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1. Introduction and notations

1.1 Definitions and basic facts

Let M,,, denote the space of all m x n complex matrices and M, the algebra of all
square matrices. The Schur product (or Hadamard product) of two matrices 4 = [a;;] and

B = [b;;] in M,,, is defined by the entrywise product multiplication and is denoted by
A o B:

(11) AOB = [a,’jb,’j].

Thus the Schur product is defined for a pair of (not necessarily square) matrices of same
size, which 1s always commutative and it is completely different from the ordinary matrix
product.

Historically, it seems that the first systematic study of algebraic and analytic proper-
ties of Schur product was made by I. Schur. The research on Schur product has been done
on the analogy of known results for the ordinary matrix product.

We denote the transpose of a matrix A = [a;;] by A = [a;;]; and the adjoint of 4
by A* = [aj;] where for a complex number z, Z means the complex conjugate of z. A
matrix A € M, is Hermitian if and only if 4 = A*. An Hermitian matrix A is positive
definite if (AZ|Z) > 0 for all nonzero & € C™ and A is positive semidefinite if (AZ|Z) > 0
for all # € C™ where (:|-) denote the inner product on C*. For two Hermitian matrices
Aand B in M,, A > B (or B < A) means A — B is positive definite matrix, similarly
A > B (or B < A) means A — B is a positive semideﬁnite matrix. For 4 = [a;;] € M, its
trace tr(A) is the sum of its main diagonal entries: tr(4) = ayy + a2 + -+ ap,. A € C
1s called an eigenvalue of a matrix A if there exists a nonzero vector z € C™ such that
Az = Az, and 2 is called an eigenvector of A corresponding to the eigenvalue . It is
known that if 4 is an Hermitian matrix then every eigenvalue of A4 is real number and if
A > 0 then every eigenvalue is nonnegative number. Hence when A4 is Hermitian we write

—

the eigenvalues of A by A(A) = (A1(4), -+, A,(A4)) which are arranged in nonincreasing

order: Ai(A4) > A3(A) > .-+ > A, (A). The spectral radius of a matrix 4 € M, is




given by 7(A) = max{|A| : A is an eigenvalue of A }. Let A be a positive semidefinite
matrix, then there exists a unique positive semidefinite matrix C such that C? = 4 and
C is denoted by C = A'/?. The singular values of a matrix 4 € M,, are defined as the
eigenvalues of |[4| = (A*A)'/?, that is, 8;(4) = A(]4]) (i = 1,---,n). For a vector

Z = *(x1,x2,° " ,X,) € C*, the matrix diag(z) € M, is a diagonal matrix whose i th
diagonal entry is x;. Let || - || be a norm on M,,. || || is called a unitarily invariant norm
if ||A]| = |[UAV]| for every A € M, and all unitaries U,V € M, and || - || is a unitary

similarity invariant norm if ||A|| = ||[UAU*|| for every A € M,, and every unitary U € M,,.

For real number p > 1, we denote the Schatten p-norm by || - ||,:

n 1/p
14, = (Z Sf(A)> (4 € M,).

=1
In particular, || - ||; is called the trace norm:

n

4l =Y si(4),

f=1

|| - |2 1s called the Frobenius norm (or Hilbert-Schmidt norm):

" 1/2 ;| 1/2
|4]l2 = (Z Sf(A)) iy agl ,
et =1
| “ || 1s called the spectral norm (or operator norm):
Az
Alle = 52(4) = sup 121
secn |12l
where || - || is the Euclidean norm on C". || - ||, is an example of unitarily invariant norm.

A nontrivial example of a unitary similarity invariant but not unitarily invariant norm is

the numerical radius w(-) defined by

w(Ad) = sup ——————|<Af|f>l
secn ||Z]]

(A e M,)

with usual inner product (-|).




For a given A € M,,, consider the Schur multiplication operator S4 : M, — M,

given by
SiuX)=A40X (XeM,).
Since Sy4 is a linear map on M, for any norm || - || on M, we can define the norm ||S4||
induced by || - ||
Ao X
(4.9) 1S4]] = sup A
xem. |IX|

In this paper, we shall investigate the induced norms of the Schur multiplication operator
for several norms on M,,.

Historically, in his famous paper [29], I. Schur proved that if 4 and B are positive
semidefinite matrices in M, , then A o B is also positive semidefinite (today usually called

Schur product theorem), that is,
(1.3) A'B >0 ="AcoB>0
and he proved the submultiplicative inequality of Schur product for the spectral norm:

(1.4) 140 Blloo < Al l|Blloo (4, B € M,).

