Mice lacking Wnt2b are viable and display a postnatal olfactory bulb phenotype

Author(s)
Tsukiyama, Tadasuke; Yamaguchi, Terry P.

Citation
Neuroscience Letters, 512(1): 48-52

Issue Date
2012-03-14

Doc URL
http://hdl.handle.net/2115/49420

Type
article (author version)

File Information
NL512-1_48-52.pdf
Mice lacking \textit{Wnt2b} are viable and display a postnatal olfactory bulb phenotype.

Tadasuke Tsukiyama1,2,3 and Terry P. Yamaguchi1

1 Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, Maryland 21702, USA.

2 Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan

3To whom correspondence should be addressed (contact address). Department of Biochemistry, Hokkaido University Graduate School of Medicine; N15, W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan, Phone: +81-11-706-5047, Fax: +81-11-706-5169, E-mail: tsukit@med.hokudai.ac.jp,

Abbreviations: A-P, anterior-posterior; PS, primitive streak; OpV, optic vesicle; OtV, otic vesicle; OfB, olfactory bulb; Hp, hippocampus; SVZ, subventricular zone
Abstract

Wnts are secreted glycoproteins that play important roles in embryonic development. Wnt2b is transiently expressed in the primitive streak (PS) during gastrulation and in several organs during organogenesis. To determine the biological function of Wnt2b during mouse development, we established a conditional null allele of Wnt2b. Mice lacking Wnt2b were viable, fertile, and displayed a normal life span, however, the olfactory bulb in adult Wnt2b mutant mice was significantly reduced in length. Our results suggest that Wnt2b primarily plays a supportive role in gastrulation and organogenesis, functioning redundantly with canonical Wnts, such as Wnt2, in numerous tissues.

Key words: Wnt; embryogenesis; brain; redundancy; olfactory bulb
Wnt proteins encode a large family of cysteine-rich secreted glycoproteins that play established roles in embryonic development and tumorigenesis [16, 17, 25]. Nineteen Wnt genes have been identified in murine and human genomes. These Wnts were initially functionally classified into two groups based on their activity in in vitro transformation assays and 2ⁿ-body axis induction assays in Xenopus embryos. Generally speaking, Wnt1-class Wnts (canonical Wnts), which include Wnt1, 3a, 8a and 8b, transform cells and induce the formation of an additional body axis when overexpressed in frog embryos, while Wnt5a class Wnts, such as Wnt4, 5a and 11, do not [5].

