

HOKKAIDO UNIVERSITY

Title	Conversion of MT-sulfone to a trifluoromethyl group by \$IF_5^1\$: the application of an MT-sulfone anion as a trifluoromethyl anion equivalent	
Author(s)	Imagawa, Yosuke; Yoshikawa, Syuhei; Fukuhara, Tadahito; Hara, Shoji	
Citation	Chemical Communications, 47(32), 9191-9193 https://doi.org/10.1039/c1cc13232f	
Issue Date	2011-08-28	
Doc URL	http://hdl.handle.net/2115/49456	
Rights	Chem. Commun., 2011, 47, 9191-9193 - Reproduced by permission of The Royal Society of Chemistry (RSC)	
Туре	article (author version)	
File Information	CC47-32_9191-9193.pdf	

Conversion of MT-Sulfone to a Trifluoromethyl group by IF_5^{1} : the Application of an MT-Sulfone Anion as a Trifluoromethyl Anion Equivalent

Yosuke Imagawa, Syuhei Yoshikawa, Tadahito Fukuhara, and Shoji Hara*

An MT-sulfone group was converted to a trifluoromethyl group by treatment with IF_5 after an alkylation reaction. Therefore, an MT-sulfone anion can be used as a trifluoromethyl anion equivalent. The formal asymmetric Michael-addition of a trifluoromethyl anion to crotonaldehyde was also performed.

- The introduction of a trifluoromethyl group into a molecule is a challenging area of organic chemistry because both a trifluoromethyl anion and its cation are difficult to generate and use². A carbon-carbon bond forming reaction between a trifluoromethyl anion and alkyl halides is the most fundamental method for introducing a trifluoromethyl group in the molecules, and a trifluoromethyl copper species was most successfully used, especially, for the introduction of a trifluoromethyl group into the aromatic ring or vinylic carbon^{3,4}. However, a good yield cannot be expected from a reaction of the trifluoromethyl copper species with aliphatic alkyl halides⁵. Although trifluoromethyltrimethylsilane has been used as a trifluoromethyl anion equivalent⁶, it is rarely used in the S_N2 reaction with alkyl
- halides owing to the low yield of the expected products and the formation of inseparable by-products^{5c,7}. On the other hand, MT-sulfone {(methylsulfanyl)methyl tolyl sulfone} is known to afford a stable anion species by treatment with a base under mild conditions, and its subsequent reaction with alkyl halides gives alkylated derivatives 1^8 . We found that the MT-sulfone group in 1 can be converted to a trifluormethyl group by the reaction with IF₅⁹. Therefore, the MT-sulfone can be used to introduce the trifluoromethyl group to the substrate (Scheme 1).

The reaction of **1** with IF₅ was performed under various conditions, and the best result was obtained by carrying out the reaction in Et₃N-5HF using 6 eq of IF₅ at 60 °C for 48 h. In this reaction, the presence of a methylsulfanyl group in **1** is critical, and the phenyl alkyl ²⁵ sulfone is inert to IF₅. During the reaction, the formation of tosyl fluoride was observed. From these observations, it can be assumed that the reaction proceeds as follows: the oxidative fluorination of **1** by IF₅ initially occurred to afford **3**¹⁰. In the second step, the tosyl group was eliminated as tosyl fluoride to afford a sulfonium salt **4**, which was converted to difluorosulfide **5** by the attack of a fluoride ion. Finally, the methylsulfanyl group in **5** was substituted by a fluoride ion to afford the trifluoromethylated product **2** (Scheme 2).

30

20

Scheme 2

Under these conditions, an alkylated MT-sulfone **1a** was converted to 1,1,1-trifluoroalkane **2a** in good yield. Furthermore, a functional group such as an ester, an amide, and a chloride in **1** is tolerable under these conditions, and the functionalized trifluoromethyl s compounds could be obtained

as shown in Table 1.

Table 1. The reaction of MT-sulfone derivative with ${\rm IF_5}^{\rm a}$			
Substrate	Product	Yield (%) ^b	
SO ₂ Tol C ₁₂ H ₂₅ -{ 1a SMe	C ₁₂ H ₂₅ -CF ₃ 2a	87	
SO ₂ Tol EtOOC-(CH ₂) ₅ 1b SMe	EtOOC-(CH ₂) ₅ -CF ₃ 2b	75	
SO ₂ Tol CI-(CH ₂) ₁₂ 1c SMe	CI-(CH ₂) ₁₂ -CF ₃ 2c	81	
$\begin{array}{ccc} \text{ToISO}_2 & \text{SO}_2\text{ToI} \\ \hline & & \\ & & \\ & & \\ \text{MeS} & \text{1d} & \text{SMe} \end{array}$	CF ₃ -(CH ₂) ₁₀ -CF ₃ 2d	71	
SO ₂ Tol BzO-(CH ₂) ₆ (1e SMe	BzO-(CH ₂₎₆ -CF ₃ 2e	73	
$\begin{array}{c} & \text{SO}_2\text{Tol} \\ \text{Et}_2\text{N-C-(CH}_2)_5 - \swarrow \\ & \text{II} \\ \text{O} \text{If} \\ \end{array} \\ \end{array}$	Et ₂ N-C-(CH ₂) ₅ -CF 0 2f	3 78 ^c	

^a If otherwise not mentioned, the reaction was carried out using 6 eq of IF_5/Et_3N-5HF at 60 °C for 48h. ^b Isolation yield based on substrate used. ^c 8 eq of IF_5/Et_3N-5HF was used.