1.2 Examples of Schur product

The Schur product arises naturally from several different points of view. We describe
only two examples involving the Schur product. See [12] and [13] about further details of
examples which arise in an application.

[Example 1]

Let f(#) and g(6) be continuous periodic functions of period 27 and consider their

Fourier series:

2 2
akE/ ¢4 £(6)d(0) and bkE/ é*0g(0)d(8) (k=0,41,42,---).
0 0
Then the convolution
2x
h(6) = 4 f(0 —t)g(0)d(t)




has Fourier series

g, /; o e**h(6)d(6)

that satisfy the identities ¢4 = ay - by, k = 0,%+1,+2,.-. . Then the Toeplitz matrix of
Fourier series of h(0) is the Schur product of the Toeplitz matrices of Fourier series of f(6)
and g(0):

[ci—j] = [ai—j] o [bi—;].

[Example 2]
Let f be a continuously differentiable real-valued function on a real interval (a,b) and

let A, B € M, be given Hermitian matrices with all their eigenvalues in (a,b). Define g(¢)
by
g(t) = f(tA+(1-¢)B) (t€(0,1)).

For every t € (0,1) from the spectral theory there is a unitary matrix U, € M,, such that
tA+ (1 —t)B = U,diag(A;(t))U; where X;(t) are the eigenvalues of t4 + (1 —t)B. Then

we can obtain by calculation
g (t) = U [Ks({M()}) o (U (A - B)UL) U .

Here we write

()) (’\p(t):’\q(t))
et 0 2 5

1.3 Sketch of the contents
The weak majorization relation for the usual matrix product was known by Horn [11],

that 1s,
(1.5) 8(AB) <, §(A4)os(B) (A,Be M,).

Holder-type norm inequalities for the usual product are derived from this relation. In

section 2 we discuss a Schur product version of (1.5), and give Holder-type inequalities for

4




Schur products of the form ||Ao Bl|¢; po < ||All¢y,p1 * | Bllés.p,- Here for unitarily invariant
norm ||A||ls, we define ||4]||s, by || |4] ”;/p. As a corollary, we settle, in a strong form, a
conjecture of Marcus et al. [18] on submultiplicativity of a unitarily invariant norm with
respect to the Schur multiplication.

For A € M, the induced norm ||S4|| of Schur multiplication S, with respect to a
norm || - || on M, is defined by (1.2).

For p > 1, the Schatten p-norm || - ||, is a typical example of unitarily invariant
norm. If we denote the norm of 54 induced by the Schatten norm || - ||, by ||S4ll, then
ISallp = ||Sallq for p,q > 1 such that 1/p+1/¢g =1, and

HSA”2 = minlgpgoo”SAHp'

In section 3 we present some convex property of the function p — [|S4||,.

In section 4, we show that the induced norm of S4 with respect to the numerical
radius norm is at most one if and only if A is factorized by 4 = B*W B, where W is a
contractive matrix and the Euclidean norms of the columns of B are at most one. We give
other equivalent characterizations and derive, as a concequence, Haagerup’s Theorem.

For p > 0, Holbrook [10] defined an operator radius w,(-) by relating with p-contraction
which was introduced by Sz.-Nagy (see [30]).

The set {w,(-)},>0 of operator radii is a one parameter family of unitary similarity
invariant (quasi-)norms, which interpolates the spectral norm, the numerical radius and
the spectral radius. For commutative matrices 4, B € M, with respect to the ordinary

product it has been shown (see [23]) that
w,(AB) < Kp[|Alloo - w,(B)
where

N, { infocs<1{67H2=8)""+(p—1)(p— 87} (1< p < o0),

Kg_p (0<p§1)

Especially, when p = 2, using another tool, we proved

(1.6) w(AB) < 1.16 - ||4]|eo - w(B) (A4,B € M,, AB = BA).

5




It had been a long standing conjecture whether for commuting matrices the constant 1.16

in (1.6) can be replaced by 1, that is,
(1.7) w(AB) < ||Al|lo - w(B) (A,B € M,, AB = BA).

But recently, Miiller [20] and Davidson, Holbrook [7] showed that the conjecture (1.7) is
not true. In section 5, we mention the analogy of (1.7) in the case of the Schur product
with respect to operator radius and the Holder-type inequalities.

The contents of this paper were published in [5],[21] and [22]. Moreover the contents of
[22] was presented at the Inaugural Conference of the International Linear Algebra Society
held, August 12-15, 1989, at Brigham Young University in Provo, Utah, U.S.A. while the
contents of [5] was presented at the Conference ”Directions in Matrix Theory”, held March

20-23, 1990, at Auburn University in Auburn, Alabama, U.S.A..

