Instructions for use

Title
Molecular basis of dihydrouridine formation on tRNA

Author(s)
Yu, Futao; Tanaka, Yoshikazu; Yamashita, Keitaro; Suzuki, Takeo; Nakamura, Akiyoshi; Hirano, Nagisa; Suzuki, Tsutomu; Yao, Min; Tanaka, Isao

Citation
Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19593-19598
https://doi.org/10.1073/pnas.1112352108

Issue Date
2011-12-06

Doc URL
http://hdl.handle.net/2115/49352

Type
article (author version)

Additional Information
There are other files related to this item in HUSCAP. Check the above URL.

File Information
Supporting_Information.pdf
SUPPORTING INFORMATION

Supplemental Materials and Methods

Structure determination and refinement
The structure of TthDus was determined by the SAD method with the program SHELX (1, 2). Two molecules of TthDus were contained in an asymmetric unit. To monitor the refinement, a random 7% subset of all reflections was set aside for calculation of \(R_{\text{free}} \) factor. After several cycles of refinement with the program phenix.refine (3) and manual fitting with the program COOT (4), the crystallographic \(R \) and \(R_{\text{free}} \) factors converged to 16.8% and 20.2%, respectively.

The crystal structure of TthDus in complex with Tth-tRNA\(^{\text{Phe}}\) was determined by the MRSAD method using the structure of TthDus as a search model and Se atoms as anomalous scatterers with the program PHASER (5). The model of the bound tRNA was built manually based on electron density. A random 8% subset of all reflections was set aside for calculation of \(R_{\text{free}} \) factor to monitor the refinement. Jelly-body refinement was performed with REFMAC 5.6 (6) for protein, and then simulated annealing refinement was performed with CNS 1.3 (7) for the tRNA model using ribose puckering and Watson–Crick base pair restraints. The structure was refined at a resolution of 3.51 Å. After several cycles of refinement with the program phenix.refine and manual fitting with COOT, the \(R \)- and \(R_{\text{free}} \)- factors were converged to 30.0% and 32.0%, respectively (Table S1).

The crystal structure of the TthDus–tRNA fragment complex was determined at 1.95 Å resolution by the molecular replacement method using the structure of TthDus as a search model with the program MOLREP (8). To monitor the refinement, a random 4% subset of all reflections was set aside for calculation of the \(R_{\text{free}} \) factor. After several cycles of refinement with phenix.refine and manual fitting with COOT, the base and ribose moieties of G18, G19, the target uridine at position 20, and the phosphate moiety of A21 were defined based on electron density. The model of TthDus–tRNA fragment complex was refined with the program REFMAC. Finally, \(R \)- and \(R_{\text{free}} \)- factors were converged to 18.1% and 21.9%, respectively (Table S1).

Preparation of tRNA for evaluation of dihydrouridine formation
The yjbN gene, including its promoter region, was amplified from E. coli (MG1655) genomic DNA using the forward primer 5'-NNGAATTCGACAGCGCTTCCCTGTGTTATG-3' and reverse primer 5'-NNNGGATCCTTAACGCTTATCCGCCACCAGTTTG-3'. The PCR product was inserted into BamHI and EcoRI sites of the pMW118 vector (Nippon Gene), which was used for complementing the deleted yjbN gene.

The E.coli yjbN knockout strain (E. coli ΔyjbN), harboring the desired vector to complement the yjbN gene, was grown at 37°C for 18 h in LB medium supplemented with 100 mg L\(^{-1}\) ampicillin and 50 mg L\(^{-1}\) kanamycin. The cells were collected by centrifugation at 4500 × g for 20 min, and then the total tRNA was extracted by acidic-phenol method. The cells were
resuspended in a buffer containing 50 mM sodium acetate (pH 5.2) and 10 mM magnesium acetate, followed by phenol treatment overnight. The aqueous layer was collected and mixed with chloroform (1/5 of the volume of the aqueous layer). The aqueous layer was collected again, and total RNA was precipitated by isopropanol precipitation using 0.3 M sodium acetate (pH 5.2) and 50% isopropanol. The precipitant was resuspended, followed again by phenol treatment and chloroform treatment. The aqueous layer was collected, and then subjected to isopropanol precipitation with 0.3 M sodium acetate (pH 5.2) and 33% isopropanol. The resultant solution was collected, and isopropanol was added to a final concentration of 50%. The precipitate after centrifugation at 8000 × g was collected as a total tRNA. The extracted tRNA was digested with RNase T1, and then analyzed by capillary liquid chromatography nano-electrospray ionization/mass spectrometry, which included a linear ion trap-orbitrap hybrid mass spectrometer (LTQ Orbitrap XL; Thermo Fisher Scientific), a custom-made nanospray ion source, and a splitless nano-high-performance liquid chromatography system (DiNa; KYA Technologies).

