Fabrication of Si$_3$N$_4$-based composite containing needle-like TiN synthesized using NH$_3$ nitridation of TiO$_2$ nanofiber

Hajime Kiyono1, Yuho Miyake1, Yusuke Nihei1, Tomoki Tumura2 and Shiro Shimada1

1Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, 060-8628, Japan
2Faculty of Engineering, Oita University, Dannoharu, Oita, 870-1192, Japan

Abstract

A Si$_3$N$_4$ composite containing needle-like TiN particles (7 vol%) was fabricated. Needle-like TiN particles several micrometers long were synthesized using NH$_3$ nitridation of TiO$_2$ nanofiber, which was obtained using hydrothermal treatment. A mixed powder of α-Si$_3$N$_4$ and the needle-like TiN particles with additives was hot pressed at 24 MPa and 1850 °C for 1 h in N$_2$ atmosphere. Mechanical properties of the composite were compared with those of a composite containing rounded TiN particles and a monolithic β-Si$_3$N$_4$ ceramic. The Si$_3$N$_4$ matrix of the composites containing TiN was mainly α-phase, suggesting that the α-β phase transformation of Si$_3$N$_4$ was inhibited by the presence of TiN. Although fracture strength of the composites was lower, fracture toughness was comparable to that of monolithic β-Si$_3$N$_4$ ceramics. Hardness of the composites was about 19 GPa and was greater than that of the monolithic β-Si$_3$N$_4$ ceramic.

Keywords: Composite; Titanium nitride; Silicon nitride; Needle, Nanofiber; Hot pressing

*Corresponding author. Tel / fax: +81-11-706-6578.

E-mail: kiyono@eng.hokudai.ac.jp
1. Introduction

TiN is a promising material for coatings or additives in composites because of its high hardness characteristic, high fracture toughness, good abrasive resistance, good adhesive properties, and high electron conductivity. Fabrication of TiN–Si₃N₄ composites has been reported to give electric conductivity or to improve fracture toughness.¹–⁴ In these reports, the size of TiN particles has been controlled to the micrometer² ³ or nanometer⁴ range but the shape has not been intentionally controlled. It is well known that introducing needle-like grains into a ceramic body improves fracture toughness by virtue of a deflection and bridging effect against a crack propagating. Fibers or whiskers of TiN have been synthesized using methods, such as chemical vapor deposition⁵, nitridation of TiO₂ fibers⁶, and carbothermal reduction of TiO₂ with additions.⁷ It is known that TiO₂ is easily nitrided to TiN using NH₃ atmosphere at elevated temperatures according to the following reaction:

\[2\text{TiO}_2 + 2\text{NH}_3 \rightarrow 2\text{TiN} + 3\text{H}_2\text{O} + 1/2\text{O}_2. \] \hspace{1cm} (1)

TiO₂ nanofibers with large specific surface area can be obtained by using the hydrothermal treatment of TiO₂ powder in a basic solution.⁸ ⁹ The authors have recently demonstrated that partially nitrided nanofiber has high rate charge-discharge properties can be used
as an electrode material for lithium ion batteries.10 In the study, we found that the nitrided nanofiber possesses a needle-like shape several μm long, which originates from the nanofiber. However, nitridation conditions and other applications of the nitrided nanofiber have not been investigated. In the present paper, we investigate the nitridation conditions necessary to synthesize needle-like TiN particles by the nitridation of TiO$_2$ nanofibers and fabricate Si$_3$N$_4$-based composites containing the needle-like TiN particles.

