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Abstract—A fast FDTD method for the analysis of antennas 

loaded by non-linear electric circuits is introduced. In the present 

analysis, the modified nodal analysis (MNA) method is coupled 

with the FDTD method. The time-periodic explicit error 

correction (TP-EEC) method is applied to the MNA method for 

accelerated computation of the transient processes. The present 

method is applied to analysis of simplified models of an RFID tag 

composed of a non-linear electric circuit and line antenna. It is 

shown that the present method can effectively shorten the 

computational time by accelerating the transient processes. 

 
Index Terms—FDTD method, TP-EEC method, 

Electromagnetic waves, Modified nodal analysis, RFID tag 

 

I. INTRODUCTION 

IELD COMPUTATION METHODS, such as the finite 

-difference time-domain  (FDTD) method [1], [2] and the 

method of moment [3], have widely been used for analysis of 

high frequency electronic devices. In recent years, these 

methods have been applied to coupling analysis of 

high-frequency electromagnetic fields and electric circuits for 

the design of high-frequency electronic devices and analysis of 

electromagnetic compatibility (EMC) problems [4]. In the 

coupling analysis, circuit simulation involving nonlinearity 

requires time domain computations. For this reason, the 

coupling analysis of electromagnetic fields and nonlinear 

electric circuits usually requires high computational cost. When 

the time constant of the circuit is much longer than the time 

period of electromagnetic waves, this problem becomes quite 

severe because the number of time steps must be considerably 

large. It would be possible to reduce the computational cost if 

one could effectively shorten the time constant, that is, 

accelerate the computation of the transient processes of the 

circuit. 

The time-periodic explicit error correction (TP-EEC) method 

[5], [6], which accelerates the transient processes of 

time-periodic systems, has been introduced for reduction of 

computational costs. The TP-EEC method is based on the 

assumption that the unknown variables are temporally periodic 

in the steady state and slowly converging components without 
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periodicity can be separated from them. The slowly converging 

components are then determined by solving small-scale 

correction equations to correct the transient solutions. The 

TP-EEC method is an extension of the EEC method [7], which 

gives a general framework of the error correction based on the 

decomposition of unknowns to fast and slowly converging 

components. It has been shown that the EEC has a common 

theoretical basis with the deflation methods [8], which have 

been applied to linear systems of poor convergence [9], [10]. 

The TP-EEC method has been applied to finite element (FE) 

analysis of motors and coupling FE analysis of circuit and eddy 

current fields [6], in the latter of which inductance is computed 

in the FE analysis by taking magnetic saturation into account. 

In this paper, we will discuss the effectiveness of the TP-EEC 

method when applied to antenna analysis, where coupling 

between electromagnetic waves and a non-linear circuit is 

considered. In particular, we consider here transient analysis of 

dipole antennas loaded by a non-linear circuit, which are 

simplified models of the UHF-band RFID tag. In the design 

optimization of antennas for RFID tags, the coupled problem 

between the electromagnetic waves and the circuit must be 

repeatedly solved [11]. Hence the reduction in the 

computational cost for the coupling analysis is of fundamental 

importance. Moreover, in this paper, we will introduce a 

theoretical basis of the TP-EEC method for explanation of the 

reason why it is effective for acceleration of the transient 

processes.  

In this work, the FDTD method and Modified Nodal Analysis 

(MNA) [12], [13] are employed for the coupling analysis of a 

high frequency electromagnetic field and a non-linear circuit. 

This paper will be organized as follows: in Section II, the 

coupled method with the FDTD method and MNA will be 

formulated. Moreover a computational procedure of the present 

method will be described. In Section III, the TP-EEC method 

will be formulated, and effect of the TP-EEC method will be 

discussed, while in Section IV, numerical results will be shown 

to verify the present method. 
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II. HYBRIDIZATION OF FDTD METHOD AND MNA 

