled direct effect if 

we simply ―set‖ the intermediate to a certain value (e.g., 140 mmHg in the CASE-J trial 

data). This especially holds for some patients whose systolic blood pressure can actually 

be controlled below a certain value, and it is not difficult to interpret if we use the 

average natural effects.  

However, there are several conditions for identification of average natural 

direct and indirect effects. One of the most difficult conditions is the conditional 

independency between 2 potential variables as Yz,s∐S0|X. Petersen et al. proposed the 

less restrictive condition E(Y1,s − Y0,s|S0, X) = E(Y1,s − Y0,s| X). However, in either 

case, we can never simultaneously observe Yz,s and S0 in an individual; therefore, it is 

difficult (or almost impossible) to verify this assumption from data [9]. Recently, 

VanderWeele proposed a sensitivity analysis for unmeasured confounders in order to 
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estimate the controlled and natural effects [29]. This simple formula is especially useful 

when the specific confounder is not measured, and its influence on the results can be 

presumed. In addition, several techniques for the sensitivity analysis for unmeasured 

confounders and model misspecification have been proposed in the context of the 

estimation of total or joint effects [30-32]. Another approach using bounds might be 

utilized more fully at the time of evaluating the direct or indirect effects, even though 

the ranges of bounds are generally wide [33-35]. In an RCT, the causal graph given in 

Figure 2 is more reasonable than epidemiological data if non-compliance for the use of 

the allocated drugs is negligible, because we can control the treatment schedule and data 

collection. We measured many variables in the CASE-J trial data that correspond to 

either systolic blood pressure (intermediate) or cardiovascular events (outcome). Thus, 

we considered that the conditional independency between 2 potential variables is 

satisfied as far as this is practically presumed. 

In conclusion, we considered direct effects with repeated measurements in the 

longitudinal setting and estimated the average natural direct and indirect effects through 

the achieved systolic blood pressure in the CASE-J trial. This first application of 

estimating the average natural effects in an RCT can be useful for obtaining an in-depth 

understanding of the results and further development of similar interventions. 
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Figure 1. Directed acyclic graph of an ideal randomized clinical trial 
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Figure 2. Directed acyclic graph of the CASE-J trial 
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Figure 3. Time course of changes in systolic blood pressure in each comparative arm during the CASE-J trial  
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Table 1. Patient characteristics at baseline and during follow-up 

  

Included in the analysis Excluded from the analysis 

Candesartan 

(N = 2,278) 

Amlodipine 

(N = 2,275) 
P value 

Candesartan 

(N = 76) 

Amlodipine 

(N = 74) 
P value 

Age (years) (SD) 63.8 (10.4)  64.1 (10.5) 0.554 63.3 (12.5)  63.4 (13.4)  0.967 

BMI (kg/m
2
) (SD) 24.6 (3.7)  24.5 (3.6)  0.220 25.0 (4.2)  24.2 (4.5)  0.276 

Female gender (%)  1055 (46.3)  981 (43.1)  0.030 37 (48.7)  33 (44.6)  0.616 

Severe hypertension (%)  435 (19.1)  464 (20.4)  0.271 19 (25.0)  29 (39.2)  0.063 

Pre-existing diabetes (%) 976 (42.8)  982 (43.2)  0.827 35 (46.1)  25 (33.8)  0.125 

Cerebrovascular history (%)  243 (10.7)  221 (9.7)  0.288 5 (6.6)  4 (5.4)  0.762 

Left ventricular hypertrophy (%)  769 (33.8)  789 (34.7)  0.511 30 (39.5)  24 (32.4)  0.369 

Ischemic heart disease (%) 291 (12.8) 296 (13.0) 0.812 7 (9.2)  2 (2.7)  0.093 

Renal dysfunction (%)  562 (24.7)  528 (23.2)  0.248 10 (13.2)  15 (20.3)  0.243 

Vascular disease (%)  29 (1.3)  23 (1.0)  0.405 0 (0.0)  1 (1.4)  - 

Antihypertensive drug use (%)  1573 (69.1) 1527 (67.1)  0.162 39 (51.3)  26 (35.1)  0.309 

Current smoking or history (%)  677 (29.7) 766 (33.7)  0.004 28 (36.8)  27 (36.5)  0.964 

Alcohol consumption (%) 1078 (47.3) 1084 (47.7) 0.826 37 (48.7)  36 (48.7)  0.997 

Hyperlipidemia (%)  1042 (45.7)  986 (43.3)  0.103 26 (34.2)  24 (32.4)  0.817 

SBP (mmHg) (SD) 162.4 (14.2) 163.0 (14.1) 0.152 165.9 (13.6)  170.7 (14.7) 0.039 



 
 

