Identification of a methanol-inducible promoter from *Rhodococcus erythropolis*

PR4 and its use as an expression vector

Yusuke Kagawa¹,², Yasuo Mitani³, Hea-Yeon Yun¹,², Nobutaka Nakashima¹, Noriko Tamura¹, and Tomohiro Tamura¹,²*

¹Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan

²Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan

³Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6-10, Tsukuba, Ibaraki 305-8566, Japan

*Corresponding author. Phone: +81-11-857-8938. Fax: +81-11-857-8980. E-mail: t-tamura@aist.go.jp

Running title: Methanol-inducible promoter from Rhodococcus

Key words: promoter; expression; methanol-inducible; RamB; *Rhodococcus erythropolis*
Abstract

The genus *Rhodococcus* exhibits a broad range of catalytic activity and is tolerant to various kinds of organic solvents. This property makes rhodococci suitable for use as a whole-cell catalyst. Various tools for genetic engineering have been developed to use *Rhodococcus erythropolis* as a host for bioconversion. In this study, we investigated the protein expression responses of *R. erythropolis* strains and found that isocitrate lyase production in *R. erythropolis* PR4 (ICLRe) was induced by methanol. By analyzing the regulation mechanisms of iclRe expression, the ~200-bp upstream region from the first nucleotide of the translation initiation codon of iclRe was shown to be sufficient for the methanol-inducible expression. Also, the ~100-bp upstream region exhibited strong constitutive promoter activity by an unknown mechanism(s). By investigating proteins that bound to the upstream region of iclRe in vitro, a RamB homologue of *R. erythropolis* PR4 (RamBRe) was identified. Moreover, 2 putative RamBRe binding sites were identified in the upstream region of iclRe through pull-down assays. A ramBRe knockout experiment suggested that RamBRe negatively controlled the expression of iclRe and that RamBRe regulation was dependent on the availability of a carbon source. On the basis of these findings, we were able to create novel methanol-inducible and strong constitutive expression vectors.
Introduction

The genus *Rhodococcus* belongs to mycolic-acid containing actinomycetes. Many members of the order *Actinomycetes* are known to be antibiotic producers, while rhodococci are known to exhibit a broad range of catalytic activity that has applications in industrial, pharmaceutical, and environmental biotechnology (1-4). For example, rhodococci have been used as biocatalysts for the industrial production of acrylamide (5). Rhodococci are often isolated from soils contaminated with crude oil and/or xenobiotic compounds, and these organisms can utilize such compounds as carbon sources. Moreover, they exhibit tolerance to various organic solvents (6-9).

Their solvent tolerance property makes rhodococci suitable for use as a whole-cell biocatalyst; this is particularly favorable for biocatalytic processes that require cofactor regeneration and/or involve multistep metabolic pathways (10). The 2-phase water-solvent system has been used for whole-cell bioconversion because it permits the efficient conversion of hydrophobic substrates, which are dissolved in the solvent phase, into final products. In most cases, the products are also hydrophobic and accumulate in the solvent phase; this enables continuous reaction and feasible purification (10-13). To date, both gram-positive and gram-negative organic solvent–tolerant bacteria have been used for such reactions (10, 11, 14). Although *Escherichia coli* is not particularly tolerant to solvents, it has been used for whole-cell bioconversion in the presence of toxic solvents because of its ease of handling (15). Nevertheless, rhodococci remain superior candidates for such applications owing to their diverse catabolic abilities and remarkable resistance to various solvents. Solvent-tolerant mechanisms have been investigated in various bacteria, particularly in gram-negative bacteria (16, 17).
Gram-negative bacteria have an outer cell membrane in addition to an inner cell membrane, and these 2 membranes create a periplasmic space between them. Such cell wall structure protects the cell from organic solvents that can damage the cell membrane by attacking the lipid bilayer (18).

To use *Rhodococcus erythropolis* as a host cell for bioproduction, various tools useful for genetic engineering have been developed, such as expression vectors containing an inducible promoter or a constitutive promoter, transposon mutagenesis and/or expression system, and gene expression analysis systems (19-25). To date, such tools have been successfully used in recombinant protein production and bioreactions in aqueous media (26, 27). To fully utilize the abilities of rhodococci, particularly their solvent tolerance property, a solvent-inducible promoter would be useful. If such a promoter is available, organic solvents can be used not only as reservoirs for the substrate and/or the product but also as inducers for proteins that are involved in the catalytic reactions. Therefore, we investigated the responses of various *R. erythropolis* strains to various kinds of organic solvents.

In this report, we identified isocitrate lyase from *R. erythropolis* PR4 (ICL\textsubscript{Re}) as a methanol-inducible protein, and investigated its expression regulation mechanisms by analyzing the upstream region of \textit{icl\textsubscript{Re}}. Also, we identified a RamB homologue of *R. erythropolis* PR4 (RamB\textsubscript{Re}) by isolating proteins that were bound to the upstream region of \textit{icl\textsubscript{Re}}. Finally, the upstream region of \textit{icl\textsubscript{Re}} was used to create methanol-inducible and strong constitutive expression vectors.
Materials and Methods

Bacterial strains and culture conditions

R. erythropolis strains PR4 and NI86/21 were obtained from the National Institute of Technology and Evaluation (NITE, Japan) and the National Collection of Agricultural and Industrial Microorganisms (Hungary), respectively. *R. erythropolis* strains JCM3201 and JCM6824 were obtained from the Japan Collection of Microorganisms. *E. coli* DH5α and XL1-blue were used as general cloning hosts. *R. erythropolis* and *E. coli* strains were routinely cultured in Luria-Bertani (LB) broth (1% Bacto tryptone, 0.5% Bacto yeast extract, and 1% NaCl) in the presence or absence of antibiotics at 28°C and 37°C, respectively. The antibiotics used to select transformants in the culture media were chloramphenicol (17 µg/mL), kanamycin (200 µg/mL), and ampicillin (50 µg/mL). If necessary, cell growth was monitored by measuring optical density at 600 nm (OD$_{600}$). In the plate culture, the medium was solidified by adding 1.5% agar.