2. Experimental procedures

2.1 Synthesis of needle-like TiN particles

TiO$_2$ nanofibers were synthesized by hydrothermal treatment of TiO$_2$ powder8, 11 using rutile TiO$_2$ powder (CR-EL, 0.3 μm; Ishihara Industry Co., Japan). The dispersion of 10 wt% TiO$_2$ powder in 47 wt% KOH and 43 wt% H$_2$O was heated at 150 °C for 150 h in a stainless jacket lined with TEFLON. The powder was then washed with 0.1 mol/L HCl solution to remove potassium and dried. To determine the nitridation conditions needed to transform TiO$_2$ nanofibers to TiN, thermogravimetric analysis (TGA) in NH$_3$/Ar atmosphere was carried out. Details of the TGA equipment are described elsewhere.12 About 50 mg of the TiO$_2$ nanofibers was heated to
1200 °C at 5 °C/min in NH₃/Ar (50/50 kPa). The weight loss during heating was monitored by an electric balance (Cahn D-200, USA). Nitridation was also carried out using a horizontal tube furnace using the same conditions as that of TGA except for the amount of the sample, which was about 0.5 g. The heat-treated samples were then subjected to X-ray diffraction (XRD, RIGAKU RINT, Japan) analysis, transmission electron microscopic (TEM, JEOL JEM-2000FX, Japan) observation, and X-ray photo electron spectroscopic (XPS, SHIMADZU ESCA-750, Japan) analysis.

2.2 Fabrication and characterization of composites

α-Si₃N₄ (SN-E10, Ube industry Co., Japan), Y₂O₃ (Koujyundo Chemical Co. Japan), and Al₂O₃ (Kanto Chemical Co. Japan) powders were used. The powders of α-Si₃N₄ with 5 wt% Y₂O₃ and 5 wt% Al₂O₃ were mixed using a ball mill containing plastic-coated iron balls in ethanol. After the 24 h ball milling, a dispersion of the TiO₂ nanofibers in water was added to the mixed powder of α-Si₃N₄ with Y₂O₃ and Al₂O₃ in ethanol and was mixed for 1 h. The amount of added TiO₂ nanofiber corresponds to 7 vol% TiN in the fabricated composites. The mixed powder was dried and heated using a horizontal tube furnace in NH₃ atmosphere at 1000 °C for 4 h to transform TiO₂ to TiN without the nitridation of Al₂O₃ and Y₂O₃. The heated powder was hot pressed under
a uniaxial pressure of 24 MPa at 1850 °C for 1 h in N₂ atmosphere (Composite A). For comparison, a TiN-Si₃N₄ composite having the same composition as that of Composite A, but with TiN fabricated from TiO₂ (CR-EL) powder without hydrothermal treatment, (Composite B) and a monolithic Si₃N₄ ceramic were fabricated. Hot pressing conditions for Composite B and the monolithic Si₃N₄ were the same as those of Composite A. The composites and monolithic Si₃N₄ were characterized by XRD and scanning electron microscope (SEM, JEOL JSM-6300F, Japan). Fracture strength was determined using a four-point bending test with a crosshead speed of 0.05 mm/min. Fracture toughness and hardness were measured using Vickers indentation method at an applied pressure of 195 and 49 N, respectively.

3 Results and Discussion

3.1 Nitridation of TiO₂ nanofibers

Figure 1 shows non-isothermal TGA curves of as-received TiO₂ powder (CR-EL) and TiO₂ nanofibers in NH₃/Ar (50/50 kPa). The weight of the as-received TiO₂ powder started to decrease from about 720 °C but the slope of the weight loss curve decreased at 870 °C. At about 1100 °C, the weight loss stopped at about 21%, which was close to the theoretical weight loss of
22.5% based on Eq (1). Using XRD analysis, it was found that the sample was transformed to TiN after the TGA. Based on the results of TGA and XRD analysis, nitridation of as-received TiO₂ powder started at 720 °C and the powder was completely nitrided at 1100 °C in NH₃/Ar atmosphere. However, the weight of TiO₂ nanofibers started to decrease at room temperature, reaching a plateau at temperatures between 400 and 720 °C. After the plateau, the weight decreased again to 30% at 1030 °C, showing no significant change above that temperature.