2. Unitarily invariant norm

2.1 Preliminaries and weak majorization relation for Schur Product
It is known(see [8, p.78]) there is a one-to-one correspondence between the set of
unitarily invariant norms || - || and the set of symmetric gauge functions ¢ on R?. This

correspondence is given by the relation

(2.1) 1Al = ¢(5(A4)) = ¢(*(s1(4), -+, 5n(4))),

where 5(A) = *(s1(4), -+, 3,(A4))is n tuple of the singular values of 4, i.e. the eigenvalues
of (A* A)'/?, arranged in nonincreasing order with multiplicities counted. We denote this
norm by || - ||s. Recall that a nonnegative function ¢ on R% 1s called a symmetric gauge

function if it is subadditive, positive homogeneous, and invariant under every coodinate

permutation:

¢(t(€1a g5k ,én)) e d’(t(ﬁan' " agan))

for every permutation o of order n.




A vector { = ‘(é1,-++,&) in R is said to be weakly majorized by another vector
7= "(m, - ,Mn) (in symbol £ <, 7) if
k

3
(2.2) g <) myy (k=1,--,n),
i |

1=1

where {1) > §[2) > +++ > €n) and 1y > M) > - -+ > ) are the decreasing rearrangements
of the components of { and 17, respectively. If in addition, equality holds in (2.2) for k = n
then {is said to be majorized by 77 (in symbol {-< 7).

We will make frequent use of the fact that a symmetric gauge function ¢ is monotone

with respect to the semiorder induced by weak majorization (see (8, p.72]):

ng 7 1mplies ¢(g) < é(n);

hence by the statement (2.1)
(2.3) s(A) <w 3(B) implies [|A4]l < ||Bll4-

For the function

()\S) =

maxlstn fj if P = ©O,
the corresponding norm is simply denoted by || - ||,. This is in accordance with the norm

|*llco- When we analyze the norm inequalities for the usual (matrix) product, the following

weak majorization relation is a very useful tool:
(2.4) s(AB) <, 8(A)os(B) (A4,Be M,)

between the singular values of the product AB and those of A4 and B. Here £ o 7 denotes
the Schur product, 1.e. the coordinatewise product of vector gand 7. Therefore, to obtain
Schur product version of the norm inequalities, we will start with the following lemma,

which 1s a Schur product version of (2.4).

LEMMA 2.1.

(2.5) §(AoB) <, 5(A)os(B) (4,Be M,)




PROOF: Let us first consider the case A > 0 and B > 0. Put ¢; = s;(A) — 5;,1(A) and
i = 38;(B) — 3;41(B)(¢,j = 1,--+ ,n), with the convention s,41(A4) = 5,,,1(B) = 0. Since
3i(A) and s;(B) are eigenvalues of A and B respectively, there are orthogonal projections

P;,Q;(3,7 =1,2,+++ ,n) such that

rank(P;) =7 and rank(Q;)=j; (¢,7=1,2,---,n)

and p -
A:ZE,'B, BZZ(szj.

1=1 g=1

Since €;,6; > 0(7,7 =1,2,---n) and
AOB = z Eg&j(P,‘ OQJ-),
15 e o |
we have (see [19, p.243])
(2.6) 5(AoB) <y »  :8;5(P;oQ;).
3,31

Now the Schur product theorem (1.3) implies, with I denoting the identity,
P; 0 Q; < P; ol = the diagonal matrix of P;,

and similarly,

P;oQ; < I0Q; = the diagonal matrix of Q.
Then since < between positive semidefinite matrices implies <,, (see [19, p.475]), we have
§(P;0Qj) <w 35(PioI) and 5(P; 0 Q;) <y 5(I 0 Q;).
It is known (see [19, p.228]) that

§(P,ol)<8P)=(1,---,1,0,---,0)

and

i

§(IoQ;)<3Q;)=(1,---,1,0,--+,0).




A conclusion is that, with ¢ A j = min{z, 7},

(2.7) §(P;0Qj) <w (1,---1,0,--+,0) = 5(P;) 0 5(Q;).

Now it follows from (2.6) and (2.7) that

H(AoB) =<, 3. b;i(P)oi(Q;) = i(A) o 5(B).

1,7=1

This proves (2.5) for A, B > 0.
Next let us consider general A,B € M,,. For A € M, let A* = U|A*| be the polar

decomposition of A*. Then

'U!A¢|1/2
0 S ”Atll/ZU:— IAxull/Z]
lA*ll/Z
[U|A*|U* U|A*|
(2.8) =
| |4 |47
|A] A
S A
and similary,
|B| B~
]
B |B*|

Hence the Schur product theorem (1.3), applied to these 2n x 2n matrices, yields

|A|o|B| A*oB*

(2.9)
AoB  |4|o|B"|

2 8

It follows from inequality (2.9) that there is W € M, such that |W||, <1 and
Ao B =(|4"]o|B*|)!/* - W -(|4] o |B|)*/>.