¹⁰ Recently, the asymmetric trifluoromethylation reaction has received much attention and many elegant methods for producing a compound having a trifluoromethyl group at its asymmetric center have been reported¹¹. However, the asymmetric Michael-addition of the trifluoromethyl anion to α,β -unsaturated carbonyl compounds has not yet been reported. Therefore, we applied our method to introduce a trifluoromethyl group at the β -position of the carbonyl group enantioselectively. The asymmetric Michael-addition of MT-15 sulfone catalyzed by an organocatalyst was unsuccessful owing to the low acidity of MT-sulfone (*p*Ka = 23.4¹²). On the other hand, the

organocatalyst-catalyzed by an organocatalyst was unsuccessful owing to the low activity of M1-surfole ($pRa = 25.4^{-1}$). On the other hand, the organocatalyst-catalyzed asymmetric Michael-addition of bis(phenylsulfonyl)methane ($pRa = 12.5^{13}$) to α,β -unsaturated aldehydes is known¹⁴. Therefore, the Michael-addition of bis(phenylsulfonyl)methane to crotonaldehyde was performed in the presence of (*S*)-2-(diphenyltrimethylsiloxy)methylpyrrolidine, and the resulting adduct **6** was reduced to an alcohol¹⁵. After the protection of alcohol with TBDMS, one sulfonyl group was removed by SmI₂¹⁶ and a methylsulfanyl group was introduced to afford the (methylsulfanyl)methyl

²⁰ phenyl sulfoxide derivative **8**. Then, the protecting group of **8** was converted to a benzoyl group, and the resulting benzoate **9** was subjected to a reaction with IF_5 / Et_3N-5HF . Under the conditions described above, the (methylsulfanyl)methyl phenyl sulfoxide group was converted to the trifluoromethyl group and 3-trifluoromethyl-1-butyl benzoate **10** was obtained in 52% yield with 85% e. During the reactions, no racemization occurred, and the trifluoromethyl group could be introduced at the β -position of the carbonyl group enantioselectively (**Scheme 3**).

25

i, 20 mol% of (S)-2-(alphenyltrimetrylsiloxy)metrylpyrrole, toluene ii, NaBH₄, 78% from bis(phenylsulfonyl)methane, iii TBDMSCI, imidazole, 97%, iv Sml₂, 93% v BuLi, MeSSO₂Me, 79% vi TBAF, vii BzCI, Et₃N, 72% from **5**

Scheme 3

Conclusions

We found that the MT-sulfone group can be converted to a trifluoromethyl group by the reaction with IF₅. As the MT-sulfone affords a $_5$ stable anion species by treatment with a base, and its subsequent reaction with alkyl halides gives alkylated derivatives, an MT-sulfone anion can be used as a trifluoromethyl anion equivalent. We also performed the formal asymmetric Michael-addition of a trifluoromethyl anion to crotonaldehyde, where the trifluoromethyl group was introduced to β -position of crotonaldehyde enantioselectively.