XRD patterns of the TiO₂ nanofibers heated to various temperatures using the horizontal tube furnace are shown in Fig. 2. The original pattern of TiO₂ nanofibers showed small and broad peaks corresponding to those of H₂Ti₃O₇.¹³ The sample heated to 800 °C showed definitive peaks of anatase, indicating that the original TiO₂ nanofibers were dehydrated and crystallized. The TGA analysis showed that the first weight loss was about 20%, which was less than the estimated value of 7.0%, calculated from the equation

\[
\text{H}_2\text{Ti}_3\text{O}_7 \rightarrow 3\text{TiO}_2 + \text{H}_2\text{O}. \tag{2}
\]

The observed greater weight loss suggests that the nanofibers contained a large amount of physically adsorbed H₂O or the presence of hydrated species other than H₂Ti₃O₇. The XRD pattern of the sample heated up to 900 °C showed small peaks of rutile and TiN, in addition to the peaks of anatase. The pattern of the 1000 °C sample showed that the peak intensity of TiN and rutile increased. The sample heated at 1000 °C for 1 h showed only peaks of TiN with a lattice
constant of \(a = 0.423 \) nm, which is in close agreement with the reported TiN value of 0.4238.\(^{14}\)

Table 1 summarizes the XRD and XPS results for the heat-treated samples. It was found that the concentration of nitrogen increased with increasing temperature.

Figure 3 shows the TEM photographs of as-synthesized and heat-treated TiO\(_2\) nanofibers at 800–1000 °C. As-synthesized TiO\(_2\) nanofibers (Fig. 3 (a)) showed a fibrous shape and the larger ones were 2–5 mm long and 100 nm wide. The heat-treated sample at 800 °C (Fig. 3(b)) retained its fibrous shape but the fibers became shorter and changed to aggregates of small grains. (some of the grains are indicated by arrows). The length of the needle-like grains became short with increasing of the temperature from 900 to 1000 °C (Fig. 3 (c) and (d)). However, in the sample heated at 1000 °C for 1 h (Fig. 3(e)), the grains sintered together while retaining a fibrous shape. From the highly magnified image (Fig. 3(e’)), it was found that the crystallites were well sintered together and the boundaries between crystallites decreased comparing with the sample heated at 1000 °C with no holding time (Fig. 3(d)), expecting that the sample heated at 1000 °C for 1 h has high tensile strength.

\[\text{3.2 Fabrication and mechanical properties of composites} \]

Figure 4 shows the XRD patterns of Composite A (containing needle-like TiN particles),
Composite B (rounded TiN particle), and the Si$_3$N$_4$-sintered body by hot-pressing at 1850 °C for 1 h in N$_2$ atmosphere. All the samples had relative densities of 96%–98%. It was found that Composite A consisted of α-Si$_3$N$_4$ and TiN with a small amount of β-Si$_3$N$_4$. Composite B showed an XRD pattern similar to that of Composite A, but the peaks of β-Si$_3$N$_4$ were slightly higher than those in the pattern of Composite A. On the other hand, monolithic Si$_3$N$_4$ consisted mostly of β-Si$_3$N$_4$ with a small amount of α-Si$_3$N$_4$. In general, sintering of Si$_3$N$_4$ ceramic occurs through a process in which an intergranular liquid phase is formed by additives and SiO$_2$, present in the Si$_3$N$_4$ powder (liquid phase sintering), resulting in a sintered body consisting mainly of β-Si$_3$N$_4$. Although it was reported that an α-Si$_3$N$_4$ ceramic body was fabricated by spark plasma sintering to shorten the sintering time, it is difficult to obtain α-Si$_3$N$_4$ ceramic using conventional methods, such as hot pressing, hot isostatic pressing, and pressureless sintering. Results of the present study indicate that the presence of TiN particles inhibits the transformation to β-Si$_3$N$_4$ but the mechanism inhibiting the transformation is not clear. Figure 5 shows SEM photographs of the polished and fracture surface of Composite A. In the polished surface image, TiN particles, shown as gray parts, were dispersed in the composites but some agglomerations several nanometers in size were observed. At the fracture surface, needle-like TiN particles were observed (Fig. 5(b)), showing that TiN particles maintained the needle shape during sintering.

Figure 6 shows the plots of fracture strength, toughness, and hardness of the samples.
The fracture strengths of the Composites A and B are about 230 and 350 MPa, respectively, and are less than that of the reference sample of monolithic Si$_3$N$_4$. The reported fracture strength of α-Si$_3$N$_4$ is 300–420 MPa16, which is less than the typical value of β-phase (600–800 MPa). The low strength of Composites A and B is because the matrices of the composites are primarily composed of α-Si$_3$N$_4$. Fracture toughness of Composite A (needle-like TiN) was equivalent to that of monolithic Si$_3$N$_4$, taking into consideration the scattering of the value. There was no remarkable improvement in the fracture toughness of Composite A as compared to that of Composite B, possibly because of the presence of agglomerations of TiN. Hardness of Composite A improved in comparison to that of both Composite B and monolithic Si$_3$N$_4$, showing that the needle-like TiN effectively improved the hardness.