Then according to (2.4) we see

(A0 B) <u 5 ((147[0]B)V/?) 0 5(W)o 7 ((1410|B1)7)
< s(|4%] o |B*])H? 0 3(|4] o | B|)'/?,

g




where for { = *(&1,-++,€n) € R} we use {1/2 - ‘(51/2,--- , ,1,/2). By the arithmetic-
geometric mean inequality, we have

ya . 84| 0 |B*]) + #(]4] 0| B)

§(|A% o |B*|)"/? 0 5(|4] o | B]) > :

Now apply (2.5), already proved for positive semidefinite matrices, to the pairs |4*|, |B*|
and |A|,|B|, and use the relation s{A4) = 5(A4*) and s(B) = s(B*) to get

s(|4%| o |B"]) + s(|4]| o | B])
2

~<w $(A) o s(B).

This completes the proof of the lemma. K

Remark. Bapat and Sunder [6] showed that for positive semidefinite matrices A, B €
M, 5(Ao B) <y, 5(A)o 3 where A is the diagonal entries of B, arranged in decreasing
order. This 1s an improvement of our lemma 2.1 in the case of A, B > 0, but they did not

treat the general case or Holder-type inequalities.

2.2 Holder-type inequalities

THEOREM 2.2. The following conditions for symmetric gauge functions ¢g, ¢, ¢, are mu-
tually equivalent:

(i) o(€0) < $1(€)-da2(7) (£,7€R™).

(i) [lABllg, < [lAllg, - lIBllg; (4, B € M,).

(i) ||Ao Bllgy < [lAllg, - [Bllg: (4, B € My).

Proor: It is easy to see that the Schur product Ao B coincides with usual matrix product
AB if A and B are diagonal, and that for a diagonal matrix A = diag(a;,---,a,) and

symmetric gauge function ¢,

HAH¢ L ¢(t(|a1|, ™ Ian!))‘

These considerations lead to (ii) == (i) and (ili) == (i) immediately. (i) = (ii) and
(i) == (iii) follow respectively from the weak majorization relations (2.4) and (2.5) of

usual product and Schur product, combined with the monotone relation (2.3). R
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Theorem 2.2 admits a natural generalization to an (m + 1)-tuple of symmetric gauge

functions ¢g, ¢1,** , Pm-

Remark. Horn and Johnson [15] showed a result which corresponds to our Theorem
2.2 with ¢g = ¢1 = ¢,. Their proof is also based on the weak majorization relation (2.5)
of Schur product. Their proof of the key lemma 2.1 is quite different from ours, but it
uses a common idea with ours in reducing the problem to the case of a Schur product of

projections.

For each symmetric gauge function ¢, its dual function ¢* 1s defined by

A Z?:I 6117] =
2.10 & = sup ————— R™).

Then ¢* is again a symmetric gauge function and the corresponding norm || - |

4+ becomes

the dual norm of || - || in the sence (see [8, p.130-135])

tr(AB*
|A]lg- = sup (i A (A € M,).
Bem, ||Blls
We define (|| - ||, || - |]1)-norm of S4 by
AoX
154llg1 = sup L gl (4 € M,)
xem. |[1Xlls
Similary, (|| - |l¢, || - ||»)-norm of S4 is defined by
Ao X|,
ISaller = sup 222 (4 a,)

xem, Xt

Since, by definition (2.10),

—

> g <67(E) () (&7ERY),

the following is immediate from Theorem 2.2.

11




COoROLLARY 2.3. For every symmetric gauge function ¢

(2.11) 15allg,r < [IA]

o (A€ M,).

A classical Holder inequality for numerical sequences says that

1/ 1/ 1/t

n n

D(Emyp <& yXmp  (EdeR)

g =1 )=t

whenever 7,5, > 1 and 1/ = 1/s + 1/t. Then it follows from Theorem 2.2 that
(2.12) 1Salle.» < ||A|l, whenever 1/r =1/s 4+ 1/t.

To formulate a generalization of (2.12) in a compact form, let us introduce some notation.