DBP (mmHg) (SD) 91.5 (11.0)  91.7 (11.3)  0.489 93.3 (12.2)  95.1 (11.7)  0.350 

ACEI use during follow-up (%) 41 (1.8) 70 (3.1) 0.005 - - - 

Diuretic use during follow-up (%) 550 (24.1) 308 (13.5) <0.001 - - - 

β blocker use during follow-up (%) 508 (22.3) 311 (16.8) <0.001 - - - 

α or αβ blocker use during follow-up 

(%) 
674 (29.6) 481 (21.1) <0.001 - - - 

Anti-hyperlipidemic drug use during 

follow-up (%) 
1017 (44.6) 996 (43.8) 0.557 - - - 

Anti-diabetic drug use during 

follow-up (%) 
844 (37.1) 868 (38.2) 0.442 - - - 

Mean SBP during follow-up (mmHg) 

(SD) 
139.9 (10.8) 138.2 (10.1) <0.001 - - - 

Mean DBP during follow-up (mmHg) 

(SD) 
79.9 (7.6) 78.9 (7.3) <0.001 - - - 

Primary CV events (%) 128 (5.6) 130 (5.7) 0.889 6 (7.9) 4 (5.4) 0.541 

Cerebrovascular events (%) 58 (2.5) 47 (2.1) 0.281 3 (4.0) 3 (4.1) 0.973 

Cardiac events (%) 42 (1.8) 47 (2.1) 0.588 1 (1.3) 0 (0.0) 0.322 

BMI = body mass index, SBP = systolic blood pressure, DBP = diastolic blood pressure, ACEI = angiotensin-converting enzyme 

inhibitor, CV = cardiovascular, SD = standard deviation 

  



 
 

Table 2. Association between the baseline variables and the achieved SBP during the CASE-J trial 

 

Increase in  

achieved SBP per 

unit 

95% CI P value 

Candesartan (vs. amlodipine) 1.91 (1.37, 2.46) <0.001 

Age at baseline (per 10 years) 0.29 (−0.01, 0.59) 0.056 

BMI (per 5 kg/m
2
)  0.85 (0.44, 1.26) <0.001 

Female (vs. male) 0.23 (−0.50, 0.97) 0.530 

Pre-existing diabetes 2.11 (1.44, 2.78) <0.001 

Cerebrovascular history  −0.66 (−1.59, 0.27) 0.166 

Left ventricular hypertrophy  0.48 (−0.15, 1.12) 0.136 

Ischemic heart disease −1.94 (−2.76, −1.11) <0.001 

Renal dysfunction  1.18 (0.52, 1.83) 0.001 

Antihypertensive drug use  2.59 (1.96, 3.22) <0.001 

Current smoking or history  0.36 (−0.31, 1.04) 0.293 

Alcohol consumption 1.19 (0.50, 1.88) 0.001 

Hyperlipidemia  0.01 (−0.56, 0.59) 0.971 

SBP at baseline (per 10 mmHg) 2.05 (1.80, 2.30) <0.001 

DBP at baseline (per 5 mmHg) −0.30 (−0.45, −0.15) <0.001 

  



 
 

Table 3. Parameter estimates of the natural direct and indirect effects for each event  

Estimated  

causal quantities 

CV events Cerebrovascular events Cardiac events 

Estimates  95% CI
†
 Estimates 95% CI

†
 Estimates 95% CI

†
 

Total effect (%)* −0.10 (−1.44, 1.25) 0.48 (−0.39, 1.35) −0.22 (−1.02, 0.58) 

Pr̂(Y0,𝑆̅0
) (%) 6.78 

(5.23, 

8.33) 
2.30 

(1.43, 

3.16) 

2.49 (1.31, 

3.68) 

Pr̂(Y1,𝑆̅0
) (%) 5.64 

(4.29, 

6.98) 
2.53 

(1.50, 

3.55) 

1.80 (1.08, 

2.52) 

Natural direct effect (%) −1.14 (−3.12, 0.84) 0.23 (−1.04, 1.50) −0.69 (−1.87, 0.49) 

Natural indirect effect (%) 1.05 (−0.33, 2.43) 0.25 (−0.61, 1.11) 0.47 (−0.27, 1.21) 

CI = confidence interval 

* Total effect was the risk difference between the candesartan arm and the amlodipine arm estimated on the basis of the intention-to-treat 

principle. 
†
95% CI is calculated using the bootstrap method except in the case of total effect. 