Mass spectrometric analysis of RNA in TthDus–tRNA complex formed in E. coli cells
The purified TthDus–tRNA complex formed in E. coli cells was treated with acid-phenol/chloroform (5:1, pH 4.5; Ambion, Foster City, CA). The aqueous layer was collected by centrifugation, and the RNA was collected by ethanol precipitation with 0.3 M sodium acetate (pH 5.2) and 70% ethanol at −30°C, followed by washing with 70% ethanol and drying. The purified RNA was subjected to Urea-PAGE. The RNA molecules contained in the major bands were extracted from the gel using the Electro-Separation System (Whatman), followed by ethanol precipitation. The obtained RNA was analyzed by capillary liquid chromatography nano-electrospray ionization/mass spectrometry as described above.

Expression and purification of YjbN and its K138A mutant
The genes of YjbN and K138A mutant were amplified using KOD-Plus DNA polymerase (Toyobo), with the vector for the complementation experiment (see above) as the template and the synthesized primers (YjbN-S: 5'-NNNNNCCATGGCCCCCTGAAAAACTGACGTTCACTGGAGTG-3', and YjbN-AS: 5'-NNNNCTCGAGACGCTTATCCGCCACCAGTTTGAGC-3'). The PCR products were inserted into the NcoI and XhoI sites of the pET28b vector (Merck), in which the His₆ tag was attached at the C-terminus. YjbN and K138A mutant were expressed in E. coli strain B834(DE3) in LB medium supplemented with 100 μg mL⁻¹ kanamycin. Expression was induced by addition of 0.5 mM IPTG at the early stationary phase of culture and processed for 18 h at 25°C. The collected cells were resuspended in buffer (50 mM HEPES–NaOH (pH 7.5), 500 mM KCl, 1 mM MgCl₂, 10% glycerol, 7 mM β-mercaptoethanol), and disrupted with a sonicator (Branson). The supernatant was loaded onto a HisTrap HP column (GE Healthcare), and then the adsorbed protein was eluted with a linear gradient of 0 mM – 500 mM imidazole. Fractions
containing the desired protein were collected and dialyzed against the resuspension buffer. The concentrations of YjbN and the K138A mutant were determined by the absorption at a wavelength of 280 nm.

Isothermal titration calorimetry (ITC)

All ITC measurements were carried out with a Nano ITC Low Volume isothermal titration calorimeter (TA Instruments). The cell was filled with YjbN K138A mutant with a concentration of 228 μM, and a syringe was filled with 1.87 mM FMN. FMN was injected 25 times in aliquots of 2 μL over 300 s. The data obtained were analyzed with the program Nano Analyzer (TA Instruments).

Figure S1. Overall structure of TthDus. (A) Ribbon diagram of TthDus. The ribbon model is colored according to the sequence from blue at the N-terminus to red at the C-terminus. FMN is shown as sticks. The dotted line indicates the disordered region of Ala171–Ile180. (B) Electrostatic surface potential of TthDus. The orientation is identical to that of Fig. 1A. Positively and negatively charged surfaces are colored blue and red, respectively ($\pm 5 \, k_BT_e^{-1}$). The green circle indicates the positively charged groove.

Figure S2. Mass spectrometric analysis of the RNA contained in the purified TthDus–tRNA complex. (A) The base peak chromatogram of the RNA fragment obtained by RNase T1 digestion. The sequences of the fragments identified as derived from Tth-tRNA$^{\text{Phe}}$ are indicated. “>p” denotes a cyclic phosphate. (B) Identified fragments derived from tRNA from E. coli. The AAAAUCGp fragment from Tth-tRNA$^{\text{Phe}}$ is also shown.

Figure S3. Supporting information for the crystal structure of TthDus-tRNA fragment complex (A) Overall structure of TthDus–tRNA fragment complex. tRNA fragment and FMN are shown as green and pink sticks, respectively. Cys93 is also shown as sticks. (B) Results of time-of-flight mass spectrometry (TOF-MS) of the purified TthDus (top) and TthDus–tRNA fragment complex (bottom). (C) Substrate recognition of dihydroorotate dehydrogenase (DHOD, PDB 2DOR) (D) Substrate recognition of dihydropyrimidine dehydrogenase (DHPDH, PDB 1H7X).

Figure S4. Sequence alignment of TthDus and Dus family proteins (A). Completely conserved residues and conservatively mutated residues are shown in red and green, respectively. T. thermophiles, Thermus thermophilus; T. aquaticus, Thermus aquaticus; M. capsulatus, Methylococcus capsulatus; E. coli, Escherichia coli; T. maritima, Thermotoga maritima; S. cerevisiae, Saccharomyces cerevisiae; C. elegans, Caenorhabditis elegans; D. melanogaster, Drosophila melanogaster; M. musculus, Mus musculus; H. sapiens, Homo sapiens. Circles represent substituted residues in the mutation analysis of EcYjbN. (B) Correspondence between mutants of TthDus and EcYjbN.
Figure S5. SDS-PAGE of purified TthDus mutants, which were not shown in Figure 4A.