For a symmetric gauge function ¢ and 1 < p < oo, we define || - |4, by
1
lAllsr = IHAP 157 (4 € M),

then ||-||4, 1s a unitarily invariant norm which corresponds to the symmetric gauge function
qﬁ(gp)l/f’. In fact, || -||4,, 1s @ norm, hence qb({p)l/l’ 1s a symmetric gauge function. We have
to show only the convexity property of || - ||4.,. For A, B € M,, and 0 < A < 1 we know by
a result of K. Fan (see [19, p.243])

S(AA+ (1 = A)B) <y A3(A4) + (1 — A)s(B).
Since t? is a non-decreasing convex function of ¢t > 0,
S(AA+ (1= X)B)? <, {As(4)+(1—-X)s(B)}?
< As(A) + (1= A)s(B)*.

Since the symmetric gauge function ¢ is monotone with respect to weak majorization, it

follows that
A4 + (1 - X)BJE , < AllA|G, + (1 =B,

Therefore the unit ball {X : || X||4, < 1} is a convex set, that is, || - ||4, is a norm.

Then ||A||4, 1s a continuous nonincreasing function of p. If we put

[Allg.00 = [[Allo

12




it is in accordence with other || - ||4,c0 1n the sence that
(2.13) 14llg,00 = lim || A[lg,5.
For p,q > 1,||Sall{4,p},{¢,q} 15 defined by

|4 0 X||g,q
2.14) Sallmsndeirs Sip ’
( | I PR XeMn “X Hdnp

(4 € M,),

then we have the following theorem.

THEOREM 2.4. Let ¢ be a symmetric gauge function. If pg,p1,p2 > 1 and 1/pg = 1/p; +
1/p, then

154ll13.551.08.001 < 1 Algp: * (A €84,)

PRrROOF: In view of (2.13), we may assume pg, p1,p2 < co. Then by Theorem 2.2 it suffices

to prove that

$(£P0 o P0)/Po < G(EP1)LPr . g2 )P (€7 € RT)

To this end, let p = p1/po and g = p2/po. Since 1/p+ 1/q = 1 by assumption, we have
Young’s inequality (see [9, p.111])

{n < }-sp & l77" (&,m > 0);
P q
hence
2 o 5 1
(2.15) $(€P° 0 7P°) < ;ﬁ(ﬁ”‘) & Eé(ﬁ“)-

Replacing Eand 7 by tg and (1/t)7 respectively and taking the infimum on the right hand
side of (2.15) for ¢t > 0, we arrive at the inequality

P(EP0 0 7F0) < B(EPrYPo/Pr . G(iP2)Po/Pa (£ FERT). N

Theorem 2.4 admits a natural generalization to an (m+1)-tuple po,p1, - ,pm with

13




COROLLARY 2.5. Suppose that real numbers po,p1, - pm satisfy p; > 1 (i =1,2,--- ,m)
and 1/po =1/p1 + -+ + 1/py. Then for any Ay, -, A, € M,

m
|41 00 Amllgpo < ] 1 4kllg2-
k=1

Proor: We shall prove by induction. We already showed for m=2 in Theorem 2.4. Sup-

pose m > 3 and the assertion is true for m — 1. Define p,,_1 by

l/ﬁm—-l e 1/pm—l + l/pm

Then since

1/p0 Nt 1/p1++1/pm-—2+1/ﬁm—1’

by induction assumption we have

HAl B # Am||¢,Po T HA]- Qe R Am—2 . (Am—l O Am)”¢>,1’o
m—2
o2 { 11 HAkH4>,p,.} NAm-10 Amllésms-
k=1

Again by the assertion for the case of m=2, we have

(2.16)

[Am-1 0 Amll¢pm-1r < 1 Am-1llgpm-r * [[Amllg.pm:

which together with (2.16) completes the proof.

In (2.14) if p = ¢ = 1 then we write ||Sall¢ = ||Sall{¢,p}.{¢,q}- SPecializing Theorem
2.4 to the case pg = 1,p; = o0, and p; = 1 we obtain the following.

COROLLARY 2.6. For every symmetric gauge function ¢,

(2.17) 1Salle < |Alleo (A € M)

If a symmetric gauge function ¢ is normalized as

14




(2.18) 1Alle 2 |4]le (A € My),

with equality for A of rank one. The following is now immediate from (2.17) and (2.18)
which was conjectured by Marcus, Kidman and Sandy [18].

COROLLARY 2.7. If a symmetric gauge function ¢ is normalized, then || -||4 is submulti-

plicative with respect to Schur multiplication:

|40 Blls < [|All¢ - lIBlle (4, B € My).