Wnt2b was first identified by degenerate RT-PCR and designated Wnt13 [28]. Wnt2b binds the CRD domain of Frizzled4 and 5 to stabilize cytosolic βcatenin, suggesting that Wnt2b is a canonical Wnt [11]. Wnt2b is transiently expressed in the mesoderm of the PS at mid-gastrulation stages only (E7-7.75) [25, 28] and is later expressed in numerous embryonic tissues including the optic vesicle (OpV)/retina, otic vesicle (OtV), kidney, lung, and limb bud, as well as the adult ovary [3, 7, 11, 14, 20, 28]. Wnt2b is also expressed in the developing mouse brain at several developmental stages. It’s expressed in the dorsal midline of the telencephalon and the mesencephalon at E8.5-9.5, cortical hem at E11.5-17.5, hippocampal fimbria at E15.5-17.5 and pineal body. Based on these observations, Wnt2b has been proposed to play a role in the patterning of the cerebral cortex however a requisite role for Wnt2b in these processes has not been rigorously tested.
A targeting vector for the Wnt2b locus was constructed as follows. A 5.9 kb genomic XbaI fragment for long arm 1 (LA1) and a 2.1 kb genomic XbaI/EcoRI fragment for LA2, which contains exon 2 and 3 for deletion, were inserted into SalI and SmaI sites of pML8 vector, respectively. A 1.2 kb genomic EcoRI/KpnI fragment for short arm (SA) was inserted into the SacII site of pK-11 vector, which contains a loxP-FRT-PGKNeo-FRT cassette for positive selection. An XhoI/XbaI fragment of LA1-loxP-LA2 isolated from pML8-LA1-LA2 was subcloned into XhoI/XbaI sites of pPGKtk, which contains a PGKtk cassette for negative selection. A KpnI/SacI fragment of loxP-FRT-PGKNeo-FRT-SA isolated from pK-11-SA was inserted into the XbaI site of pPGKtk-LA1-loxP-LA2. The targeting vector was linearized with NotI for transfection into ES cells. NotI-linearized Wnt2b conditional targeting vector DNA (80 µg) was electroporated into 8 x 10^7 of W9.5 ES cells (x2 pulses of 320 V/125 µF), and the cells were cultured on a layer of mitotically inactivated feeder cells carrying genomic PGKNeo gene. ES cell colonies that were resistant to 300 µg/ml of G418 and 1 µM gancyclovir were independently isolated. These clones of ES cells were screened by Southern blot analysis of KpnI-digested genomic DNA (15 µg) using a 370 bp 5’ probe or XbaI-digested genomic DNA using a 540 bp 3’ probe (Fig. 1A and B). Wnt2b\(^{WT/flox}\) ES clones were injected into albino C57BL/6N blastocysts to generate chimeras. Chimeric male mice that displayed a high contribution of agouti coat color were bred with C57BL/6N female mice to obtain a germ line-transmitted Wnt2b\(^{flox}\) allele. Wnt2b\(^{WT/flox}\) mice were then bred with βactin-Cre transgenic mice to delete exon 2
and 3 to generate the Wnt2bΔ allele. Wnt2b^{WT/flox} and Wnt2b^{WT/Δ} mice were intercrossed to generate Wnt2b^{flox/flox} and Wnt2b^{Δ/Δ} mice, respectively. Genotypes were confirmed by PCR with allele-specific primers (KO1: 5′-GCC TCT CAC ACC AGC GTG TAA GAG-3′, KO4: 5′-GTA ATT GAG TGG TCT CCA CC-3′, Neo3′: 5′-ATCAGC AGCCTC TGT TCC ACA TAC-3′, PJL: 5′-TGC TAA AGC GCA TGC TCC AGA CTG-3′, 2b-1: 5′-AGG AGT CTG CTC CTG ATT ACA GCC-3′) to detect WT (200 bp fragment), flox (260 bp) or Δ (320 bp) allele (Fig. 1A and C).

Intercrosses of Wnt2b^{WT/flox} or Wnt2b^{WT/Δ} mice produced Wnt2b^{flox/flox} or Wnt2b^{Δ/Δ} (Wnt2b KO) mice in the expected Mendelian ratios (Table 1). Wnt2b^{Δ/Δ} mice appeared normal (Fig. 2A) and healthy during their lifespan (not shown). These results indicate that inactivation of Wnt2b did not affect body plan formation, despite Wnt2b being strongly and specifically expressed in the PS during gastrulation [28]. Indeed, several canonical Wnts, including Wnt3, 3a, and 8a, are co-expressed with Wnt2b in the primitive streak (PS) [25] and therefore could functionally compensate for the absence of Wnt2b. Only Wnt3 and Wnt3a are required for A-P axis formation and extension [10, 15, 22, 25, 26], suggesting that they are the compensatory genes during gastrulation in Wnt2b^{Δ/Δ} animals. Intercrosses of Wnt2b^{Δ/Δ} mice led to viable Wnt2b^{Δ/Δ} progeny (Table 1), indicating that Wnt2b^{Δ/Δ} males and females are fertile and that there is no requirement for Wnt2b in the ovary where it is also expressed [20]. In addition, histological analyses indicated that limb, liver, kidney, eye and inner ear morphology was normal (not shown), despite strong Wnt2b expression in these
tissues [3, 4, 8, 11, 12, 14, 18, 28](Fig. 2B, C).