Preparation of total protein

Single colony of *R. erythropolis* was inoculated into 10 mL LB medium and incubated until it reached to a stationary phase. Then, the seed culture was inoculated into 100 mL fresh LB medium and incubated for 20 h at 28°C with shaking at 120 rpm in a 300 mL baffled flask. In order to increase the amount of cell culture, 100 mL...
culture that was obtained by the previous step was inoculated into 1 L fresh LB medium and incubated for 20 h at 28°C with shaking at 120 rpm in a 3 L baffled flask. A 20 mL portion that was obtained from the culture in 3 L flask was transferred into a 50 mL screw capped plastic tube (Corning inc., Corning, NY). Fifty microliters of R. erythropolis seed culture was inoculated into 15 mL of LB medium and incubated for 2 days. Then, the organic solvent was added into the culture to a proportion of 1% or 5%, and the culture was incubated for an additional 24 h. Cells were grown in a screw-capped 50 mL plastic tube to prevent evaporation of organic solvents. The organic solvents used in this study were ethanol, acetone, dimethyl sulfoxide, propanol, butanol, methanol, acetonitrile, isopropyl acetate, 2-methyl-1-propanol, methyl ethyl ketone, and ethyl acetate. The culture was harvested by centrifugation at 1500 × g for 10 min at 4°C. Then, cells were washed with 50 mM phosphate buffer (pH 7.5) and resuspended in 500 µL of the same buffer. The cells were then disrupted using a Beads shocker (Yasui-kikai, Osaka, Japan). The supernatant was collected by centrifugation at 20,817 × g for 10 min at 4°C and used as the total protein. Protein analysis was performed through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Unless otherwise specified, 12.5% acrylamide was used for SDS-PAGE and protein bands were visualized using Coomassie brilliant blue (CBB) staining.

Two-dimensional gel electrophoresis (2-DE)

Three milligrams of total protein was loaded onto a Superose-12 column (GE Healthcare, Buckinghamshire, UK) equilibrated with 25 mM Tris-HCl (pH 7.5)
containing 10% glycerol. Then, a 50 µL fraction with a high amount of methanol-inducible protein was resuspended in 75 µL of rehydration buffer containing 8 M urea, 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, 0.5% immobilized pH gradient (IPG) buffer, 0.002% bromophenol blue, 0.28% dithiothreitol, and applied to pH 3–11 IPG strips (GE Healthcare) for overnight rehydration.

Isoelectronic focusing was performed using Ettan IPGphor II (GE Healthcare) under the following conditions: 500 V for 1 h, 1000 V for 1 h, 8000 V for 3 h. IPG strips were equilibrated with SDS equilibration buffer [6 M urea, 75 mM Tris-HCl (pH 8.8), 29.3% glycerol, 2% SDS, 0.002% bromophenol blue]. The second-dimensional separation was carried out by placing equilibrated IPG strips onto a SDS-PAGE gel that was sealed with 0.5% (w/v) agarose.

Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)

After 2-DE, the spot was excised and digested as described previously (28, 29). Tryptic peptides were separated by reverse-phase chromatography using a MAGIC C18 column (3 µm, 200 Å, 0.2 mm i.d. × 150 mm; Michrom Bioresources, Auburn, CA) connected to a MAGIC 2002 LC system (Michrom Bioresources). Peptides were loaded onto a reverse-phase column as described previously (30) and then eluted during a 40-min linear gradient from 5% to 40% of solvent B (90% acetonitrile, 0.1% formic acid) at a flow rate of 100 µL/min. The effluent was split by a MAGIC splitter (Michrom Bioresources) to approximately 0.9 µL/min and introduced directly into an LCQ-DECA XP plus ion trap mass spectrometer (Thermo Fisher Scientific, Waltham,
MA) equipped with a nanoelectrospray ion source (AMR, Tokyo, Japan). All tandem MS spectra were searched against the NCBI non-redundant database and analyzed using the TurboSequest algorithm in the BioWorks 3.2 software package (ThermoFisher Scientific, Waltham, MA) as described previously (30). The identified peptides were further evaluated using the following filters: peptide probability (≤1e-003), delta correlation score (≥0.1), and cross-correlation (X Corr) values (≥1.9, 2.2, 3.75 for 1+, 2+, 3+ charge-state peptides, respectively).

Cloning of the genes identified with LC-MS/MS

The degenerate primers DGP_S (5′-GAGGCKGCKACKCTKATCAKCTCKGACGTKGACGA-3′) and DGP_AS (5′-CGGATGTGTGTGKGTGGGATKAGKAC-3′) were designed corresponding to conserved regions of amino acid sequences of ICL. Degenerate PCR was performed for 25 cycles consisting of 94°C for 30 s, 68°C for 30 s, and 74°C for 2.5 min, with a final extension at 74°C for 7 min by using KOD Dash DNA polymerase (Toyobo, Osaka, Japan) and genome DNA as template. An ~150-bp product was purified and subcloned into a pBS-SK+ vector (Agilent Technologies, Santa Clara, CA) for sequencing. On the basis of the sequence obtained, primers were designed to amplify the full length of icl_ε by inverse PCR. For the inverse PCR, genomic DNA of R. erythropolis PR4 was digested with either BamHI or NcoI, purified by a miniprep purification kit (Promega, Madison, WI), and circularized with Ligation kit solution I (Takara, Shiga, Japan). Inverse PCR was performed using KOD FX DNA polymerase.
Reverse transcriptase-polymerase chain reaction (RT-PCR)

Total RNA was extracted from *R. erythropolis* PR4 grown in the presence of 5% methanol by using RNeasy Midi Kit (Qiagen, Hilden, Germany) and treated with RNase-free DNase I to remove genomic DNA followed by passing through an RNeasy minicolumn (Qiagen). RT-PCR reaction was performed using the Thermo Script RT-PCR System (Invitrogen, Carlsbad, CA) according to the manufacturer’s manual.

First strand synthesis was carried out using a random primer. PCR was performed using 5 pairs of primers corresponding to the fragments illustrated in Fig. 2B. For fragment a, icl_S (5′-AACCTCTCGGGCCACACGTA-3′) and crt_AS2 (5′-GCTCCTTGAACTCTTGACATGGAGT-3′); b, crt_S (5′-ACCAGCGAATAATTTCAGCGCG-3′) and mhm_AS1 (5′-GCAGCCTCTCCTGTAGCTCAGGC-3′); c, mhm_S (5′-GGCAAGCAGCTCTGAGCTCAGG-3′); d, icl_S and mhm_AS2 (5′-GGCAAGCGCCATCTCCTGAGCTCAG-3′); e, crt_S and adh_AS2 (5′-AGGACTCAGGGCGCGTCTGAGCTCA-3′). RT-PCR products were analyzed on 1.0% agarose gel. For the negative control experiment, water was added instead of RT in the reaction and the product was used as a template for PCR. In the negative control experiment, no band was visible even after 40 cycles of PCR.
ICL activity assay

ICL activity was assayed spectrophotometrically at 324 nm using the total protein, according to the rate of formation of glyoxylate phenylhydrazone in the presence of isocitrate and phenylhydrazine at room temperature as described previously (31, 32). One unit of enzyme activity corresponds to the production of 1 µmol of glyoxylate phenylhydrazone per minute under assay conditions.