Our Theorem 2.4 implies that for every symmetric gauge function ¢ the following

inequality holds:
140 Bllg < IAP 7 - 11|BI7]l}/¢ whenever 1/p+1/g=1,

which is an analog of the well-known Holder inequality for numerical sequences:

m m 1/p m 1/q
D Jem) < {Z|€i|p} '{Z|’7i|q}
=1 1= =l

In particular, if we put pp = 1 and p; = p, = 2 we can obtain Cauchy-Schwarz type

inequality: if ¢ is a symmetric gauge function, then
|40 Blj3 <[|4" Al - [|B*Blls.

An inequality of this type is discussed by Horn and Mathias [16].

15




3. Schatten p-norm

3.1 Preliminaries

For A € M,, and p > 1, the Schatten p-norm is defined by

n 1/p
(3.1) 14, = (Z 8?(A)) :

=1
In particular when p = 1,2 and oo, norm || ||, is called the trace norm, the Hilbert-Schmidt
(or Frobenius)norm and the spectral (or operator)norm respectively.

We denote the operator norm of S4 from the Banach space (M,,||-||,) to the Banach
space (Mn, || - |lg) by [|Sallp,q, that is,

Ao X
(3.2) [EXTRER (2

(A e M,),
AEM, ||X”p

and write [|Sall, = |Sally.

Recall a norm || -|| on M, is called unitarily invariantif ||A|| = ||[UAV|| for all 4 € M,
and for all unitaries U,V € M,. For arbitrary p > 1, || - |l 1s an example of a unitarily
invariant norm. It is known (see [8, p.132]) that || - ||; becomes the dual norm of || - ||, for
P,q 2 1 such that 1/p+1/g = 1. The dual map of S4 on the Banach space (M, || - lp) is
given by S— on (M,, || - ||¢); in fact, for any B,C € M,, then

(54(B)|C)

I

tr((Ao B)-C)
tr((Ao tC*) - *B)
(B

I

I

tr ‘(Ao SR

=tx(B- (Ao C)")

(B[AoC)
(B|S%(C)).

Here to show the second equality we note the following known result (cf.[14]):

tr((X oY) -Z) =tx((X 0 'Z)- tY)

16



for any X,Y,Z € M,. It is easy to show ||S4ll, = [|S7llq = ||Salls if p,g > 1 and
1/p+1/g=1.

In this section, we will present some convex property of the mapping [1,00] 3 p

IS4llp for any given 4 € M,,.

3.2 Known results of induced norms for S,
Before we mention the main results in this section, we state the known results about

induced norms of S4. I. Schur [29] showed, as already remarked, that
(3.3) |40 Bl < [|Alleo - [|Bllo (4, B € My,).
Schur’s result is equivalent to the following statement:

(3.4) 154lleo < [|A]co-

We denote the Euclidean norms of the columns of 4, arranged in non-increasing order, by
c1(A) > c2(A) > -+ > ca(A) and the Euclidean norms of the rows of A by »(A) > r,(4) >
-+ > r,(A). For A € M, and a € (0,1), we write ¢;(4,a) = {p;(4,a) - :(4,1 — a)}'/?
where p;(A4, ) is the ith largest main diagonal entry of (AA4*)* and ¢;(4,1 — a) is the ith
largest main diagonal entry of (A4*A)'~=.

Then C. Ong [24] proved that

(3.5) 1S4llee < min{ri(A4),c1(4)} (4 € M,),
and M. E. Walter [31] proved that for @ € (0,1) and 4 € M,
(3.6) [Salleo < 21(4, ).

Next in (3.8) and (3.10),we consider a unitarily invariant norm || - || and operator norm

of 54 with respect to || - ||4, that is,

(3.7) O a0 T ]
xem, || X|s
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As we saw 1n Corollary 2.6 we have that

(3-8) 1Salle < [[Allo (4 € My).

Ando, Horn and Johnson [3] showed

(39)  11Salls < inf{es(X) - er(Y): X*Y = 4, X,Y € My, r > 1} (4 € M,).

Haagerup (cf. [25, p.119]) showed the value of the right hand side of (3.9) is equal to
1S4llco, hence it follows that

(3.10) 154lls < 1S4l (A € My).

3.3 Convexity of ||S4ll,

For the Hilbert-Schmidt norm || - || we can show the following:
LEMMA 3.1. If||-|| is any norm on M, then
(3.11) 1Salla < [[Sall (4 € My).