We next examined the brain since Wnt2b is expressed there during neural development. Brains isolated from Wnt2b\(^{+/Δ}\) and Wnt2b\(^{Δ/Δ}\) mice at 4 months of age were fixed with 10% formalin, dehydrated by ethanol and xylene and then embedded in paraffin to make sections for histochemical staining. Five-μm-thick sections were stained by hematoxylin and eosin. Histochemical analysis indicated that there were no obvious patterning defects in the cerebral cortex or hippocampus (Fig. 3B). As in many other tissues, Wnt2b is coexpressed in the brain with several other canonical Wnts, particularly in the cortical hem, hippocampus and pineal gland [1, 21]. Surprisingly, we found that both the length (major axis) and width (minor axis) of the olfactory bulb (OfB) was significantly reduced (length, \(p < 0.01\); width, \(p < 0.05\), \(n = 3\) in both Wnt2b\(^{WT/Δ}\) and Wnt2b\(^{Δ/Δ}\), Student’s \(t\)-test) in the Wnt2b\(^{Δ/Δ}\) brain (Fig. 3A-C). Small OfB’s were observed in dissected, whole, adult Wnt2b\(^{Δ/Δ}\) brains, as well as in sagittal sections. To clarify whether the small OfB phenotype in adult Wnt2b\(^{Δ/Δ}\) mice arises during embryonic or postnatal development, we examined the size of the OfB in earlier-staged perinatal (P0, postnatal day 0) embryos. Contrary to the results observed in adult mice, significant size differences in OfBs isolated from perinatal Wnt2b\(^{+/Δ}\) and Wnt2b\(^{Δ/Δ}\) mice were not observed (Wnt2b\(^{WT/Δ}\); \(n=4\) and Wnt2b\(^{Δ/Δ}\); \(n=7\)), (Fig. 3D, E). These results suggest that the smaller OfB’s observed in adult Wnt2b\(^{Δ/Δ}\) mice arises postnatally. We can conceive of several possible explanations for the small OfB phenotype. A small OfB could arise indirectly, for example due to a craniofacial developmental defect.
that physically constricts OfB development. Indeed, defects in nasal bone development have been observed in Axin2 deficient mice in which Wnt/β-catenin signaling is perturbed [27]. Alternatively, a smaller OfB could be caused by impaired neuroblast cell migration into the OfB, or by impaired neurogenesis in the subventricular zone (SVZ). It is well known that the adult OfB is maintained through the recruitment of neuronal progenitor cells originating in the SVZ. These neuronal progenitors travel from the SVZ to the granule cell layer and glomerular layer of OfB along the rostral migratory stream (RMS) and differentiate into interneurons including granule cells or periglomerular cells [2, 24]. Wnt ligands secreted from the fimbrial neuroepithelium into the cerebrospinal fluid are thought to activate canonical Wnt signaling in the SVZ [13, 19]. In addition, it is also reported that loss of Sp8, which is a transcription factor expressing in postnatal SVZ and RMS and is a target gene of Wnt/β-catenin signaling leads the developmental defects in the generation and diversity of OfB interneurons [9] [23]. Although highly speculative, it is possible that loss of Wnt2b expression in fimbrial neuroepithelium leads to reduced Wnt2b in CSF and, consequently, reduced numbers of SVZ progenitors that populate the OfB. Clearly, additional studies are required to fully understand the underlying cause of the small OfB observed in adult Wnt2b^{Δ/Δ} mice.

We have previously reported that the combined inactivation of Wnt2b and Wnt2 results in the complete loss of lung progenitor cells, providing irrefutable evidence that the closely related Wnt2 can compensate for the absence of Wnt2b [6]. The present results showing that
Wnt2b is not required at most of the sites at which it is expressed suggests that many other canonical Wnts can stand-in for Wnt2b, and that Wnt2b primarily plays a secondary, supportive role during embryogenesis.