Promoter activity assay

Promoter activity was measured by monitoring proline iminopeptidase (PIP) activity as the reporter, as described previously (19). Various lengths of the upstream region of iclRe were amplified using Pfu Turbo DNA polymerase (Stratagene, La Jolla, CA). First, the PCR fragment that was amplified by using the primers icl-303 (5′-CGCTGTACAGCGAACTGGCCGGAATTTGCAAGTG-3′; BsrGI site is underlined) and icl-1 (5′-CATGCCCATTGCCCAAGACTCCATCTCTTCTTGATCTGC-3′; NcoI site is underlined) was inserted into pHN409 (20) digested with BsrGI and NcoI, yielding p303-QC1-PIP. For the deletion series, 8 lengths of the upstream region of iclRe were amplified using 8 pairs of primers as follows: for -202 bp, icl-202 (5′-AATGTACATACCAGCGGTGTAGGA-3′) and pip-AS (5′-GGTGACTAGTTATTATATGATGA-3′); -192 bp, icl-192 (5′-AATGTACATCCGATCCGAGAT-3′) and pip-AS; -182 bp, icl-182 (5′-AATGTACATCCGATCCGAGAT-3′) and pip-AS; -172 bp, icl-172 (5′-AATGTACATCCGATCCGAGAT-3′) and pip-AS;
(5’-AATGTACAAGCAAGTGTTGAA-3’) and pip-AS; -152 bp, icl-152
(5’-AATGTACATAGCAAGATTGGCAT-3’) and pip-AS; -102 bp, icl-102
(5’-AATGTACAATTTCGGTAAAGTACA-3’) and pip-AS; -75 bp, icl-75
(5’-AATGTACATGGCAAGTATGTGAAG-3’) and pip-AS; and -52 bp, icl-52
(5’-AATGTACACACGTACTGCTCACAA-3’) and pip-AS. BsrGI and SpeI sites are
underlined and italicized, respectively. Each PCR product was inserted into
p303-QC1-PIP digested with BsrGI and SpeI, yielding p202-QC1-PIP, p192-QC1-PIP,
p182-QC1-PIP, p172-QC1-PIP, p152-QC1-PIP, p102-QC1-PIP, p75-QC1-PIP, and
p52-QC1-PIP, respectively. PCR was performed with Pfu turbo DNA polymerase. Cells
harboring these plasmids were cultured according to the method used for the
preparation of total protein, and total protein that was obtained from 20 mL culture was
subjected to PIP activity analysis.

Isolation of proteins that were bound to the upstream region of iclRe

The upstream region of iclRe was amplified using a sense primer, icl-201
(5’-ACCAGCGTGTAGGAATCTTCACAG-3’), and a biotin-labeled antisense primer,
icl-1+B (5’-CAAGACTCCATCTTTGATCTGCT-3’). The biotin-labeled DNA
fragment (50 pmol) was mixed with 200 µL of streptavidin-coated magnet beads
(Invitrogen) containing 30 mg total protein from R. erythropolis PR4, which was
prepared in the presence of 5 mM EDTA and concentrated with Amicon Ultra-10,000
NMWL (Millipore, Bedford, MA). The mixture was incubated for 30 min at room
temperature. Then, the magnet beads were washed with TE buffer 4 times and were
boiled in loading buffer containing SDS, followed by SDS-PAGE analysis. Then, the protein band was excised and subjected to LC-MS/MS analysis as previously described.

Pull-down analysis of RamB_H by using the upstream region of icl_H

For the pull-down analysis of RamB_H, 1.5 mg total protein, which was obtained from cells expressing recombinant RamB_H, and 25 pmol biotin-labeled DNA fragments were used. Expression of recombinant RamB_H was performed as follows: first, the PCR fragment was amplified using the primers DBP-Nterm (5ʹ- GGAATTC CATATG TCGAAAACCTTTGTCGGTGTCC-3ʹ; NdeI site is underlined) and DBP-Cterm (5ʹ- CGGGATCTCAGCGAAATCACGTAAGGCGAAATC-3ʹ; HindIII site is underlined), and was inserted into pTip-QC2 (20) digested with NdeI and HindIII, yielding pTip-QC2-DBP. Expression of RamB_H was performed using *R. erythropolis* JCM3201 harboring pTip-QC2-DBP in the presence of 0.5 µg/µL thiostrepton as an inducer. Various lengths of the upstream region of icl_H were amplified using the following primers corresponding to the fragments illustrated in Fig. 4B. For fragment e, icl-201; d, icl-151 (5ʹ-AGCGAAGATTGCGATTAGCAACAGG-3ʹ); c, icl-101 (5ʹ- TTCTCGGTAAGTACACAAGAAGGGC-3ʹ); b, icl-76 (5ʹ-CTGGCAAGTTGAGTAGTACGCA-3ʹ); a, icl-61 (5ʹ-AGTAGTACGCACGTACTGCTCACA-3ʹ). Each primer was used in combination with icl-1+B. For fragments f and g, p303(61-76KO)-QC1-PIP, which has a gap between the -76 and -61 bp region of p303-QC1-PIP, was used as template. Then,
PCR was performed using the following primers: for f, icl-127
(5′-GTAGACGGCACTTTTTCGATGTGCC-3′); g, icl-142
(5′-TGGCATTAGCAACAGGTAGACGGCA-3′). Each primer was used in
combination with icl-1+B. p303(61-76KO)-QC1-PIP was constructed by inverse PCR
with the primers 61-76KO_S (5′-TAGTACGCACGTACTGCTCAACAACAGGCC-3′)
and 61-76KO_AS (5′-GGCCCTTTCTTGTGACTTACCAGAATGG-3′). PCR was
performed with Pfu turbo DNA polymerase.

