<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of clover yellow vein virus in pea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atsumi, Go; Nakahara, Kenji S; Wada, Tomoko Sugikawa; Choi, Sun Hee; Masuta, Chikara; Uyeda, Ichiro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archives of Virology, 157(6), 1019-1028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doc URL</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://hdl.handle.net/2115/49369">http://hdl.handle.net/2115/49369</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>article (author version)</td>
</tr>
</tbody>
</table>

**Instructions for use**
Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of Clover yellow vein virus in pea

Go Atsumi1, Kenji S. Nakahara1, Tomoko Sugikawa Wada1, Sun Hee Choi1, Chikara Masuta2, and Ichiro Uyeda1

(1) Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
(2) Laboratory of Cell Biology and Manipulation, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

Corresponding author:
Ichiro Uyeda
Tel: +81 11 706 2473
Fax: +81 11 706 2483
E-mail: uyeda@res.agr.hokudai.ac.jp

Abstract
Many plant viruses encode suppressors of RNA silencing, including the helper component-proteinase (HC-Pro) of potyviruses. Our previous studies showed that the D-to-Y mutation at amino acid position 193 in HC-Pro (HC-Pro-D193Y) drastically attenuated the virulence of Clover yellow vein virus (ClYVV) in legume plants. Furthermore, RNA-silencing suppression (RSS) activity of HC-Pro-D193Y was significantly reduced in Nicotiana benthamiana. Here, we examined the effect of expression of heterologous suppressors of RNA silencing, i.e., Tomato bushy stunt virus p19, Cucumber mosaic virus 2b, and their mutants, on the virulence of the CIYVV point mutant with D193Y (Cl-D193Y) in pea. P19 and 2b fully and partially complemented the Cl-D193Y multiplication and virulence, including lethal systemic HR in pea, respectively, but the P19 and 2b mutants with defects in their RSS activity did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for CIYVV multiplication and virulence in pea.
Introduction

RNA silencing acts as an effective antiviral defense in plants according to the following three observations [19]. First, virus-specific small RNAs (sRNAs) accumulate in host cells, suggesting that virus RNAs are subjected to the RNA-silencing machinery of the host [6]. Second, host mutants in major components of the RNA-silencing machinery, including Dicer-like proteins, Argonaute proteins, and RNA-dependent RNA polymerases, exhibited increased virus susceptibility, suggesting that the host utilizes these components for antiviral defense [12, 14, 19, 31]. Finally, many plant viruses express proteins that can suppress RNA silencing (viral suppressor of RNA silencing, VSR) [3]. VSRs are highly diverse in sequence, structure, and target point of RNA silencing, suggesting that each protein has independently gained the ability to suppress RNA silencing [3]. Several reports have suggested that suppression of RNA silencing by viruses leads to symptom expression. *Turnip mosaic virus* (TuMV) encodes P1/HC-Pro, which functions as a VSR. Kasschau et al. [9] found that the developmental defects induced by TuMV were partially expressed, as a result of perturbation of the miRNA-regulated developmental pathway, by P1/HC-Pro in *Arabidopsis thaliana*. Omarov et al. [16] demonstrated that suppression of RNA silencing was important for *Tomato bushy stunt virus* (TBSV) virulence (the ability to induce severe symptoms) in *Nicotiana benthamiana*.

*Clover yellow vein virus* (ClYVV), a member of the genus *Potyvirus*, causes severe systemic cell death in many cultivars of pea and broad bean [18, 33]. In pea, ClYVV systemically induces cell death in PI 118501, but not in PI 226564 [7, 18]. Genetic analyses indicated that the cell death is controlled by a single incompletely dominant gene, *Cyn1* [18]. Furthermore, cell death is suggested to be caused by a hypersensitive reaction (HR)-type defense pathway in pea PI 118501 [1, 18]. However, viruses were not restricted to the primary infection area and moved systemically, leading to the systemic induction of an HR-like response (systemic HR: SHR) [1, 18, 33].

Previous studies have demonstrated that an aspartic acid (D) to tyrosine (Y) mutation at amino acid (aa) position 193 of ClYVV HC-Pro substantially attenuates the ability to induce cell death systemically and to activate an HR-like defense pathway in PI 118501 [1]. Furthermore, the same mutation significantly compromised the RNA-silencing suppression (RSS) activity of P1/HC-Pro, suggesting that RSS activity is required for SHR induction by ClYVV in PI 118501 [1, 33]. However, it is possible that
the mutation simultaneously affects several functions other than RSS because HC-Pro is a multifunctional protein [24]. In this study, we examined the effect of expressing heterologous VSRs, i.e., TBSV p19 and Cucumber mosaic virus (CMV) 2b, on virulence expression and accumulation of the ClYVV point mutant with D193Y (Cl-D193Y) in pea PI 118501. TBSV p19 and CMV 2b expression restored multiplication and virulence, including SHR of Cl-D193Y in pea, but their RSS-defective mutants did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for ClYVV multiplication and virulence in pea.

Materials and methods

Plant growth conditions and viral infections

Pea (Pisum sativum) was cultivated in a growth chamber at 21°C with a 16-h photoperiod. Viral inocula were prepared as described previously [20, 33]. First, broad bean (Vicia faba) was inoculated with infectious cDNA using particle bombardment. The upper leaves were harvested and ground in an inoculation buffer (0.1 M Tris-HCl, pH 7.0, 1% 2-mercaptoethanol). The crude sap was mechanically inoculated onto the third leaves of 2-week-old plants. At the same time, all plants were inoculated with inoculation buffer alone as a negative control (mock inoculation). Plasmid inoculations were conducted by rub-inoculation of plasmid solution (5–10 µg/leaf) onto leaves dusted with carborundum powder.