4. Summary

Si$_3$N$_4$ composites containing needle-like TiN particles were fabricated by hot pressing. The needle-like TiN powder was synthesized by NH$_3$ nitridation of TiO$_2$ nanofibers obtained by hydrothermal treatment. The obtained composites consisted of α-Si$_3$N$_4$ and TiN, with a small amount of β-Si$_3$N$_4$, suggesting that the presence of TiN delays the phase transformation of Si$_3$N$_4$. Fracture strength of the composites was lesser than that of monolithic β-Si$_3$N$_4$ ceramic. However,
fracture toughness was equivalent to that of monolithic β-Si$_3$N$_4$ ceramic and hardness improved in comparison to that of β-Si$_3$N$_4$.

Acknowledgment

This study was financially supported by GCOE program of Catalysis as the Basis for the Innovation in Materials Science (Hokkaido University) and Promoting Technological Seeds program of Research for Japan Science and Technology Agency (JST).
Table 1 Results of XPS and XRD analysis of TiO$_2$ nanofibers heated to various temperatures in NH$_3$ atmosphere

<table>
<thead>
<tr>
<th>Temperature</th>
<th>N/Ti (%)</th>
<th>phases observed by XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>0</td>
<td>anatase</td>
</tr>
<tr>
<td>850</td>
<td>2</td>
<td>anatase >>> rutile, TiN</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>anatase >> rutile, TiN</td>
</tr>
<tr>
<td>950</td>
<td>20</td>
<td>anatase > rutile, TiN</td>
</tr>
</tbody>
</table>

Table 2 Composition and observed phases of sintered samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>TiN (vol%)</th>
<th>shape of TiN</th>
<th>phases observed by XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite A</td>
<td>7</td>
<td>needle like</td>
<td>TiN, α-Si$_3$N$_4$ >> β-Si$_3$N$_4$</td>
</tr>
<tr>
<td>Composite B</td>
<td>7</td>
<td>rounded</td>
<td>TiN, α-Si$_3$N$_4$ >> β-Si$_3$N$_4$</td>
</tr>
<tr>
<td>Monolithic Si$_3$N$_4$</td>
<td>0</td>
<td>-</td>
<td>β-Si$_3$N$_4$ >> α-Si$_3$N$_4$</td>
</tr>
</tbody>
</table>
References

13. ICDD 47-0561

14. ICDD 87-0633

Figure captions

Fig. 1 TGA results of (a) as-received TiO$_2$ and (b) TiO$_2$ nanofibers in NH$_3$/Ar (50/50 kPa) atmosphere with a heating rate of 5 °C/min.

Fig. 2 XRD patterns of (a) as-synthesized TiO$_2$ nanofibers and ones heated at (b) 800, (c) 900, and (d) 1000 °C with no holding time and (e) at 1000 °C for 1h in NH$_3$/Ar (50/50 kPa).

Fig. 3 TEM photographs of TiO$_2$ nanofibers and nitried ones. Photos (a) through (e) are same as those in Fig. 2, and (e') is a magnified image of (e). Arrows in (b) shows the grains consisting of needle-like particles.

Fig. 4 XRD patterns of (a) composites A and (b) B, and (c) Si$_3$N$_4$.

Fig. 5 SEM photographs of (a) polished and (b) fracture surface of composite A. Arrows in photographs denote TiN grains.

Fig. 6 Plots of (a) fracture strength, (b) fracture toughness, and (c) the Vickers hardness of the composites A and B and monolithic Si$_3$N$_4$. Error bars show standard deviation.
H. Kiyono et al. Fig. 1
H. Kiyono et al. Fig. 2
H. Kiyono et al. Fig. 5
H. Kiyono et al. Fig. 6