Acknowledgements

We thank Kristin K. Biris for laboratory management, Cheri A. Rhoderick for administrative assistance and Dr. Sawamoto for comments on the manuscript. We also thank Serguei Kozlov and Jaime Greear for embryonic engineering and maintenance of mice. This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research Z01 BC010345-08 and Z01 BC010841-01 (to T. P. Y.) and by a JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH 70216 (to T. T.).
References

http://dev.biologists.org/content/133/16/3167.long

C. Kemp, E. Willems, S. Abdo, L. Lambiv, L. Leyns, Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation

http://dev.biologists.org/content/130/3/587.long

http://dev.biologists.org/content/132/12/2759.long

http://www.nature.com/ng/journal/v22/n4/full/ng0899_361.html

http://www.nature.com/nrg/journal/v5/n9/full/nrg1427.html

http://www.nature.com/nature/journal/v442/n7103/full/nature04888.html

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155196/

http://endo.endojournals.org/content/143/7/2741.long

M.C. Whitman, C.A. Greer, Adult neurogenesis and the olfactory system, Prog Neurobiol 89 (2009) 162-175.

H.M. Yu, B. Jerchow, T.J. Sheu, B. Liu, F. Costantini, J.E. Puzas, W. Birchmeier,

http://dev.biologists.org/content/132/8/1995.long

Figure Legends

Figure 1. Generation of Wnt2b conditional knockout mice. (A) Schematic of gene targeting for the Wnt2b locus. B, BamHI; E1, EcoRI; K, KpnI; S, SpeI; X, XbaI. (B) Southern hybridization for Wnt2b-targeted ES cells. Both probes for the 5’ locus and 3’ locus were used for screening. (C) Genotyping for WT, flox and Δ alleles of the Wnt2b locus by PCR. Positions of primers to distinguish WT, flox and Δ alleles of the Wnt2b locus are indicated in A. All WT, flox and Δ alleles were typed with single PCR reaction (3-primer mix PCR) using primers KO1, KO4 and Neo3’.

Figure 2. Normal appearance of Wnt2b mutant mice. (A) Wnt2bWT/Δ (agouti coat color) and Wnt2bΔ/Δ (albino coat color) mice are shown. (B-C) Eye (B) and limbs (C) of Wnt2bWT/WT, Wnt2bWT/Δ and Wnt2bΔ/Δ mice are indicated. FL, forelimb; HL, hindlimb.

Figure 3. Postnatal development of the brain in Wnt2b mutant mice. (A) Adult brains isolated from 4 month old Wnt2bWT/Δ and Wnt2bΔ/Δ mice are shown. Scale bar represents 5 mm. (B) 4 month old Wnt2bflo/flo and Wnt2bΔ/Δ brains were sectioned sagitally (5 μm) and stained with hematoxylin and eosin. (C) Measurements of adult OfBs (length, distance between solid white lines; widths, measured between two dashed lines in Fig. 3A) in Wnt2bWT/Δ control (n=3) and Wnt2bΔ/Δ (n=3) mice are indicated. (D) Brains isolated from perinatal Wnt2bWT/Δ and Wnt2bΔ/Δ mice are shown. Scale bar indicates 5 mm. (E) Measurements of OfBs isolated from perinatal Wnt2bWT/Δ (n=4) and Wnt2bΔ/Δ (n=7) mice
are indicated. OfB, olfactory bulb; Hp, hippocampus; SVZ, subventricular zone.
Table 1. *Wnt2b* mutant mice were intercrossed with each other, and then the genotypes of offsprings obtained from the intercrossing were determined by PCR (shown in Fig. 1A and C) at 3 weeks of age. The numbers and ratios of each genotype are indicated.

<table>
<thead>
<tr>
<th>Intercross</th>
<th>No. of pups (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnt2b<sup>WT/flox</sup></td>
<td>WT/WT</td>
<td>WT/flox</td>
</tr>
<tr>
<td></td>
<td>13 (29.5)</td>
<td>19 (43.2)</td>
</tr>
<tr>
<td>Wnt2b<sup>WT/Δ</sup></td>
<td>WT/WT</td>
<td>WT/Δ</td>
</tr>
<tr>
<td></td>
<td>30 (31.9)</td>
<td>40 (42.6)</td>
</tr>
<tr>
<td>Wnt2b<sup>Δ/Δ</sup></td>
<td>WT/WT</td>
<td>WT/Δ</td>
</tr>
<tr>
<td></td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Figure 1
Figure 3