Construction of plasmids

ClYVV infectious cDNA has been synthesized and developed as a vector in legumes [11, 25, 30]. The construction of pCl-WT/GFP and pCl-D193Y/GFP was described previously [33]. We replaced the GFP sequence in pCl-D193Y/GFP with p19, p19m of TBSV, 2b, and 2bm of CMV isolate Y [16, 23, 26]. In brief, p19, p19m, 2b, and 2bm were inserted into ClYVV-CP-XB-pBS3 and subsequently sub-cloned into pClYVV-D193Y ΔCP to obtain pCl-D193Y/p19, -p19m, -2b, and -2bm [30]. p19m has an A-to-G mutation at nucleotide (nt) positions 223 and 232 (arginine to glycine change at aa positions 75 and 78), whereas 2bm has a C-to-T mutation at nt position 136 (arginine to cysteine change at aa position 46) [5, 16]. Mutations in p19m and 2bm were introduced by PCR using primers that included these mutations [5]. pCl-WT and -D193Y/p19, -p19m, -2b, and -2bm tagged with FLAG at the C-terminal end were constructed in the same way. To create pCl-FINK/GFP and p19, the Bgl II-Bgl II fragments of pCl-
WT/GFP and pCl-D193Y/p19 were replaced with Bgl II-Bgl II fragments that had an R-to-I mutation (G-to-T at nt position 542) in HC-Pro (BB/HC-Pro-FINK) [22]. The mutation in BB/HC-Pro-FINK was created by PCR.

pWCl/p19-, p19m-, 2b-, and 2bm-FLAG were constructed as follows: p19, p19m, 2b, and 2bm were fused to the sequence encoding the FLAG peptide at the 3'-end and were introduced into a white clover mosaic virus vector (WCIMV vector; pWCl/p19-, p19m-, 2b-, and 2bm-FLAG). In the WCIMV vector, the complete cDNA sequence of the WCIMV RC strain was flanked by the CaMV 35S promoter, and the multi-cloning site was located between the triple gene block and CP (Fig. 6) [7, 15].

The construction of pBE2113/P1HC-WT, /D193Y, pIG121/GFP, and /IR-GFP has been described previously [33]. P1HC-FINK was created using PCR and replaced with the GUS gene in pBE2113 (pBE2113/P1HC-FINK). P19-, p19m-, 2b-, and 2bm-FLAG were introduced into the pBE2113 vector. pBIC/p19 was provided by T. Okuno [26].

RNA extraction, reverse transcription, and PCR (real-time PCR)

Leaves were homogenized in liquid nitrogen, and total RNA was isolated using Trizol reagent (Invitrogen, CA, USA) according to the manufacturer’s instructions [1]. Each RNA sample was treated with RNase-free DNase I (TaKaRa, Shiga, Japan), and 1–2 µg of total RNA was reverse-transcribed using cloned AMV RTase (Invitrogen). The RT reaction mixture (20 µl) contained 1–2 µg of total RNA, 2.5 µM random 9-mers, 1 mM dNTP, 5 mM DTT, 40 U RNase inhibitor (Wako, Osaka, Japan), 4 µl 5× cDNA synthesis buffer, and 15 U of cloned AMV RTase. Samples were first incubated at 25°C for 10 min, then at 45°C for 60 min, and finally at 85°C for 5 min. The PCR primers for the detection of CIYVV and sequencing of D193Y and the R-to-I mutation in the FRNK motif were 5’-GATATGGTAGCCTGACAAATG-3’ and 5’-GTTGCAAGTTCTCTCGTACC-3’. Real-time PCR was performed using the DNA Engine Opticon 2 System (Bio-Rad, CA, USA) [1]. The reaction mixture (25 µl) contained 0.625 U ExTaq (Takara), 2.5 µl of 10× ExTaq buffer, 0.2 mM dNTP, 0.2 µM forward and reverse primers, SYBRgreen (×30,000 dilution, Invitrogen), and cDNA obtained by reverse-transcribing 5–10 ng of total RNA. Samples were incubated for 5 min at 95°C, followed by 40 cycles of 95°C for 10 s, 53°C (for Sa-CHI [accession number, L37876]), 55°C (HSR203J [AB026296]), or 58°C (CIYVV) for 30 s, and 72°C for 20 s. Transcript levels were normalized to that of 18S rRNA (U43011), and means and
standard deviations were calculated. The primers used for real-time PCR were as follows: 

- **SA-CHI-F**, 5'-CGGTCAACCTCCGAATACT-3';
- **SA-CHI-R**, 5'-TGTTGTTGAAGGTGTCACCG-3';
- **HSR203J-F**, 5'-GTCCGGTTGGCTTAGAATCTAC-3';
- **HSR203J-R**, 5'-GTAGTGCTCAGGTCACGTACG-3';
- **18SrRNA-F**, 5'-CGTTCTTAGTTGGTGGAGCGAT-3';
- **18SrRNA-R**, 5'-CCATAGTCCCTCTAAGAAGCTG-3';
- **ClYVV-F**, 5'-ATTGATCTAACACCCCACAACC-3';
- **ClYVV-R**, 5'-CTAACCTTGCCTTTCCAGTTG-3' [1].

**Western blotting**

For ClYVV CP and HC-Pro detection, leaf tissues were ground in PBS-Tween (0.01 M phosphate buffer, pH 7.0, 0.05% Tween 20) after homogenization in liquid nitrogen. The crude extracts were centrifuged for 5 min at 14,000 rpm. The supernatants were mixed with an equal amount of 2×Laemmli sample buffer and used for SDS-PAGE. For detection of RNA-silencing suppressors (p19, p19m, 2b, and 2bm), leaf tissues were ground in 1×Laemmli sample buffer, spun down, and the supernatants were used for SDS-PAGE. For Western blotting, mouse monoclonal antibody against ClYVV HC-Pro [32], rabbit polyclonal antibody against ClYVV CP [1], or mouse M2 monoclonal antibody against FLAG (Sigma-Aldrich, MO, USA) was used as primary antibody, and alkaline phosphatase-conjugated goat anti-mouse (Bio-Rad) or anti-rabbit (Invitrogen) IgG was used as secondary antibody.

**Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA)**

Leaf tissues were homogenized in 40× volume of PBS-Tween and spun down, and the supernatants were used as antigens. DAS-ELISA was conducted using a mouse anti-ClYVV CP IgG as the first antibody and rabbit anti-ClYVV CP as the second antibody. After washing, alkaline phosphatase-conjugated goat anti-rabbit IgG was added, followed by the substrate solution (1 mg disodium ρ-nitrophenyl-phosphate hexahydrate in 1 ml 10% diethanolamine). The intensity of the signal was measured at an optical density (OD) of 405 nm.

**Northern hybridization**

Leaves were homogenized in liquid nitrogen, and total RNA was isolated using Trizol reagent (Invitrogen) according to the manufacturer’s instructions [1]. Total RNA (3 µg) was dissolved in RNA
denaturing pre-mix (1× MOPS buffer, 50% formamide, 17.5% formaldehyde), heated at 70°C for 15 min, separated in a 1.2% denaturing gel, and blotted onto a nylon membrane (Hybond N; GE Healthcare, Buckinghamshire, UK). The membrane was hybridized with a digoxigenin (DIG)-labeled, GFP-specific RNA probe in hybridization buffer (DIG Easy Hyb; Roche Diagnostics GmbH, Mannheim, Germany). The chemiluminescence signals were detected with CDP-Star reagent (New England Biolabs, MA, USA) using a LAS-4000-mini camera system (GE Healthcare).

**Trypan blue staining**

Trypan blue staining was performed as previously described [1, 13]. The lactic acid–phenol–trypan blue solution (2.5 mg/ml trypan blue, 25% [w/v] lactic acid, 23% Tris-EDTA-saturated phenol, 25% glycerol and water) was heated to 70°C and leaves were vacuum-infiltrated with the solution. Leaves were then incubated in boiling water for 2 min and cooled for 1 h. Finally, the lactic acid–phenol–trypan blue solution was replaced with chloral hydrate solution (25 g in 10 ml water) for de-staining.

**DAB staining**

Leaves were vacuum-infiltrated with DAB solution (1 mg/ml 3,3-diaminobenzidine [DAB]-HCl, pH 3.8) [27] and incubated under high humidity conditions at room temperature until brown precipitates were observed. Finally, leaves were de-stained and fixed in a 3:1:1 ethanol/lactic acid/glycerol solution. As a positive control, pea leaves were infiltrated with H_2O_2 solution using a needleless syringe.

**Agrobacterium-mediated transient assay**

To assess RNA-silencing suppression activity, we utilized an Agrobacterium-mediated transient assay in *N. benthamiana* leaves as previously described [33]. In brief, the Agrobacterium KYRT1 strain was transformed with pIG121/GFP and /IR-GFP, pBE2113/P1/HC-Pro, /p19-FLAG, and /2b-FLAG (wild-type and mutant), /GUS (negative control), and pBIC/p19 (positive control) [26]. Agrobacteria carrying each construct were suspended in MES buffer (10 mM MES, 10 mM MgCl_2, pH 5.7) and the suspensions were adjusted to OD 600 nm = 1.5 (GFP and test constructs [wild-type or mutant CIYVV P1/HC-Pro, p19 and GUS]) or 0.015 (IR-GFP). Then, acetosyringone was added to the suspensions (final concentration, 200 µM), followed by incubation at room temperature for 4 h. Equal amounts of the
suspensions were mixed, then infiltrated into N. benthamiana leaves using needleless syringes. For work described in Supplementary Fig. 6, equal amounts of the suspensions adjusted to OD 600 nm = 1.0 were mixed.

GFP fluorescence was detected using an Illumatool Tunable Lighting System LT-9500 with the excitation light at 470 nm and emission long-pass filter at 515 nm [33].

Results

Expression of heterologous suppressors of RNA silencing enhanced virulence of the attenuated Clover yellow vein virus HC-Pro mutant

In a previous study, we showed that the D-to-Y mutation at aa position 193 in HC-Pro of ClYVV abolished the lethal SHR phenotype in broad bean and pea [1, 33]. The RSS activity of HC-Pro-D193Y was drastically decreased by the Agrobacterium-mediated transient assay in N. benthamiana [33]. However, it is possible that the mutation in HC-Pro simultaneously affects several functions other than RSS [24]. To verify the requirement for RSS activity in virulence expression, we tested whether expression of heterologous VSRs could restore multiplication and virulence of Cl-D193Y in pea PI 118501. We selected the two well-known VSRs: TBSV p19 and CMV 2b [2, 8, 29]. We introduced each VSR into Cl-D193Y (Supplementary Fig. 1) [21, 23].

At 13 days post-inoculation (dpi), plants of pea line PI 118501 infected with wild-type ClYVV tagged with GFP (Cl-WT/GFP) were stunted and showed systemic cell death, whereas those infected with Cl-D193Y/GFP were not infected (Fig. 1) [1]. Plants infected with Cl-D193Y carrying p19 (Cl-D193Y/p19) showed cell death in inoculated and upper leaves and were severely stunted, resulting in plant death, which was at a comparable level to Cl-WT/GFP infection (Fig. 1a and bA, B, K, and L). However, Cl-D193Y carrying the RSS-defective mutant p19m, which has an arginine to glycine mutation at aa positions 75 and 78, did not induce symptoms in either inoculated or upper leaves (Fig. 1a and bC and M) [16]. Trypan blue staining of leaves inoculated with each virus indicated that cell death was extensively induced in Cl-WT/GFP and Cl-D193Y/p19 infections but not in Cl-D193Y/GFP and Cl-D193Y/p19m infections (Fig. 1bF–J). We conducted a similar experiment using CMV 2b (Fig. 2). Cl-D193Y/2b induced cell death in inoculated and upper non-inoculated leaves but did not kill the plants (Fig. 2A, F, K, P, and U). Plants infected with Cl-D193Y/2b were not stunted but showed severe mosaic...
symptoms associated with cell death in the upper leaves (Fig. 2U and P). Plants infected with Cl-D193Y carrying the RSS-defective mutant 2bm, which has an arginine to cysteine mutation at aa position 46, did not show any symptoms (Fig. 2B, G, L, Q, and U) [5].