Construction of a ramB_{Re} knockout mutant

To construct an R. erythropolis PR4 ramB_{Re} knockout mutant, a partial region of
ramB_{Re}, which was amplified using the primers DBPKO-S (5′-
GGGTACCAGACGCCTCGA-3′; KpnI site is underlined) and
DBPKO-AS (5′-GCTCTAGACGGATATGAGAACGTCTCG-3′; XbaI site is
underlined), was subcloned in pHN267 (20). The vector containing the partial region of
ramB_{Re} was introduced into wild-type R. erythropolis PR4 by electroporation. One
hundred transformants were subjected to colony PCR, and 2 of them were confirmed to
harbor the gene disruption intended.

Construction of expression vectors, and cloning of pip and vdh (vitamin D₃ hydroxylase)

The 303-bp (P_{icl}), 102-bp (P_{epi}, constitutive promoter region of icl_{Re}) upstream region
of icl_{jc} were amplified using specific primers, as described previously. These DNA fragments were inserted into pNit-QC1, pNit-QC2, pNit-QT1, pNit-QT2, pNit-RC1, pNit-RC2, pNit-RT1, pNit-RT2 (20) digested with BsrGI and NcoI, yielding 16 types novel expression vectors, pIcl (or pCpi)-QC1, pIcl (or pCpi)-QC2, pIcl (or pCpi)-QT1, pIcl (or pCpi)-QT2, pIcl (or pCpi)-RC1, pIcl (or pCpi)-RC2, pIcl (or pCpi)-RT1, pIcl (or pCpi)-RT2, respectively (Fig. S1-A).

The vdh fragment was isolated by pET29-VDH (26) digested NdeI and XhoI, and was cloned into NdeI/XhoI sites of pIcl-QC2 or pCpi-QC2, yielding pIcl-QC2-VDH and pCpi-QC2-VDH, respectively. Those vectors were transformed into $R. \text{erythropolis}$ JCM 3201 wild-type cells by electroporation as described previously (23).

Results

Protein expression changes in the presence of organic solvents

To select which organic solvent can be a candidate as an inducer of protein expression, we used 11 different organic solvents as described in Materials and Methods. As host cells, we randomly selected 4 strains of $R. \text{erythropolis}$ from our laboratory collections. $R. \text{erythropolis}$ NI86/21, JCM6824, JCM3201, and PR4 were grown to a stationary phase and a part of the culture was added to fresh media containing either 1% or 5% of the above-mentioned organic solvents. Although all 4 strains were tolerant to most of these solvents even at 5% concentration, none of the strains grew in the
presence of 5% 1-butanol (data not shown).

Total proteins from cells grown either in the presence or absence of organic solvents were separated using SDS-PAGE. While the protein band patterns were not affected by the organic solvents other than methanol, the amount of the ~46-kDa band was increased by methanol in all strains examined (Fig. 1A and data not shown). The amount of proteins increased was highest in the strain PR4. The induction of ~46-kDa proteins reached almost 80% of its maximum level within 6 h, and it gradually increased until 24 h after the addition of methanol (Fig. 1B). The ~46-kDa band was also induced in the presence of 1% methanol (data not shown).

Identification of 46-kDa proteins induced in the presence of methanol and gene cloning

Since the ~46-kDa band was close to other bands on the acrylamide gel, we performed further separation. Briefly, total proteins that were obtained from the cells grown either in the presence or absence of methanol were subjected to size exclusion column chromatography, and the fractions that contained proteins of around 46 kDa were pooled and separated by 2-DE. By comparing the 2-DE spot patterns between those 2 samples, we found a spot that was observed only in the 2-DE sample obtained from cells grown in the presence of methanol (Fig. 1C). The spot was excised from the acrylamide gel followed by trypsin digestion and was subjected to MS analysis. Three amino acid sequences were obtained (VLIPTQQHIR, TDAEAATLITSDVDER, and LASDVADVPSVIAR) and were similar to ICL of Rhodococcus equi, Rhodococcus fascians, and Corynebacterium efficiens, and elongation factor Tu (EF-Tu) of...
Mycobacterium tuberculosis and Lactobacillus sakei, respectively. Since the molecular weight of EF-Tu should be smaller than that estimated by the 2-DE, it seemed to be a contaminated protein.

To identify the gene encoding for ICL$_{Re}$, we performed inverse PCR by using degenerate primers as described in Materials and Methods. By inverse PCR, we obtained 2 different DNA fragments from genome fragments that were digested with either NcoI or BamHI (Fig. 2A). These fragments covered an approximately 11-kbp DNA sequence including icl_{Re}, corresponding to R. erythropolis PR4 chromosome 1710445-1721421, and gene bank accession number is NC_012490. DNA sequencing identified 8 open reading frames (ORFs), and 4 consecutive ORFs were found in the same direction. These 4 ORFs started with icl_{Re}, followed by 3-hydroxyacyl-CoA dehydrogenase (hbd), 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (mhm), and alcohol dehydrogenase (adh). Genome information of R. erythropolis PR4 is currently available, and the accession numbers for these genes are as follows: icl_{Re}, RER_15740; hbd, RER_15750; mhm, RER_15760, and adh, RER_15770. To investigate if these 4 ORFs are polycistronically transcribed, we performed RT-PCR analysis with specific primers that were designed to amplify DNA fragments containing more than 2 consecutive ORFs (Fig. 2B). We detected RT-PCR products when using 5 different primer sets as shown in Fig. 2B, although DNA fragments containing all of the 4 ORFs were not amplified, probably because RT reaction is difficult for long mRNAs.

Promoter activity assay with the 5' upstream region of icl_{Re}
The promoter activity of the upstream region of \textit{icl}\textsubscript{Re} was analyzed using \textit{pip} as a reporter gene. Different lengths of the upstream region of \textit{icl}\textsubscript{Re} were connected to \textit{pip}, and the protein amount and enzymatic activity of PIP were monitored before and after the addition of methanol (Fig. 3A). When the 303-bp upstream region of \textit{icl}\textsubscript{Re} was used, the protein amount and enzymatic activity were both induced by methanol in a time-dependent manner. The induction profile of PIP was similar to that of ICL\textsubscript{Re}.