ProOF: Let A = [a;;]. Then

1Sallz = sup{||A o Bl : [| Bl = 1}

= sup{( D laisbis )2 1 (3 [y )Y/ = 1}
A=y ij=1
s 1;{}3@1@

(3)

Let e; = ¥(0,---,01,0,-+-,0) for ¢ = 1,---,n. Since S4(E;;) = a;; E;; where E;; =
e; ® e}, ajj is an eigenvalue of S4 for ¢, such that 1 < 7,57 < n. It follows from this fact

that

, HAO E,H
S i L imieraNe et AL ”
ll AH i “E;J” IaJl
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for any norm || - || on M,, and for any 7,7 of 1 < 1,7 < n; hence we have

ISalls = max las| <I|Sal. 8

Remark. It is known (see [31]) that if A > 0 then
&4l es = max la;;| where 4 = [a;;].

Hence, as in the proof of Lemma 3.1, we can show that if A > 0 then

ISallo = max lay

As mentioned before, we have ||S4||, = ||S4llq for p,¢ > 1 such that 1/p+1/g = 1;in

particular, ||S4]l1 = ||S4]|le, and from Lemma 3.1 1t follows
(Jin [1Sally = 115all2-

We are interested in the behavior of the function: [1,00] 3 p —— ||S4]|, for a given 4 € M,,.
To show the main result in this section, we need a celebrated convexity theorem of M.

Riesz (see [9, p.214]). Let A € M, and 1 < s,t < oo be given, then we define || 4], ; by

”A“:t = SHD ||A£|]t
cecn lEllL

where Hg“: - (Z?:l |€i|')1/‘ for g: b €LY,

LEMMA 3.2. (M. Riesz) Let A € M,, and A € (0,1) be given. If s,31,83,t,t1,5 > 1 and
1/s=X/81+ (1 —A)/s2,1/t = AJt; + (1 — A)/t; then

Al <AL dlas ™

83, tn

THEOREM 3.3. Let A € M, and A € (0,1) be given. If p,p1,92,9,91,92 > 1 and 1/p =
Apr+(1—2X)/p2,1/g=A/q1 + (1 — A)/q, then

”SA”p.q < HS-A”PMQIA 3 ”SAHpn,qal_)‘-
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PrOOF: By the singular value decomposition of matrix (see (13, p.157]), ||B]||, < 1 if and

only if B 1s written in the form

s e

where U,V are unitary and ¥ = diag(s1(A4),s2(A4),- -, 8,(A4)) such that 377 ., s?(4) < 1.
Let t,#' be positive real numbers which satisfies £,¢ > 1 and 1/t + 1/¢' = 1. By the

definition of dual norm,

1Sa(B)|le = sup |tr((A0 B)-C).
IClle <1
Since ||C||¢» < 1, C is written by C = U'X'V' where U’,V' are unitary and X' =
diag(51(C), 32(C), -+ ,3.(C)) such that 27 8¢ (C) < 1. Therefore

[Sallse = sup [ISa(B)ll.
1Bl <1

= sup sup [tr((Ao B)-C")|
1Bll.<1{|C]]. <1

= sup sup [tr((Ao (U -diag(s(B))-V)) V"™ -diag(s(C))-U")|
1Bll.<1|C]l <1
where 5(B) = *(s1(B),s2(B), - ,s,(B)) and 5(C) = *(51(C), 32(C),--- ,3,(C)).
Since there exists a matrix 7' = Ty vy v+ depending on unitaries U, V,U' and V' such

that
(T'(s(B))|s(C)) = tx((A o (U - diag((s(B)) - V)) - V'* - diag(s(C)) - U™),

we have

ISallse= sup  sup  [(Tuww,vé )
U VULV 1L <11l <1

= sup |[Tuvu v
Uy, ul,v!

Hence according to Lemma 3.2 we have

1-A

1Sallse < sup  |Tovuvelld, ., 1 Tovovilliis

LV LI Y
X 1-A
S IISAH’htl '”SAH':.ta : R

COROLLARY 3.4. Let A € M,, be given. Then ||S4||, is a log-convex fuction of i— bp > 1),
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Proor: It follows from Theorem 3.3 that
1Sall, < 1S4l - ISallz* (A€ M,)

for p,p1,p2 > 1 and 1/p = A/p1 + (1 — X)/p2, that is, ||S4l|, is a log-convex function of
= pa Ve

COROLLARY 3.5. Let A € M,, be given. Then
1Sally <lISally (1<g<p<2)

and

HSA“p < HSAHq (2 <p<g< 00)

ProoF: From Lemma 3.1, we know

min{|[S4llp : > 1} = ||S4ll2,

and from Corollary 3.4 ||S4||, is a log-convex function of 11—’ (p > 1); hence we can easily

show Corollary 3.5. K

4. Numerical Radius

4.1 Preliminaries and main result

For A € M, the numerical radius w(A) of A4 is defined by

wd) = sup AT
& T

where (:]-) and || - || denote the inner product and the Euclidean norm of vector in C7,

respectively. It is easy to show that

(4.1) w(A) < || Al < 2-w(A) (A € M,).
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In this section, we will give a factorization of A for the norm of S4 with respect to numerical
radius to be at most one. First we mention two characterizations of a matrix X for which
w(X) < 1.