Many reports have indicated that the host RNA-silencing machinery suppresses virus accumulation [3], and we previously reported that the virus accumulation of Cl-D193Y was significantly decreased [1]. Thus, we investigated whether p19 or 2b expression could restore virus accumulation of Cl-D193Y. The use of an antibody against CIYVV CP for Western blot analysis of the upper non-inoculated leaves showed that both p19 and 2b expression significantly enhanced CIYVV accumulation, but RSS-defective p19 or 2b mutant expression did not; there was only a weak signal for Cl-D193Y/2bm, but those for Cl-D193Y/p19m and /GFP were not detectable (Fig. 3a). We also compared CP accumulation in the upper non-inoculated leaves using DAS-ELISA (Supplementary Fig. 2). As observed in Western blotting, there were no significant differences in Cl-WT/GFP, Cl-D193Y/p19, and Cl-D193Y/2b. In DAS-ELISA, we could successfully detect CP accumulation of Cl-D193Y/p19m and /GFP in the upper non-inoculated leaves, and found that accumulation was significantly lower than that of Cl-WT/GFP.

We compared the virus RNA accumulation in upper non-inoculated leaves using real-time PCR (Fig. 3b), and found that Cl-D193Y/p19 accumulation was 180-times and twice as high as Cl-D193Y/GFP and Cl-WT/GFP, respectively. Cl-D193Y/2b accumulation was about 27-times higher than that of Cl-D193Y/GFP, but was about 35% of Cl-WT/GFP. Here, we confirmed by RT-PCR that the Cl-D193Y series maintained the D193Y mutation and the inserted fragment in the upper non-inoculated leaves (data not shown).

**Differences in protein accumulation of RNA-silencing suppressors**

We compared the RSS activities of p19, p19m, 2b, and 2bm used in this study with an Agrobacterium-mediated transient assay in *N. benthamiana* leaves. GFP, the inverted repeat sequence of GFP (IR-GFP; trigger of GFP mRNA silencing), and the suppressors of RNA silencing (wild type or mutant, which were tagged with FLAG at the C-terminal end) were expressed and compared for their RSS activities. P19-FLAG- and 2b-FLAG-expressed areas showed strong GFP fluorescence, whereas p19m-FLAG and 2bm-FLAG displayed weak fluorescence (Supplementary Fig. 3a). Northern blot analysis indicated that GFP mRNA correlated with the intensity of GFP fluorescence (Supplementary Fig. 3b).
3a and b). The accumulations of p19-FLAG, p19m-FLAG, 2b-FLAG, and 2bm-FLAG proteins were confirmed by Western blotting using an antibody against the FLAG peptide. The result showed that p19-FLAG and 2b-FLAG proteins accumulated more efficiently than p19m-FLAG and 2bm-FLAG proteins (Supplementary Fig. 3c).

We investigated whether the RSS-defective properties of p19 and 2b mutants resulted from decreased protein stabilities. We compared the RSS activity of p19m and 2bm with that of p19 and 2b using serial dilutions of Agrobacterium suspensions for infiltration. Although the accumulation level of p19-FLAG protein in the area infiltrated with 1/8 the amount of p19m-FLAG was lower than that of p19m-FLAG, GFP fluorescence in the p19-FLAG-expressed area was significantly stronger than in the p19m-FLAG-expressed area (Supplementary Fig. 3d and f). Northern blot analysis indicated that GFP mRNA level in the p19-expressed (1/8 dilution) area was higher than in the p19m-FLAG-expressed area (Supplementary Fig. 3e). A similar experiment was done for 2b-FLAG and 2bm-FLAG proteins; however, we could not examine the accumulation of 2b and 2bm in a reproducible fashion with the dilution approach (data not shown). It is possible that p19 could protect its own mRNA from RNA-silencing-mediated degradation by RSS activity, which would lead to effective p19 protein accumulation, while p19m was not able to protect its mRNA. To assess this possibility, non-tagged p19 protein was co-expressed with p19- and p19m-FLAG to block RNA-silencing-mediated degradation of the mRNAs. The results showed that p19m-FLAG protein accumulated to a similar level as p19-FLAG protein in the p19-expressed area, but did not in the control GUS-expressed area (Supplementary Fig. 4a). The same result was obtained by CIYVV P1/HC-Pro co-expression (data not shown). We conducted a similar experiment using 2b and 2bm. In contrast to p19, neither p19 nor P1/HC-Pro expression could restore the accumulations of 2bm protein (Supplementary Fig. 4b). Finally, we investigated the stabilities of p19, p19m, 2b, and 2bm proteins in pea. FLAG-tagged p19, p19m, 2b, and 2bm were expressed in the wild-type CIYVV (which has a (wild-type) strong suppressor of RNA silencing), and their relative accumulations to CP were compared, because foreign protein and CP were expressed as one precursor polyprotein. The results showed that there were no significant differences between p19 and p19m (Supplementary Fig. 4c); however, 2bm-FLAG protein accumulated less than 2b-FLAG (Supplementary Fig. 4d).
Ability of Cl-D193Y to induce a host HR-like defense pathway was restored by expression of Tomato bushy stunt virus p19.

Previous reports have shown that Cl-WT can significantly activate a host HR-like defense pathway including expression of marker genes for salicylic acid (SA)-mediated signaling and HR-related pathways, but Cl-D193Y cannot [1]. To examine whether p19 expression can restore the ability to induce an HR-like defense pathway in Cl-D193Y infection, we performed expression analysis of the SA-responsive chitinase gene (SA-CHI; accession number L37876) and the HR-related gene homologous to tobacco HSR203J (HSR203J; AB026296) in Cl-D193Y/p19-inoculated tissue [1, 4, 17]. At 7 dpi, Cl-D193Y/p19 significantly induced SA-CHI expression (Fig. 4a). Furthermore, it also induced HSR203J expression at 5 dpi (Fig. 4b); however, Cl-D193Y/p19m did not significantly induce either SA-CHI or HSR203J (Fig. 4a and b).