The hybridization of the FDTD method and MNA will be 

described in the following. The Maxwell equations 
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are considered in this paper where the conduction current 

density J is determined from the voltage-current characteristics 

of the non-linear circuit. In the FDTD process, (1-a) and (1-b) 

are approximated by the central differences in time and space 

and explicitly solved in turns as follows [2]: 
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Let us consider the line antenna loaded by a non-linear circuit, 

shown in Fig. 1, parallel to the z-axis, where ∆X, ∆Y and ∆Z are 

the cell size of the FDTD method. The spatial size of the 

non-linear circuit is assumed to be sufficiently smaller than that 

of the FDTD cell. By integrating (1-a) on the surface S of the 

FDTD cell, we obtain 

 

( ) IVI
t

V
C LL

L =+
∂

∂
0  (3) 

 

where VL=EZ∆Z is the voltage imposed to the circuit, 

C0=ε∆X∆Y/∆Z is the capacitance of the FDTD cell, IL is the 

current flowing into the non-linear circuit and the I is total 

current given by 

 

∫∂ ⋅=
S

I sH d . (4) 

 

The equivalent circuit governed by (3) is shown in Fig. 2 [12], 

[13]. This circuit is composed of a parallel circuit of the current 

source I computed from (4), the capacitance C0 and the 

non-linear circuit. The equivalent circuit shown in Fig. 2 is 

analyzed by MNA in this work. Modified nodal analysis 

determines the voltages between nodes in the electrical circuit 

according to Kirchhoff’s Current Law. A system of the 

non-linear circuit equations of the form 

 

( ) )(
d

d
C t

t
b

x
xf =+  (5) 

 

is solved, where x(t)∈ℝ
N
 is composed of the unknown nodal 

voltages, b(t) current source driven by the antenna, f non-linear 

function which includes the effects of the active devices such as 

diodes and transistors, and C is the capacitance matrix. Note 
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Fig. 1.  Line antenna loaded by non-linear circuit. 
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Fig. 2.  Equivalent circuit for FDTD method of antenna loaded by non-linear 

circuit. 

  

n<N
max

n=n+1/2

n=n+1/2

END

START

N
max

END

START

Setting initial values for

E and H

Computation of Hn in

FDTD process

Computation of In form Hn

Computation of node voltage

VL in MNA process

Computation of En at 

antenna gap from VL

Computation of En in

FDTD process

 
Fig. 3.  Flow diagram. 
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here that equation (5) includes (3). 

Fig. 3 shows the flow diagram of the coupling analysis of the 

FDTD method and MNA. In the FDTD process, the magnetic 

field H
n-1/2

 is computed, where n denotes the time step, and I
n-1/2

 

is computed from H
n-1/2

 by (4). Then, I
n-1/2

 is substituted to the 

right-hand side of (5), which is solved by MNA for x including 

VL
n
. The resultant electric field Ez

n
=VL/∆Z is substituted to (2-b), 

which is solved by the FDTD method for H
n+1/2

. These 

computations of E, H, I and VL are repeated until a steady 

solution is obtained. 

 

III. ACCELERATION OF CONVERGENCE IN CIRCUIT ANALYSIS 

This section describes the TP-EEC method which accelerates 

the transient processes of the circuit. 

A. Discretized Circuit Equation 

Discretization of (5) with the finite difference leads to a 

system of nonlinear equations of the form 

 

( ) ( ) bxPxC
~

1 =+ n-n  (6) 

 

where 
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+=
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( ) ( )
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~

−−+= nn bbb θθ  (7-c) 

 

and .10 ≤≤ θ When θ equals to 1, for example, this scheme 

corresponds to backward Euler method. In this work, (6) is 

solved with the Newton-Raphson method at each time step.  

B. TP-EEC Method 

When the time constant of the system governed by (6) is 

much longer than ∆t, high computational cost is required to 

obtain the steady state solutions which do not vary in time. To 

accelerate the convergence to the steady state, the TP-EEC 

method is applied to (6). 