To find the minimal promoter region, we constructed different sizes of the upstream region of \textit{icl}\textsubscript{Re} connected to \textit{pip} (Fig. 3B). A similar response was observed for the 303- and 202-bp upstream regions of \textit{icl}\textsubscript{Re}, and PIP activity was induced in a time-dependent manner. Shortening the length of the upstream region decreased the inducibility and expression level, except for the 2 constructs containing the -152-bp and -102-bp upstream regions. In these cases, the expression levels were high even in the absence of methanol. The expression level of the -102-bp upstream region was 1.8 times higher than that observed for the methanol-inducible promoter.

\textit{Isolation of proteins that were bound to the putative promoter region of \textit{icl}\textsubscript{Re}}

To identify regulatory factors for \textit{icl}\textsubscript{Re} expression, pull-down analysis with the biotin-labeled upstream region of \textit{icl}\textsubscript{Re} was performed as described in Materials and Methods. Proteins that were bound to the biotin-labeled DNA fragments were collected using streptavidin-coated magnet beads and were analyzed by SDS-PAGE (data not shown), which detected 2 major bands (~53 and ~65 kDa). Since the ~65-kDa band was also detected in the negative control experiment in which the total protein was incubated with only streptavidin beads, we focused on only the ~53-kDa protein for the further
To identify the ~53-kDa protein, LC-MS/MS analysis was performed. A database search matched peptide sequences that were deduced from the MS analysis to some different protein sequences, including the RamB homologue from *Rhodococcus jostii* RHA1 and *Mycobacterium smegmatis*, and acyl-coenzyme A carboxylase from *Corynebacterium diphtheriae*. We chose only RamB_{Re} for the further analysis, because the other proteins were not putative transcriptional regulators. RamB from *Corynebacterium glutamicum* (RamB_{Cg}) is a transcriptional regulator and negatively controls the expression of some genes, including *icl* (33).

In the case of *C. glutamicum*, the 13-bp binding motif for RamB_{Cg} (5′-AA/GAACTTTGCAAA-3′) is identified in the upstream region of *icl_{Cg}*. However, homologous sequence was not found in the upstream region of *icl_{Re}*. Therefore, we confirmed the binding ability of RamB_{Re} to the upstream region of *icl_{Re}* by pull-down experiments; the biotin-labeled upstream region of *icl_{Re}* was mixed with the total proteins obtained from *R. erythropolis* PR4 cells expressing recombinant RamB_{Re} (Fig. 4C). By the experiments, at least 2 possible binding sites were found: one is located between -61 and -76 bp (5′-TGGCAAGTATGTGAAG-3′) and the other is located between -127 and -142 bp (5′-TGGCATTAGCAACAGG-3′) (Fig. 4A).

Effect of ramB_{Re} disruption on R. erythropolis PR4

The above pull-down experiments suggested that *ramB_{Re}* was involved in the regulation of *icl_{Re}* expression. To investigate the role of RamB_{Re} in *icl_{Re}* expression, we analyzed the ICL_{Re} activity of wild-type and *ramB_{Re}* knockout mutant in the presence of
various carbon sources (Table 1). Gene knockout was done by a single crossover homologous recombination. Since random recombination of exogenous DNA fragments often occurs in *R. erythropolis*, we checked the candidate clones in the gene arrangement around *ramB*_{Re} by using PCR, and obtained a knockout mutant (data not shown).

In *C. glutamicum* and *M. tuberculosis*, it has been reported that the expression of *icl* is negatively regulated by RamB and is dependent on the carbon source availability in the culture media (33-37). In wild-type *R. erythropolis* PR4, ICL_{Re} activity was induced in the presence of methanol and acetate, while these inductions were suppressed by the addition of glucose. In contrast, in the knockout mutant, we did not observe a significant difference among them.

Expression vector construction by using the promoter from the 5′ upstream region of *icl*_{Re}

Since the activity of the 303-bp upstream region of *icl*_{Re} was methanol inducible and that of the 102-bp upstream region was constitutively very high, we believe they could be used as a methanol-inducible and strong constitutive promoter for recombinant protein expression, respectively. We have recently cloned antibiotic resistance genes, 2 different types of replication origins, and constitutive or inducible promoters from the genus *Rhodococcus* (19, 20). By using these elements, we have constructed a wide variety of expression vectors. Here, we combined these elements with the promoter region of *icl*_{Re}, and constructed constitutive or methanol-inducible expression vectors (representative constructs are shown in Fig. 5A). One of the promoters was P_{icl}, which
includes the 303-bp upstream region of icl\textsubscript{Re}, and another one was P\textsubscript{cpi} (constitutive promoter region of icl\textsubscript{Re}), which includes the 102-bp upstream region of icl\textsubscript{Re}. By combining 2 types of selection markers, replication origins, and multiple-cloning sites as described previously (20), we constructed 16 types of vectors (Fig. S1). In order to test the expression ability of these expression vectors, PIP and VDH were expressed as model cases. When P\textsubscript{icl} was used for the expression, protein expression was inducible depending on the presence of methanol, and when P\textsubscript{cpi} was used, constitutive high expression was observed in both cases of PIP and VDH (Fig. 5B). As shown in Figure 5C, the expression level of P\textsubscript{cpi} was quite high and its activity exhibited approximately 3- and 2-fold higher than P\textsubscript{icl} and P\textsubscript{tip}, respectively.

Discussion

All of the \textit{R. erythropolis} strains used in this study exhibited tolerance to various kinds of organic solvents at certain concentrations, and all strains tested grew in the presence of 5% methanol. By analyzing cell responses to organic solvents through SDS-PAGE, we found a protein that was induced in the presence of methanol. The protein was identified as ICL\textsubscript{Re} by LC-MS/MS analysis, and its methanol-inducible regulation was revealed to depend on the at least 200-bp upstream region of icl\textsubscript{Re}. We also found \textit{ramB\textsubscript{Re}} as one of the regulatory factors of icl\textsubscript{Re} expression. RT-PCR data suggested that icl\textsubscript{Re} would be cotranscribed with 3 other neighboring genes. Thus, it would be reasonable to think that the other 3 proteins would also be induced in the presence of methanol. However, in this study, only ICL\textsubscript{Re} was found to be induced in the presence of methanol by using acrylamide gels and 2-DE. This may be
due to the differences in protein turnover rate among these proteins or the differences in translation rate of mRNA even in a single cistron.