Reactive oxygen species, such as hydrogen peroxide (H$_2$O$_2$), are generated during an HR [28]. We analyzed H$_2$O$_2$ generation using 3'-diaminobenzidine (DAB) staining in the CIYVV infection [27], and found that H$_2$O$_2$ was generated along the veins in CI-WT/GFP-inoculated tissue, but not in mock- and CI-D193Y-inoculated tissues (Fig. 4c). In Cl-D193Y/p19-inoculated tissue, H$_2$O$_2$ generation was extensive, as also observed in the CI-WT/GFP infection (Fig. 4c).

p19 expression also restored virulence of the severely attenuated mutant CIYVV with a mutation in the highly conserved FRNK motif

Previous studies have found that HC-Pro can bind small RNAs, including siRNA and miRNA, both in vitro and in vivo and that the highly conserved FRNK motif in HC-Pro is required for sRNA binding [10, 22]. HC-Pro of Tobacco etch virus (TEV), Potato virus Y, and TuMV with an R-to-I mutation in the FRNK motif (FINK) was not active in suppressing inverted-repeat, sequence-triggered RNA silencing [22]. To examine the requirement of the FRNK motif in CIYVV HC-Pro for RSS activity, we introduced an R-to-I mutation and analyzed RSS activity. GFP, IR-GFP, and CIYVV P1/HC-Pro (wild type or mutants) were expressed transiently using Agrobacterium tumefaciens in N. benthamiana leaves. As observed in previous studies, at 4 days after A. tumefaciens inoculation, strong GFP fluorescence was observed in wild-type P1/HC-Pro and p19-expressed (positive control) areas, whereas weak GFP fluorescence was observed in P1/HC-Pro-D193Y and GUS-expressed (negative control) areas (Fig. 5b).
GFP fluorescence was also very weak in the P1/HC-Pro-FINK-expressed area (Fig. 5b) [22]. The amount of GFP mRNA correlated with the intensity of GFP fluorescence (Fig. 5c). Use of an antibody against CIYVV HC-Pro for Western blotting confirmed that the amount of HC-Pro protein did not differ significantly among the three samples (Fig. 5d) [32].

TEV and TuMV with an R-to-I mutation in HC-Pro lost the ability to infect their hosts [22]. We introduced an R-to-I mutation in CIYVV HC-Pro (Cl-FINK) and tested the infectivity. Broad bean was inoculated by particle bombardment using the infectious cDNA, pCl-FINK carrying GFP (pCl-FINK/GFP) [33]. RT-PCR analysis of the upper non-inoculated leaves revealed the presence of virus RNA, although we did not observe any GFP fluorescence in Cl-FINK/GFP-inoculated plants (Supplementary Table 1). Sequence analysis showed that the progeny virus from upper non-inoculated leaves retained the mutation, indicating that Cl-FINK/GFP had infectivity and was able to spread to distant leaves. Cl-FINK/GFP was also inoculated to pea line PI 118501. However, Cl-FINK/GFP accumulation was very low in upper leaves of broad bean to prepare the sap inoculum. Thus, plasmid DNA (pCl-FINK/GFP) was directly inoculated onto pea leaves by rubbing the leaves with DNA solution. However, we could not detect Cl-FINK/GFP infection in upper leaves by RT-PCR, although Cl-WT/GFP could effectively infect and kill the plants (data not shown). To examine whether p19 expression functionally complemented the activity of HC-Pro with an R-to-I mutation, we inoculated Cl-FINK carrying p19 (Cl-FINK/p19) to PI 118501. The results showed that Cl-FINK/p19 could kill the plants completely by 13 dpi (Supplementary Fig. 5).

The suppressor of RNA silencing itself did not function as an elicitor

There remains the possibility that strong suppression of RNA silencing itself activates an HR-like response. Therefore, p19 and 2b were expressed in a different context: in the white clover mosaic virus (WCl) vector (Fig. 6a) [7]. WCl carrying GFP induced mild symptoms in pea lines PI 118501 and PI 226564 (Fig. 6b and Supplementary Fig. 6). WCl/p19, p19m, 2b, and 2bm tagged with FLAG were inoculated to PI 118501 and PI 226564. WCl/p19 induced partial cell death in inoculated and upper non-inoculated leaves not only in PI 118501 but also in PI 226564 (Fig. 6b). However, WCl/p19 infection did not kill plants of either PI 118501 or PI 226564 (Supplementary Fig. 6). Western blot analysis indicated that p19 protein abundantly accumulated in upper non-inoculated leaves of PI 118501 and PI 226564 (Fig.
2b expression slightly enhanced symptom development, such as yellowing, but could not significantly induce cell death in PI 118501 and PI 226564 (Fig. 6b). Western blot analysis indicated that 2b protein effectively accumulated in upper non-inoculated leaves in PI 118501 and PI 226564 (Fig. 6c). WC1/p19m and /2bm could not significantly induce cell death, even though p19m and 2bm proteins effectively accumulated in upper non-inoculated leaves (Fig. 6).

Discussion

Our results showed that expression of either TBSV p19 or CMV 2b functionally complemented the virulence of the attenuated CIYVV HC-Pro mutant, or Cl-D193Y, although virulence was fully restored by p19 expression and partially restored by 2b in PI 118501. Either p19 or 2b expression enhanced Cl-D193Y accumulation; p19 expression also restored virulence of the severely attenuated mutant, Cl-FINK, in PI 118501. Furthermore, p19 expression restored the ability of Cl-D193Y to activate an HR-like defense pathway in PI 118501. Because these results strongly suggest the exclusive effect of the D193Y mutation on RSS activity of HC-Pro, our discussion focuses on the critical role of HC-Pro RSS activity in the multiplication and induction of severe disease symptoms, lethal SHR, by CIYVV.