It is assumed that bn is periodic, which satisfies b0=bNs. The 

solution xn to (6) is then expected to have periodicity in the 

steady state. On the other hand, in the transient state, periodicity 

would approximately hold, that is, 

 

.0 SNxx ≈  (8) 

 

To apply the TP-EEC method to (6), we introduce the vectors 

defined for each period as 
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Equation (6) for one period is now expressed in the form 

 

( ) BXA = . (11) 

 

To accelerate convergence to the steady state, X is decomposed 

into fast and slowly converging components as follows: 

 

pXX W
~

+=  (12) 

 

where ∈p ℝ
MN

 and ∈W  ℝ
MNs×MN

 represent the correction 

vector and matrix composed of the slowly converging 

components whose explicit forms will be described below. The 

constant M represents the degree of the correction. The 

approximated solution X given by (12) is substituted to (11) to 

obtain the residual vector given by 

 

( ).W
~
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We expand (13) around X
~

 for linearization, and then employ 

the Galerkin approximation that 'r  in (13) is orthogonal to the 

column vectors in W to obtain the correction equation given by 

 

rp tt WAWW =  (14) 
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The correction matrix W∈ℝ
NNs×N

 of the 0th order (M=1), in 

which the slowly converging components are assumed to be 

temporally constant, is given by 

 

[ ]t
IIIW L=  (17) 

 

where I∈ℝ
N×N

 is the unit matrix. By substituting (17) to the 
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left-hand side of (14), one has 
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1

t ∑
=

+=
SN

n
nn  (18) 

 

Then it is assumed that (11) can be solved with sufficiently high 

accuracy except at n=0 where imperfect periodicity would result 

in non-negligible residuals. Under this assumption, the residual 

can be expressed in the form 
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Substitution of (18) and (19) to (14) yields 
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By solving (20) for p, X is corrected from (12). 

Convergence to the steady state can further be accelerated by 

use of the correction of the 1st order (M=2) in which the slowly 

converging components are assumed to be temporally constant 

and linear. The corresponding correction matrix is given by 
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where 
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By substituting (21) to (14), one obtains 
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The unknown xn is then corrected with the vectors p0 and p1 

determined by solving (22) as follows: 

 

.~
10 ppxx nnn f++=  (23) 

 

Although increase in the degree of the correction, e. g. from 0th 

to 1st, is expected to give better convergence, it also results in 

increase in the unknowns in the correction equation. 

C. Effect of TP-EEC Method 

The mathematical property of the TP-EEC method has been 

discussed for the scalar linear diffusion equation [5]. We give 

here more general discussion on this method. By substituting r 

and (14) to (12), we obtain 

 

( ) ( )XBXX
~

AWAWWW
~ t1t −+=

−
. (24) 

 

The steady solution to (11) is here expressed by X
*
. Then, the 

error XXE
~~ * −=  is modified after the error correction in the 

form 

 

EE
~

P≈  (25) 

 

where XXE −= * and P is defined by 

 

( ) AWAWWWIP t1t −
−=  (26) 

 

which is a projection matrix satisfying P=P
2
. It can easily be 

seen from (26) that PW=0. The error E
~

 can be decomposed in 

the form 

 

fastslow

~
EEE +=  (27) 

 

where 

 

( ) ( )AWKer,WRange t
fastslow ∈∈ EE . (28) 

 

Therein, the errors Eslow and Efast represent the slowly and fast 

converging errors, and they satisfy A-orthogonal relation (Eslow, 

Efast)A=0. It can be seen from (25) to (28) that the slowly 

converging error is eliminated as PEslow=0 by the TP-EEC 

method. On the other hand, Efast has no effects from the 

correction because of the property PEfast=Efast. Thus this error 

component is reduced by the iterative solution of (11) where its 

convergence is expected to be fast by definition. It is known that 

the multigrid method, which effectively eliminates the slowly 

converging components with spatially smooth profiles by 

mapping them to coarser meshes, is also based on the above 

mentioned decomposition and selective elimination [14]. More 

detailed discussions on the TP-EEC method are can be found in 

[15]. 
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IV. NUMERICAL RESULT 

A. CR Diode Series Circuit 

The half-wave dipole antenna loaded by the non-linear circuit 

shown in Fig. 4 is analyzed by hybridization of the FDTD 

method and MNA to test acceleration of convergence to the 

steady state by applying the TP-EEC method to MNA. The 

nodal voltages of the non-linear circuit are obtained from MNA. 