Figure S6. Characterization of K132A mutants. (A) The absorption spectra of TthDus and its K132A mutant. (B) The absorption spectra of EcYjbN and its K132A mutant. (C) Thermogram of the interaction between EcYjbN K132A and FMN. The dissociation constant between EcYjbN K132A and FMN was calculated to be 9.40 μM.

Figure S7. SDS-PAGE (A) and Western blotting (B) of E. coli YjbN. Fractions obtained by Ni affinity chromatography were analyzed.
Figure S1

(A) N-terminal domain

(B) Positively charged groove
Figure S2
Figure S3
Figure S5

The figure shows a gel electrophoresis analysis of marker proteins and TthDus-tRNA complexes. The markers include Wide type M36A, R49A, S96A, K97A, E100A, T174A, and K175A. The TthDus-tRNA complex is indicated on the gel as well. The molecular weights are marked in kDa, ranging from 97 to 22.
Figure S6

(A) - Spectra of TthDus and K132A

(B) - Spectra of E. coli YjbN and K132A

(C) - Heat rate graph showing $K_d = 9.40 \mu M$
(A) Figure S7: Gradient elution profile of marker proteins and crude extract from an E. coli cell line. The elution fractions are marked with their corresponding molecular weights. The eluted fractions show the presence of E. coli YjbN.

(B) Figure S7: Gradient elution profile of marker proteins and crude extract from an E. coli cell line. The elution fractions are marked with their corresponding molecular weights. The eluted fractions show the presence of E. coli YjbN.
Table S1. Statistics for data collection and refinement

<table>
<thead>
<tr>
<th>PDB code</th>
<th>SeMet ThdDus</th>
<th>Native ThdDus</th>
<th>ThdDus–tRNA fragment</th>
<th>SeMet ThdDus–tRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamline</td>
<td>Spring-8 BL41XU</td>
<td>PF NE3A</td>
<td>PF BL5A</td>
<td>PF BL5A</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.9792</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9788</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
<td>P1</td>
<td>R3</td>
<td>P4 2 2</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td>a = 43.6 Å, b = 60.3 Å, c = 67.3 Å, α = 75.7°, β = 87.7°, γ = 70.5°</td>
<td>a = 42.0 Å, b = 60.2 Å, c = 67.0 Å, α = 76.2°, β = 88.7°, γ = 70.7°</td>
<td>a = b = 126.6 Å, c = 112.7 Å, α = β = 90°, γ = 120°</td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.00–2.30 (2.38–2.30)</td>
<td>19.77–1.70 (1.79–1.70)</td>
<td>19.80–1.95 (2.05–1.95)</td>
<td>48.60–3.51 (3.70–3.51)</td>
</tr>
<tr>
<td>R<sub>sym</sub> (%)</td>
<td>9.8 (40.3)</td>
<td>4.6 (45.7)</td>
<td>6.5 (52.8)</td>
<td>11.6 (53.1)</td>
</tr>
<tr>
<td><I>/<σ(I)><sup>+</sup></td>
<td>16.4 (2.3)</td>
<td>17.9 (2.8)</td>
<td>18.4 (3.5)</td>
<td>17.1 (4.6)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.3 (94.0)</td>
<td>95.6 (91.7)</td>
<td>99.7 (98.6)</td>
<td>99.5 (97.1)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>7.6 (6.5)</td>
<td>3.9 (3.7)</td>
<td>5.7 (5.6)</td>
<td>13.2 (11.8)</td>
</tr>
<tr>
<td>No. of observed reflections</td>
<td>203476</td>
<td>247001 (32524)</td>
<td>281568 (40009)</td>
<td>387969 (47935)</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>26878 (2590)</td>
<td>63586 (8907)</td>
<td>49091 (7132)</td>
<td>29454 (4077)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-factor / R-free (%)</td>
<td>16.8 / 20.2</td>
<td>18.1 / 21.9</td>
<td>30.0 / 32.0</td>
<td></td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>4901</td>
<td>4992</td>
<td>5020</td>
<td></td>
</tr>
<tr>
<td>No. of RNA atoms</td>
<td>170</td>
<td>3122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of ligand atoms</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>No. of water molecules</td>
<td>387</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.m.s. deviations</td>
<td>0.008</td>
<td>0.003</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>bond lengths (Å)</td>
<td>1.08</td>
<td>0.707</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td>97.2</td>
<td>96.5</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>Favoured (%)</td>
<td></td>
<td>2.8</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Allowed (%)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Disallowed (%)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

^a Values in parentheses are for the highest-resolution shell.

^b RAMPAGE (1) was used for Ramachandran-plot analysis.