ICL is a key enzyme in the glyoxylate cycle and is essential for the shunt pathway of the TCA cycle. ICL is induced in the presence of acetate in Corynebacterium and Mycobacterium (35, 38, 39). In R. erythropolis PR4, ICL\textsubscript{Re} was induced by the addition of sodium acetate, suggesting a similar regulation of icl\textsubscript{Re} expression as that of Corynebacterium or Mycobacterium. Also, ramB\textsubscript{Re} knockout experiment supports the idea that RamB\textsubscript{Re} functions as a suppressor of icl\textsubscript{Re}.

In the analysis of the minimal promoter of icl\textsubscript{Re}, reporter expression was gradually decreased in both of the methanol-inducibility and the amount of protein expression as the upstream region used was shortened, except for constructs containing the -152 and -102 bp upstream regions. This would suggest that there are at least 2 different regulation mechanisms: one involves positive regulation, the function of which depends on the length of the upstream region, and the other involves negative regulation, the function of which depends on the region between -152 and -102 bp. The expression would be regulated not only by RamB\textsubscript{Re}, as described below, but also by another factor that would regulate the expression by interacting with the upstream region of icl\textsubscript{Re} between -152 and -102 bp. The details of the regulation mechanism(s) of icl\textsubscript{Re} by RamB\textsubscript{Re} in R. erythropolis remain to be elucidated.

By using various lengths of the biotin-labeled upstream region of icl\textsubscript{Re}, we identified 2 possible binding sites of RamB\textsubscript{Re}. However, we could not find any sequence similarity between these 2 sites, and neither of these sequences contained the core motif of C. glutamicum RamB binding sites, 5'-TTTGCAA-3' (36). As shown in Fig. 4, the amount of RamB\textsubscript{Re} binding to the upstream region of icl\textsubscript{Re} was apparently different
among the 101-, 151-, and 201-bp upstream regions. The amount of binding protein seems higher for the longer regions, suggesting there would be at least 3 binding sites, which would be located between -61 and -101 bp, -101 and -151 bp, and -151 and-201 bp, respectively. Although we did not obtain experimental data, we found a sequence similar to that between -142 and -127 bp in the region between -101 and -151 bp (Fig. 4D). This sequence was located between -179 and -164 bp (5′-CAGACCTAGCAAAGTG-3′). Also, these 2 sites contain 5′-TTAGCAA-3′, which is similar to the core-binding motif of RamB$_{Cg}$, suggesting a possibility of RamB$_{Re}$ binding to this region. RamB$_{Re}$ has 2 functional domains, the helix turn helix (HTH) motif and transcriptional regulation domains (Fig. S2). Since the HTH motif, which is important for recognizing the target binding sequence, was not highly conserved among related genera, the relation between the HTH motif and RamB binding sequence remains to be elucidated. Also, the genome structure around icl is highly diverse among related genera (Fig. S3). This diversity would be related to the regulation difference of icl among related genera.

The response to solvent stress has not been well understood, although $R. erythropolis$ is often said to be tolerant to organic solvents. The general mechanism of solvent tolerance has been reported to include rigidification of the cell membrane, change in the membrane’s protein content or composition, active export of solvent, adaptation of energetic status, changes in cell wall and outer membrane composition, modification of cell surface properties, morphological changes, and metabolism or transformation of the solvent (11). In the case of $R. erythropolis$ PR4 methanol tolerance, assimilation of methanol would be related to the mechanism because the shunt pathway of the TCA cycle, which is also needed for C1 carbon assimilation,
would be activated in the presence of methanol. To investigate this possibility, we performed 2 preliminary experiments: one was HPLC measurement of the amount of methanol before and after the incubation of *R. erythropolis* PR4, and the other was observation of growth of *R. erythropolis* PR4 in minimal media containing methanol as a sole carbon and energy source. However, neither of these experiments supported the possibility (data not shown). These data suggest that *icl* regulation by methanol would be different from what is done by acetate through glyoxylate cycle. This would be supported by the difference of *icl* response to acetate or methanol in the presence of glucose (Table1).

Methanol-inducible promoters have been identified from methanol-assimilating bacteria such as *Methylobacterium extorquens* and *Candida boidinii* (40-42). However, such promoters were never applied to create expression vectors. Although functional analysis of *icl* induction has not been completed, the novel vectors described here would be useful for bioreactions.

Acknowledgments

We thank all the members of our laboratory for their help and discussion. The genome information of *R. erythropolis* PR4 was kindly provided by NITE. This work was supported in part by the Project on Development of Technology for High-efficiency Conversion of Biomass and Other Energy by the New Energy and Industrial Technology Development Organization (NEDO).
References

25. **Sallam, K. I., Tamura, N., Imoto, N., and Tamura, T.:** New vector system for random, single-step integration of multiple copies of DNA into the *Rhodococcus*
26. Fujii, Y., Kabumoto, H., Nishimura, K., Fujii, T., Yanai, S., Takeda, K.,
 Tamura, N., Arisawa, A., and Tamura, T.: Purification, characterization, and
 directed evolution study of a vitamin D₃ hydroxylase from Pseudonocardia
27. Imoto, N., Nishioka, T., and Tamura, T.: Permeabilization induced by lipid
 II-targeting lantibiotic nisin and its effect on the bioconversion of vitamin D₃ to
28. Rosenfeld, J., Capdevielle, J., Guillemot, J. C., and Ferrara, P.: In-gel
 digestion of proteins for internal sequence analysis after one-or two-dimensional
 “In-gel” digestion procedure for the micropreparation of internal protein fragments
30. Sun, N., Tamura, N., Tamura, T., Knispel, R. W., Hrabe, T., Kofler, C.,
 Nickell, S., and Nagy, I.: Size distribution of native cytosolic proteins of
 Thermoplasma acidophilum, Proteomics, 9, 3783-3786 (2009).
 in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax
 lyase activity is required for virulence of the intracellular pathogen

Figure legends

Fig. 1. SDS-PAGE and 2-DE analyses of the total protein of *Rhodococcus erythropolis* PR4 incubated either in the presence or absence of methanol. (A) Total proteins were extracted from PR4 cells grown for 24 h either in the presence or absence of 5% methanol, and 15 µg protein was separated on an acrylamide gel. The arrowhead indicates proteins induced by the addition of 5% methanol. Lanes – and +, total protein obtained from cells grown in the absence and presence of 5% methanol, respectively. (B) A time course analysis of the ~46-kDa protein was performed using 15% acrylamide gel. Fifteen micrograms of total protein was subjected to SDS-PAGE analysis. The arrowhead indicates proteins that were induced by the addition of 5% methanol. Lane numbers indicate the incubation time after the addition of 5% methanol. (C) 2-DE analysis of the total proteins. The arrow indicates proteins that were induced by 5% methanol.