Contribution of RNA-silencing suppression activity of HC-Pro to lethal systemic HR induction by Clover yellow vein virus in pea

Previous research demonstrated that infection with CIYVV activated an HR-like defense pathway in PI 118501 [1]. Furthermore, genetic studies suggested that CIYVV-induced cell death in PI 118501 is controlled by a single, incompletely dominant gene, Cyn1, which is a proposed resistance gene [18]. These reports put forward that CIYVV-induced cell death is regulated by an R-gene-mediated pathway. However, viruses were not restricted in the primary infection area and spread systemically, resulting in the induction of SHR (Fig. 1a and bA and K) [1]. Analysis using a series of CIYVV P1/HC-Pro mutants indicated that the virulence of CIYVV was correlated with the RSS activity of P1/HC-Pro [1, 33]. D-to-Y mutation at aa position 193 of HC-Pro significantly attenuated the CIYVV virulence and RSS activity, suggesting that reduced RSS activity of mutant HC-Pro results in virulence attenuation (Fig. 1a, bD and N, Fig. 5b) [1, 33]. However, the mutation simultaneously may affect other HC-Pro functions as HC-Pro serves several roles in the viral life cycle (e.g., replication, cell-to-cell and systemic movement) [24].
this study, we examined the effect of the expression of heterologous VSRs on virus accumulation and
virulence expression of the CIYVV point mutant with D193Y (CI-D193Y) in pea PI 118501. We selected
p19 encoded by TBSV and 2b encoded by CMV as the VSRs. TBSV (family Tombusviridae) and CMV
(Bromoviridae) are viruses that are distinctly different from CIYVV (Potyviridae) and whose nucleotide
and amino acid sequences are not related. However, P19, 2b, and HC-Pro all appear to interact with small
RNAs to suppress RNA silencing [3]. We found that TBSV p19 expression could functionally
complement the HC-Pro-D193Y activity for virus accumulation, induction of SHR, and activation of an
HR-like defense pathway in the mutant CIYVV infection in PI 118501 (Figs. 1 and 4). CMV 2b could
also partially complement the HC-Pro-D193Y function (Fig. 2). The RSS-defective mutants p19m and
2bm could not complement the HC-Pro-D193Y function (Figs. 1 and 2). A previous report demonstrated
that the defect in p19m RSS activity derived from its lower affinity to small RNAs [16]. We also
confirmed that RSS activity of p19m was significantly decreased, which was not due to lower protein
stability than p19 (Supplementary Figs. 3 and 4a). In contrast, the stability of 2bm was lower than that of
2b (Supplementary Fig. 4b). However, a detailed analysis of the sRNA binding properties showed that the
R46C mutation affects small RNA binding activity in vitro [5]. Taking these findings together, we
conclude that the RSS activity of p19 and 2b, but not the sequence, could functionally complement HC-
Pro-D193Y activity and the ability for CI-D193Y to accumulate efficiently and induce cell death. The
D193Y mutation is located near the FRNK motif, which is conserved in potyviruses and is required for
small RNA binding (Fig. 5a). This suggests that D193Y affects the contact of small RNA duplexes via
the FRNK motif. In fact, a mutation in the FRNK motif reduced RSS activity of CIYVV HC-Pro and
CIYVV virulence (Supplementary Table. 1). The virulence was restored by TBSV p19, as was also the
case with CI-D193Y (Figs. 1 and 2, Supplementary Fig. 5). Taken together, our findings strongly suggest
that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary
for CIYVV multiplication and virulence in pea.

**Suppression of RNA silencing in the context of viral disease expression**

Developmental defects were observed in *A. thaliana* infected with TuMV; Kasschau et al. [9]
suggested that such symptoms were the result of a perturbation of an endogenous miRNA-regulated
developmental program by the TuMV-encoded VSR, P1/HC-Pro. This occurs where RSS activity of HC-
Pro directly affects virus virulence or induction of symptom expression. In our previous studies, we showed that viral virulence (the degree of SHR induction) is correlated with RSS activity of PI/HC-Pro [1, 33], and accumulation of mutant viruses is also correlated with RSS activity of PI/HC-Pro [1, 33]. In this study, p19 expression restored the accumulation of CI-D193Y and the ability to induce an HR-like defense pathway and lethal SHR (Fig. 3). Furthermore, 2b expression also restored CI-D193Y accumulation, but the virus accumulation was lower than for CI-WT, where 2b could not completely complement the HC-Pro-D193Y function (Fig. 3). These results suggest that suppression of host RNA-silencing machinery is necessary for effective virus accumulation and lethal SHR induction. However, the RSS activity of HC-Pro does not appear to directly affect SHR induction.

Suppression of RNA silencing and activation of HR-like pathways

From our studies, we hypothesized that CIYVV had an Avr factor whose effective accumulation was supported by the RSS activity of HC-Pro, resulting in lethal SHR induction in pea. However, it is possible that suppression of RNA silencing itself activates an HR-like pathway. To examine this possibility, we expressed the p19 or 2b gene via the viral vector WClMV, which does not cause significant cell death (Fig. 6). p19 expression from WClMV induced cell death in both inoculated and non-inoculated leaves in PI 118501 and PI 226564 (Fig. 6b). Our previous reports suggested that SHR induction was controlled by a single incompletely dominant gene, resistance Cyn1, in PI 118501 [18]; however, PI 226564 does not have this allele. Thus, it is likely that p19-induced cell death is not controlled by Cyn1-regulated pathways, indicating that p19, or strong suppression of RNA silencing itself, does not induce HR-like pathways in PI 118501. The results suggest that strong suppression of RNA silencing is required for CIYVV to accumulate sufficient Avr factors to activate HR-like pathways and induce SHR in pea. Elucidation of the mechanism of lethal SHR induction by CIYVV in pea will require determination of the Avr factors.