Notes and references

10

Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapp oro 060-8628, Japan

E-mail: shara@eng.hokudai.ac.jp; Fax: +81 11 706 6556; Tel: +81 11 706 6556

- $_{15}$ 1 IF₅ decomposes in air emitting hazardous HF fume, and, therefore, it should be carefully handled in a bench hood with rubber-gloved hands, and the reaction was carried out in a TeflonTM bottle (a glassware cannot be used).
 - 2 (a) M. A. McClinton and D. A. McClinton, *Tetrahedron*, 1992, 48, 6555; (b) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006, pp. 292; (c) J.-A. Ma and D. Cahard, *J. Fluorine Chem.*, 2007, 128, 975.
- 3 (a) V.C.R. McLoughlin and J. Thrower, *Tetrahedron*, 1969, 25, 5921; (b) K. Matsui, E. Tobita, M. Ando, and K. Kondo, *Chem. Lett.*, 1981, 1719; (c)
 ²⁰ H. Suzuki, Y. Yoshida, and A. Osuka, *Chem. Lett.*, 1982, 135; (d) G. E. Carr, R. D. Chambers, and T. F. Holmes, *J. Chem. Soc. Perkin Trans. 1*, 1988, 921; (e) H. Urata and T. Fuchikami, *Tetrahedron Lett.*, 1991, 32, 91; (f) L. Tan, C. Chen, R. D. Larsen, T. R. Verhoeven, P. J. Reider, *Tetrahedron Lett.*, 1998, 39, 3961; (g) F. Cottet and M. Schlosser, *Eur. J. Org. Chem.*, 2002, 67, 327; (h) I. Nowak and M. J. Robins, *J. Org. Chem.*, 2007, 72, 2678; (i) B. R. Langlois and N. Roques, *J. Fluorine Chem.*, 2007, 128, 1318; (j) G. G. Dubinina, H. Furutachi, and D. A. Vicic, *J. Am. Chem. Soc.*, 2008, 130, 8600; (k) M. Oishi, H. Kondo, and H. Amii, *Chem. Commun.*, 2009, 1909.
- 25 4 Recently, palladium-catalyzed cross-coupling reaction of trifluoromethyltrimethylsilane with aromatic halides was reproted; B. S. Samant and G. W. Kabalka, *Chem. Commun.*, 2011, 47, 7236.
- 5 (a) Y. Kobayashi, K. Yamamoto, and I. Kumadaki, *Tetrahedron Lett.*, 1979, **42**, 4071; (b) Q.-Y. Chen and J.-X. Duan, *Tetrahedron Lett.*, 1993, **34**, 4241; (c) J. Kim and J. M. Shreeve, *Org. Biomol. Chem.*, 2004, **2**, 2728.
- 6 (a) G. K. S. Prakash and A. K. Yudin, *Chem. Rev.*, 1997, 97, 757; (b) R. P. Singh and J. M. Shreeve, *Tetrahedron*, 2000, 56, 7613; (c) G. K. S.
 ⁵⁰ Prakash and M. Mandal, *J. Fluorine Chem.*, 2001, 112, 123; (d) A. D. Dilman and V. V. Levin, *Eur. J. Org. Chem.*, 2011, 831.
- (a) D. V. Sevenard, P. Kirsh, G.-V. Röschenthaler, V. N. Movchun, A. A. Kolomeitsev, *Synlett*, 2001, 379; (b) W. Tyrra, D. Naumann, S. Quadt, S. Buslei, Y.L.Yagupolskii, and M. M. Kremlev, *J. Fluorine Chem.*, 2007, 128, 813.
- 8 (a) K. Ogura, N. Yahata, K. Hashizume, K. Tsuyama, K. Takahashi, and H. Iida, *Chem. Lett.*, 1983, 767; (b) K. Ogura, K. Ohtsuki, M. Nakamura, N. Yahata, K. Takahashi, and H. Iida, *Tetrahedron Lett.*, 1985, **26**, 2455.
- ³⁵ 9 Rozen et al. reported that a tris(methylthio)methyl group in RCH₂C(SMe)₃ can be converted to trifluoromethyl group by the reaction with BrF₃. However, bromination at α-carbon also took place to give RCHBrCF₃, see: A. Hagooly, I. Ben-David and S. Rozen, *J. Org. Chem.*, 2002, **67**, 8430.
 ¹⁰ S. Ayuba, N. Yoneda, T. Fukuhara, and S. Hara, *Bull. Chem. Soc. Jpn.*, 2002, **75**, 1597.
- 11 (a) J.-A. Ma and D. Cahard, *Chem. Rev.*, 2004, **104**, 6119; (b) B. R. Langlois, T. Billard, S. Roussel, *J. Fluorine Chem.*, 2005, **126**, 173; (c) T. Billard and B. R. Langlois, *Eur. J. Org. Chem.*, 2007, 891; (d) N. Shibata, S. Mizuta, and H. Kawai, *Tetrahedron: Asymmetry*, 2008, **19**, 2633; (e) J. Nie,
- 40 H.-C. Guo, D. Cahard, and J.-A. Ma, Chem. Rev., 2011, **111**, 455; (f) G. Valero, X. Companyó, and R. Rios, Chem. Eur. J., 2011, **17**, 2018.

- S. Itô and T. Tsunoda, *Pure Appl. Chem.*, 1999, **71**, 1053.
 J. Hine, J. C. Philips, and J. I. Maxwell, *J. Org. Chem.*, 1970, **35**, 3943.
 A.-N. Alba, X. Companyó, A. Moyano, and R. Rios, *Chem. Eur. J.*, 2009, **15**, 11095.
- 15 The enantiomeric excess of 4 was determined to be 85%ee as reported¹⁴.
 5 16 S. S.-Mossé, A. Alexakis, J. Mareda, G. Bollot, G. Bernardinelli, and Y. Filinchuk, *Chem. Eur. J.*, 2009, 15, 3204.