Fig. 2. A 11-kbp *R. erythropolis* PR4 DNA fragment including a probable *icl* operon. (A) Schematic drawing made using the sequence analysis data obtained by inverse PCR. The recognition sites of restriction enzymes used for the inverse PCR are indicated above the drawing. The direction of the open arrow indicates the direction of each ORF. *ramB*, transcriptional regulator of acetate metabolism; *aad*, acetamidase; *prp*, putative regulatory protein; *icl*, isocitrate lyase; *hbd*, 3-hydroxyacyl-CoA dehydrogenase; *mhm*, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase; *adh*, alcohol dehydrogenase. The accession numbers for these genes are as follows: *ramB*, RER_15700; *aad*, RER_15710; *prp*, RER_15720. The white arrow indicates...
hypothetical protein; the gray arrows indicate 4 ORFs of probable polycistron. (B)

RT-PCR was performed using 1 µg of total RNA as a starting material, and the PCR product was subjected to electrophoresis using 1% agarose gel (left). Lanes “a” to “e” correspond to the gene fragment that is indicated on the right side of the panel.

Fig. 3. Promoter activity analysis by using deletion series of the upstream region of icl_Re and time course analysis. (A) Promoter activity analysis of the 303-bp upstream region of icl_Re. SDS-PAGE was performed using 15 µg of total protein from PR4 cells expressing PIP. The arrowhead indicates PIP. The specific activity of PIP was colorimetrically measured using proline-7-amino-4-methylcoumarin as a substrate. (B) PIP activity in R. erythropolis PR4 cells carrying plasmids with various deletions of the upstream region of icl_Re were measured. The cells were incubated in the presence of 5% methanol for 0, 2, and 8 h, and subjected to PIP activity assay.

Fig. 4. Cis-element analysis of the icl_Re promoter region. (A) Schematic drawing of the icl promoter region containing putative cis elements. The cis elements that were identified by the binding assays are indicated by 2 black boxes, while a probable cis element that was deduced from the sequence similarity is indicated by an open box. Nucleotide positions were calculated from the first base of translation initiation codon (ATG, +1). (B) DNA fragments used for the pull-down analysis are schematically illustrated. (C) The protein that was bound to the DNA fragment was analyzed on an acrylamide gel. The lane names correspond to the construct names. The arrowhead indicates RamB_Re. (D) Alignment of the sequence of RamB_Re binding sites in the upstream of icl_Re -61 to -76 bp, -127 to -142 bp, and -164 to -179 bp. Boxed sequences
(black) represent the identities of at least 2 members of the group.

Fig. 5. Expression vector construction and application by using the promoter from the upstream region of icl_{Re}. (A) Schematic map of pIcl-QC1 and pCpi-QC1. cm’, chloramphenicol-resistant gene; amp’, ampicillin-resistant gene; Col/E1, replication origin for E. coli; T_{thcA}, thcA transcriptional terminator; MCS, multiple-cloning site; P_{icl}, 303-bp upstream region of icl_{Re} (methanol-inducible promoter); P_{cpi}, 102-bp upstream region of icl_{Re} (constitutive strong promoter); repAB, essential region for stable maintenance of the plasmid in R. erythropolis. (B) (Left) Expression profiles of PIP or VDH in R. erythropolis JCM3201 containing the pIcl-QC1-PIP or pIcl-QC2-VDH, respectively. Total proteins (15 µg) were analyzed by SDS-PAGE. Black and gray arrowheads indicate PIP and VDH, respectively. Lane – and +, total protein obtained from cells grown in the absence and presence of 5% methanol, respectively. (Right) Expression profiles of PIP or VDH in R. erythropolis JCM3201 containing the pCpi-QC1-PIP or pCpi-QC2-VDH, respectively. Total proteins (15 µg) were analyzed by SDS-PAGE. Black and gray arrowheads indicate PIP and VDH, respectively. NC, negative control. (C) Activity of PIP in R. erythropolis JCM3201 containing the pIcl-QC1-PIP, pHN380 (20), or pCpi-QC1-PIP. The transformant was incubated in the presence of 5% methanol for 24 h or 0.5 µg/µL thioestrepton for 20 h, and subjected to PIP activity assay. NC, negative control, in which the total protein from R. erythropolis JCM3201 containing an empty vector was used.
Fig. 1

Fig. 2
Fig. 3

A

![Graph of PIP activity vs. time (h)]

B

![Bar graph showing PIP activity over time for different samples](p303-QC1-PIP, p202-QC1-PIP, p192-QC1-PIP, p182-QC1-PIP, p172-QC1-PIP, p152-QC1-PIP, p102-QC1-PIP, p75-QC1-PIP, p52-QC1-PIP)

Fig. 4

A

CAGACTTAGCAAGTG

![Regions of DNA with base pairs](TGGCATTAGCAAAGG, TGGCAATAGTATGAAG)

B

![Regions of DNA with base pairs](TGGCATTAGCAACAGG, TGGCAAGTATGTGAAG)

C

(kDa) N.C. a b c d e f g 45.0

D

-76 TGGCAATAGTATGTGAAG

-142 TGGCATTAGCAAAGG

-179 CAGACTTAGCAAGTG

-164
Fig. 5

A

repB
repA
repA
repB
cmf
cmf

plcl-QC1
(6293 bp)

MCS
T_hca
P

ColE1
amp
amp

pCpi-QC1
(6092 bp)

MCS
T_hca
P

ColE1
amp
amp

B

\[
\begin{array}{c|c|c|c}
\text{NC} & \text{P}_{\text{icl}}\text{-PIP} & \text{P}_{\text{icl}}\text{-VDH} & \text{P}_{\text{cpi}}\text{-PIP} & \text{P}_{\text{cpi}}\text{-VDH} \\
\hline
\text{NC} & + & + & + & + \\
\end{array}
\]

(kDa)

97.4
66.2
45.0
31.0
21.5
14.4

C

PIP activity (µmol mg⁻¹ min⁻¹)