The half-wave dipole antenna is assumed to be illuminated by 

the plane wave. The amplitude and frequency of incident wave 

is assumed to be 20 V/m and 1 GHz. The size of the FDTD cell, 

∆X=∆Y=∆Z, is set to 3mm. The perfect matched layer is 

employed to enforce the free space conditions on the domain 

boundary. The half-wave dipole antenna is parallel to z-axis and 

set to perfect conductor (Ez=0 V/m). 

The nonlinear circuit is composed of a capacitance, diode and 

resistance as shown in Fig. 5. The capacitance C is set to 10pF 

and the resistance R is set to 1kΩ. The diode circuit is assumed 

to obey V-I characteristics given by 

 

( )[ ]





≥−×

≤×
=

−

−

0115exp109.2

0100.1

dd
7

dd
8

d
vv

vv
i  (29) 

 

where vd is the voltage at diode. For negative voltages, the diode 

current is nearly zero. The explicit form of the circuit equation 

(5) for the circuit shown in Fig. 5 is given in the Appendix. In 

this analysis, θ is set to 1 in MNA and NS is set to 200. 

Fig. 6 shows the time evolution in the voltage V1. It can be 

seen in Fig. 6 that the convergence to the steady state is clearly 

accelerated by the present method. 

Fig. 7 shows the absolute error E between the steady and 

transient solutions. The numbers of time steps required to 

satisfy |E|<0.01 for no correction, for 0th correction, and for 1st 

order correction, are approximately 205000 steps (1025 ns), 

2400 steps (12 ns) and 1600 steps (8 ns), respectively. This 

means that the TP-EEC method of the 1st order correction 

provides convergence to the steady state 128.1 times faster than 

that for non-corrected computation. Moreover, the three 

solutions in the steady state are found to be in good agreement. 

B. Cockcroft-Walton Circuit 

The TP-EEC method is now applied to the half-wave dipole 

antenna loaded by the CW circuit shown in Fig. 8. The explicit 

form of the circuit equation (5) for the circuit shown in Fig. 8 is 

given in the Appendix. The parameters of the FDTD method 

and MNA are the same as those used in subsection 4.1. 

Fig. 9 shows the time evolution of the output voltage Vout of 

the CW circuit. It can be seen in Fig. 9 that the convergence to 

the steady state is clearly accelerated by the TP-EEC method. 

Fig. 10 shows the absolute error E between the steady and 

transient solutions. The number of time steps required to satisfy 

|E|<0.01 for no correction, for 0th order correction, and for 1st 
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Fig. 4.  Analysis model. 
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Fig. 5.  CR diode serial circuit. 
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Fig. 6.  Time evolution of V1. 
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Fig. 7.  Time evolution error of node voltage. 
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Fig. 8.  Cockcroft-Walton circuit. 
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order correction, are approximately 8880 steps (44 ns), 3545 

steps (18 ns) and 1800 steps (9 ns), respectively. That means 

that the TP-EEC method of the 1st order correction provides 

convergence to the steady state 4.9 times faster than that for 

non-corrected computation. Moreover, it is observed that the 

three solutions in the steady state are in good agreement. It can 

be seen in Fig. 7 and Fig. 10 that the effects in acceleration by 

TP-EEC method depend on circuits. 

V. CONCLUSIONS 

In this paper, it has been shown that convergence to the 

steady state of a non-linear circuit driven by antenna voltage, 

which was analyzed by FDTD and MNA, is effectively 

accelerated by using the present method. The theoretical reason 

why the present method can improve convergence to the steady 

state has been discussed. To test the present method, it has been 

applied to analysis of a half-wave dipole antenna loaded by 

non-linear circuits including diodes. It has been numerically 

shown that  the TP-EEC method effectively accelerates 

convergence to the steady state. 

 

APPENDIX 

This appendix describes the nodal equations for the circuit 

discussed in this paper. The nodal equations for the CR diode 

series circuit shown in Fig. 5 are given by 
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where I is the input current obtained by the FDTD computation 

and C0 is the capacitance for the FDTD cell. 

The nodal equations for the CW circuit shown in Fig. 8 are 

given by 
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Fig. 9.  Time evolution of output voltage Vout. 
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Fig. 10.  Time evolution error of node voltage. 
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