Acknowledgments

We are grateful to T. Okuno (Kyoto University) for providing the pBIC-P19. We also thank K. Goto (Hokkaido University) for helpful discussions. This study was supported in part by Grants-in-Aid for Scientific Research (S) and Young Scientists (A) from the Ministry of Science, Education, Culture, and
References


Development of clover yellow vein virus as an efficient, stable gene-expression system for legume species. Plant J 23:539-546

Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629-639


Pontier D, Godiard L, Marco Y, Roby D (1994) hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 5:507-521


32. Yambo M, Masuta C, Nakahara K, Uyeda I (2003) The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg-VPg interactions. J Gen Virol 84:2861-2869

Figure captions

Fig. 1 Expression of the heterologous suppressor of RNA silencing p19 encoded by TBSV via the Cl-D193Y genome in PI 118501. (a) Viruses were mechanically inoculated, and photographs were taken at 13 dpi. (b) The photographs show symptoms in inoculated (A–E) and upper leaves (K–O) at 13 dpi. Inoculated leaves were stained with trypan blue to visualize dead cells (F–J). Scale bar = 0.5 cm. dpi = days post-inoculation.

Fig. 2 Expression of the heterologous suppressor of RNA silencing 2b encoded by CMV via the Cl-D193Y genome in PI 118501. Viruses were mechanically inoculated, and photographs were taken at 8 dpi (inoculated leaves, A–E) and 13 dpi (upper non-inoculated leaves, F–T; whole plants, U). Photographs in F–J, K–O, and P–T show the second, third, and fourth leaves of inoculated plants, respectively. Scale bar = 0.5 cm. dpi = days post-inoculation.

Fig. 3 CIYVV accumulation in upper non-inoculated leaves. (a) Virus CP accumulation at 8 dpi in upper non-inoculated leaves was compared by Western blotting using an antibody against CIYVV CP. (b) Virus RNA accumulation at 8 dpi in upper non-inoculated leaves was compared by real-time PCR. Right panel is a close-up of data (Cl-D193Y/p19m, 2bm, GFP) in the left panel. Relative levels of virus RNA accumulation to Cl-WT/GFP are indicated. dpi = days post-inoculation.

Fig. 4 Hypersensitive reaction-like defense response in PI 118501 inoculated with Cl-D193Y carrying TBSV p19. (a) Sa-CHI expression at 7 dpi. Total RNA was isolated from the inoculated leaves and used for real-time PCR. (b) HSR203J expression at 5 dpi. All mRNA expression (a and b) was normalized to 18S rRNA. Error bars indicate the standard deviation of means for three replicates. Dunnett’s test was applied to the data. Data from the mock control were used as a control for statistical analysis. ** P < 0.01
(c) Detection of peroxidase activity. Leaves were stained with 3,3’-diaminobenzidine (DAB) at 8 dpi. As a positive control, pea leaves were infiltrated with H$_2$O$_2$ solution using needleless syringes and stained with DAB after incubation at room temperature for 10 min. The black arrow indicates the infiltrated area. Scale bar = 0.5 cm. dpi = days post-inoculation.

Fig. 5 Effect of mutation in the highly conserved FRNK motif on RNA-silencing suppression activity of CIYVV HC-Pro. (a) Site of mutation in CIYVV HC-Pro mutants. (b) GFP, an inverted repeat sequence of GFP (IR-GFP), and CIYVV P1/HC-Pro (wild type or mutant) were expressed using an Agrobacterium-mediated transient assay in an N. benthamiana leaf. GFP fluorescence was detected 4 days after infiltration. (c) Total RNA was extracted from the infiltrated area indicated in (b) and GFP mRNA was detected by Northern hybridization. (d) Total proteins were extracted from the infiltrated area indicated in (b) and analysed by Western blotting using antibodies against HC-Pro.

Fig. 6 Expression of either TBSV p19 or CMV 2b using the white clover mosaic virus (pWCl) vector. (a) Schematic representation of the pWCl vector [7]. A multi-cloning site (gray box) was introduced between the triple gene block and CP. (b) pWCl carrying p19, p19m, 2b, 2bm (all tagged with FLAG), or GFP plasmids was rub-inoculated onto leaves of pea lines, PI 118501 and PI 226564. Photographs in upper non-inoculated leaves were taken at 14 dpi. (c) p19, p19m, 2b, and 2bm protein expression was confirmed by Western blotting using an antibody against FLAG.

Supplementary Fig. 1 Schematic representation of the CIYVV infectious cDNA used in this study. Full-length cDNA of CIYVV No. 30 isolate was fused to the Cauliflower mosaic virus 35S promoter [11, 25, 30]. Cl-D193Y encodes a point mutation, aspartic acid to tyrosine, at aa position 193 in HC-Pro [33]. Either the TBSV p19 or the CMV 2b coding sequence was introduced into the Cl-D193Y genome [16, 23, 26]. p19m has point mutations at the aa positions 75 (arginine to glycine) and 78 (arginine to glycine) [16]; 2bm has an arginine-to-cysteine mutation at aa position 46 [5].

Supplementary Fig. 2 CIYVV accumulation in upper non-inoculated leaves. Virus CP accumulation at 8 dpi was compared using DAS-ELISA. The signal value of healthy plants was zero.
Supplementary Fig. 3 Comparison of RNA silencing suppression activity of FLAG-tagged TBSV p19 and CMV 2b (wild type or mutant). (a) GFP, an inverted repeat sequence of GFP (IR-GFP), and suppressor of RNA silencing (p19, p19m, 2b, or 2bm tagged with FLAG) were expressed using an Agrobacterium-mediated transient assay in N. benthamiana leaves. GFP fluorescence was detected at 4 days after infiltration. (b) Total RNA was extracted from the infiltrated area indicated in (a), and mRNA levels of GFP were compared by Northern hybridization. (c) Total proteins were extracted from the infiltrated area indicated in (a), and levels of suppressor proteins were compared by Western blotting using an antibody against FLAG. (d) Comparison of RNA-silencing suppression activity between wild-type and mutant p19 proteins. The amount of Agrobacterium carrying p19 was diluted to 1/4 or 1/8 of the amount of Agrobacterium carrying p19m. GFP fluorescence was detected at 4 days after infiltration. (e) Total RNA was extracted from the infiltrated area indicated in (d), and mRNA levels of GFP were compared by Northern hybridization. (f) Total proteins were extracted from the infiltrated area indicated in (d), and levels of suppressor proteins were compared by Western blotting using an antibody against FLAG.