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

NC
P_{icl}
P_{sp}
P_{cpi}
<table>
<thead>
<tr>
<th>Growth supplements</th>
<th>R. erythropolis PR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
</tr>
<tr>
<td>No supplement</td>
<td>8.4 ± 0.7</td>
</tr>
<tr>
<td>1% Methanol</td>
<td>21.4 ± 3.8</td>
</tr>
<tr>
<td>1% Sodium acetate</td>
<td>22.4 ± 2.0</td>
</tr>
<tr>
<td>1% Glycerol</td>
<td>6.5 ± 0.5</td>
</tr>
<tr>
<td>1% Glucose</td>
<td>5.4 ± 0.8</td>
</tr>
<tr>
<td>1% Methanol and 1% glucose</td>
<td>6.4 ± 0.8</td>
</tr>
<tr>
<td>1% Sodium acetate and 1% glucose</td>
<td>14.2 ± 2.4</td>
</tr>
<tr>
<td>1% Glycerol and 1% glucose</td>
<td>5.7 ± 0.8</td>
</tr>
</tbody>
</table>

Activities are indicated in U/mg protein: mean ± standard deviation. ND, not determined (n = 3).
Fig. S1. Expression vector construction and sequence of P_{icl}, P_{cpi}, MCS type1 and type2, and T_{thcA}. (A) Schematic map of expression vectors. Sixteen expression vectors were constructed, pIcl-QC1, pIcl-QC2, pIcl-QT1, pIcl-QT2, pIcl-RC1, pIcl-RC2, pIcl-RT1, pIcl-RT2, pCpi-QC1, pCpi-QC2, pCpi-QT1, pCpi-QT2, pCpi-RC1, pCpi-RC2, pCpi-RT1, and pCpi-RT2, which indicates Q, repA and B; R, rep; C, chloramphenicol-resistant; T, tetracycline-resistant; 1, MCS type1; 2, MCS type2, respectively. cm', chloramphenicol-resistant gene; tet', tetracycline-resistant gene (each pIcl and pCpi vector has either cm' or tet'); amp', ampicillin-resistant gene; ColE1, replication origin for E. coli; T_{thcA}, thcA transcriptional terminator; MCS, multiple-cloning site (each pIcl and pCpi vector has either MCS type1 or MCS type2); P_{icl}, 303-bp upstream region of icl_{Re}; P_{cpi}, 102-bp upstream region of icl_{Re}; repAB and rep, essential region for stable maintenance of the plasmid in R. erythropolis. (B) Sequences of P_{icl}, P_{cpi}, MCS, and T_{thcA}. All of the restriction enzyme sites indicated in the MCS, except for SnaBI in the R type vectors are unique. Gray arrows indicate the positions of the perfect IR sequences in the thcA terminator. Note that neither conserved Shine-Dalgarno sequence nor -35 and -10 promoter elements were found in the P_{icl}, and P_{cpi}.

Fig. S2. Schematic drawing of the primary structure of RamB_{Re}, and alignment of its HTH domains. Black and gray boxes indicate the HTH and transcriptional regulation domains, respectively. Identical residues are shaded black, and similar residues are shaded gray. Abbreviations: aa, amino acids; RE, R. erythropolis PR4; MT, M. tuberculosis; CG, C. glutamicum. The HTH domain region is underlined.
Fig. S3. Comparison of iclRC organizations in *R. erythropolis* PR4 and other bacteria.

The gene names are as follows: *ramB*, transcriptional regulator involved in acetate metabolism; *aad*, acetamidase; *prp*, putative regulatory protein; *icl*, isocitrate lyase; *hbd*, 3-hydroxyacyl-CoA dehydrogenase; *mhm*, 5-methyltetrahydropteroylglutamate-homocysteine S-methyltransferase; *adh*, alcohol dehydrogenase; *abc*, branched-chain amino acid ABC transporter substrate-binding protein; *egc*, endoglycosylceramidase; *ndt*, Na⁺-dependent transporter; *aceB*, malate synthase; *thiX*, protein potentially involved into thiamin biosynthesis; *lcoP*, ectoine betaine transporter; *umaA*, mycolic acid synthase; *dbp*, DNA binding protein. The ORF of white arrows indicate hypothetical protein; the ORF of black arrows indicate *icl* and *icl* homolog; and the ORF of gray arrows indicate *ramB* and *ramB* homolog.
Fig. S1

A

![Diagram of plcl or pCpi vectors (Q type) and plcl or pCpi vectors (R type)]

B

P_{icl}

```
TCT ACG GGC AGG TGG CAA GGC CAC CAT CAC CAT CAC CAT TCT TCA CAA GGA ATT CTA CGT AGC GGC CGC GGA TCC AAG CTT AGA TCT CTC GAG CAT CAC CAT CAC CAT CAC TGA
```

P_{cpi}

```
TCT ACA ATT CTC GGT AAG TAC ACA AGA AGG GCC TGG CAA GTA TGT GAA GTA GTA CGC ACG TAC TGC TCA CAA CAG GCC CCA GCA GAT CAA AGA GAT
```

NH\textsubscript{2}

```
aa 311 to 467
```

COOH

```
transcriptional regulation
```

aa 14 to 40

```
NH\textsubscript{2}
```

HTH

```
helix tern helix DNA binding domain
```

Fig. S2

```
NH\textsubscript{2}  COOH
```

```
transcriptional regulation
```

```
helix tern helix DNA binding domain
```

```
RE  MT  CG
```

```
MSKTVGSRRLRTFGLQASLAKTLGQLEITASLYNLNTTEHVDRPLTVVL
```

```
MSKTVGSRRLRTFGLQASLAKTLGQLEITASLYNLNTTEHVDRPLTVVL
```

```
AGG GCC ACC GTA CCC ACC ACC GGC GCC CTT CCA CCC CGG TGG GTG ACC GCC CCT GCC CTC CCA GCG CTC CTC ACG GGC ACC GCC GCT GTG GTA GCA ATT CTG CCA GCC CAA
```

```
AGG GCC ACC GTA CCC ACC ACC GGC GCC CTT CCA CCC CGG TGG GTG ACC GCC CCT GCC CTC CCA GCG CTC CTC ACG GGC ACC GCC GCT GTG GTA GCA ATT CTG CCA GCC CAA
```
Fig. S3