Supplementary Fig. 4 Protein stabilities of P19 and 2b mutants. (a) Mutant p19 protein was expressed with wild-type p19 or GUS (negative control) using an Agrobacterium-mediated transient assay in N. benthamiana leaves. Total proteins were extracted from the infiltrated area, and the level of p19 mutant protein was compared with that of wild-type p19 by Western blotting using an antibody against FLAG. (b) Mutant 2b protein was expressed with p19, CIYVV P1/HC-Pro, or GUS (negative control), and the level of mutant 2b protein was compared with that of wild-type 2b as in (a). (c) p19 wild-type or mutant protein was expressed via CI-WT, and the level of proteins compared by Western blotting using an antibody against FLAG. The level of CIYVV CP protein accumulation was used as a control. CIYVV CP was detected by Western blotting using an antibody against CIYVV CP. (d) The level of 2b wild-type or mutant protein was compared as in (c).
**Supplementary Fig. 5** Effect of TBSV p19 expression from CIYVV, which has an R-to-I mutation in the HC-Pro FRNK motif, on symptom expression in PI 118501. Symptoms were monitored, and photographs were taken at 11 dpi.

**Supplementary Fig. 6** Expression of either TBSV p19 or CMV 2b using the white clover mosaic virus vector. Photographs in upper non-inoculated leaves were taken at 14 dpi.
Fig. 1
Fig. 3

(a) | Cl-D193Y | CI-WT |
---|---|---|
| p19 | p19m | 2b | 2bm | GFP | GFP |
| 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |

(b)

ClYVV / 18S rRNA

CBB

Anti-CP
Fig. 4
(a)  Small RNA binding

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>DLSK</th>
<th>FINK</th>
<th>ISSKTHINL</th>
<th>D193Y</th>
<th>DLSK</th>
<th>FINK</th>
<th>ISSKTHINL</th>
<th>FINK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CONCILD</td>
<td></td>
<td></td>
<td></td>
<td>CONCILD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNAN</td>
<td></td>
<td></td>
<td></td>
<td>KNAN</td>
<td></td>
</tr>
</tbody>
</table>

(b)  WT D193Y FINK D193Y

(c)  GFP

(d)  anti-HC-Pro
Fig. 6

(a) Diagram of gene expression cassette.

(b) Leaves of Triticum aestivum in PI 118501 and PI 226564 treated with p19-FLAG, p19m-FLAG, 2b-FLAG, 2bm-FLAG, and GFP.

(c) Western blots of leaves from PI 118501 and PI 226564 treated with p19-FLAG, p19m-FLAG, 2b-FLAG, 2bm-FLAG, and healthy controls, probed with anti-FLAG and stained with CBB.
pCl-WT/GFP

35S → P1 → HC-Pro → P3 → CI → 6K1 → 6K2 → Nia → GFP

pCl-D193Y/GFP

35S → D193Y → GFP

pCl-D193Y/p19

35S → * → HC-Pro → P3 → CI → 6K1 → 6K2 → Nia → p19

pCl-D193Y/p19m

35S → * → HC-Pro → P3 → CI → 6K1 → 6K2 → Nia → p19m

pCl-D193Y/2b

35S → * → HC-Pro → P3 → CI → 6K1 → 6K2 → Nia → 2b

pCl-D193Y/2bm

35S → * → HC-Pro → P3 → CI → 6K1 → 6K2 → Nia → 2bm
Fig. S2
Supplementary Table 1 Effect of R-to-I mutation in FRNK motif of HC-Pro on the ability for CIYVV to infect broad bean.

<table>
<thead>
<tr>
<th></th>
<th>pCl-FINK/GFP</th>
<th>pCl-WT/GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.1</td>
<td>2/3&lt;sup&gt;b&lt;/sup&gt;,&lt;sup&gt;c&lt;/sup&gt;</td>
<td>2/2</td>
</tr>
<tr>
<td>Exp.2</td>
<td>2/4</td>
<td>2/2</td>
</tr>
</tbody>
</table>

<sup>a</sup> Infectious cDNA, pCl-FINK/GFP and pCl-WT/GFP were inoculated to broad bean by particle bombardment.

<sup>b</sup> Infected / total plants.

<sup>c</sup> Infection in upper uninoculated leaf was confirmed by RT-PCR.
(a) GUS

(b) p19, p19m, 2b, 2bm, and GUS analysis:
- GFP
- rRNA

(c) p19, p19m, 2b, 2bm, and GUS analysis:
- Anti-FLAG
- CBB

(d) GUS

(e) p19
- 1/4, 1/8, p19m, GUS analysis:
- GFP
- rRNA

(f) p19
- 1/4, 1/8, p19m, GUS analysis:
- Anti-FLAG
- CBB
Fig. S4

(a) p19  GUS
     p19  p19m  p19  p19m  Healthy

(b) p19  P1HC  GUS  Healthy
     2b  2bm  2b  2bm  2b  2bm

(c) p19  p19m  Healthy
     anti-FLAG
     CBB
     anti-CP
     CBB

(d) 2b  2bm
     anti-FLAG
     CBB
     anti-CP
     CBB
Fig. S5
Fig. S6

WCIMV /

<table>
<thead>
<tr>
<th>p19-FLAG</th>
<th>p19m-FLAG</th>
<th>2b-FLAG</th>
<th>2bm-FLAG</th>
<th>GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL118501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL226564</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Images of plant samples under different treatments]