The first one is almost trivial: w(X) < 1 if ond only if for any real 6 the real (or

Hermitian) part of €' X is not greater than I, that is,
Re(e?X)=1/2(e’X +e ¥ X*)<T (0<6<2n).

The second one is not trivial and is mentioned as a lemma. See [1] for a proof.

LEMMA 4.1. (T. Ando) For a matrix X € M,, w(X) < 1ifand only if there is a Hermitian
I+7Z X

X~ - L~

matrix Z € M, such that > 0.

The induced norm of S4 with respect to the numerical radius w(-) will be denoted by

HSAHw: o
T G D

XeM, w(X) (A s Mn).

It is mentioned in ([25, p.110-119]) that Haagerup succeeded in determining ||S4||e in the

following form:

HAAGERUP’S THEOREM. For A = [a;;] € M, the following assertions are mutually equiv-

alent.

(i) HSAHOO < L
(i1) A admits a factorization A = B*C such that

B HBol< T ang O 0T L1,

where I is the identity (or unit) matriz,
(iii) There are wectors ;,y; € C* (i = 1,2,---,n) such that ||&||,||l5:]] <1 (2 =
1,2,--+,n) and

A == <5j|37i> (Z)J =1,2-- ’n)'
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(iv) There are 0 < Ry, Ry € M, such that

R, A

>0, Riol <ITand RyolI <.
A* R,

Now we are going to determine the norm ||S4||w, and to derive Haagerup’s

Theorem as a consequence. Our main theorem in this section is the following:

THEOREM 4.2. For A = [a;;] € M,, the following assertions are mutually equivalent.

(i1)w A admits a factorization A = B*W B such that

B*BolI<I and W'W<I.

(iii)y There are vectors &; € C* (i=1,2,---,n) and a matriz W € M, such that
Nzl <1 (i=1,2,---,n), W*W < I and

a,-j = <WEJI£,> (2 = 1,2,' e ,n).

(iv)y There is 0 < R € M, such that

R A

>0and RoI<I.
A R

A proof of the theorem is given after a series of lemmas.

4.2 Lemmas for the proof of Theorem

For two vectors Z and ¥ in C", a rank one matrix is defined by Z ® * = z¢".

«

For a subset & of M,, the convex hull of S is defined by
k k
conv(S) = {Z LX;  X;€8,0 >0, Zx\,‘ =1,k is arbitrary}
et} 3=t

and S means the closure of S. We denote the dual norm of numerical radius w(+) by ||+

that 1s,

w*)y

tr(AB*
o 4B

A

(A € M,).
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Then for # € C*, we have [|Z ® 2*||,- = ||Z]|%. In fact,

——" tr(2 ® 2*) B”| (Bz|z)| w(B) - |Z)* .,
2Rz ||y = sup = sup < sup = ||z||”.
| | B w(B) B w(B) B w(B) 1=
On the oter hand, since w(z ® 2) = ||2]|?

LEMMA 4.3. § = {2 @ " : || =1, ||Z]| = 1} is the set of extreme points of the unit
ball of M, with respect to || - ||,,+. Moreover, If || A|

w= = 1 then there exist a finite family
{Xi€ll:i=1,--- ,N} and a finite family {\; : i =1--- N} of nonnegative real numbers

such that
N

N
A=) NX; and ||All,- = > X

te2l r=

Proor: Comnsider M, as a real vector space of 2n? dimension.

Now by definition of w(A4),
w(A) = sup{|(42]|Z)] : [|2]| = 1}
— sup{jix(4 - 5@ )| : [4]] = 1)
= sup{|tr{4 - Zf\;&(fi ®Z)H: A 20, X =114 =1,||&| =1}

= sup{|tr(4Y)| : Y € Z}

(4.2)

where Z = convS.

On the other hand, from the duality theorem (see [27, p.89]),

(4.3) w(A) = sup{|tz(AX)] : [|X]

e o 1,
Then we have

(4.4) I X|lws <1 = X2
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by using the separation theorem (see [27, p.58]) and (4.2),(4.3). Next, we will show the

following:

(4.5) Z 18 compact

and

(4.6) all elements of S are eztreme points of Z.

For (4.5), first of all, it is easy to show that S is compact in M,,. By the Caratheodory
theorem (see [26 p.76]), if X € Z = convS C M, = R?™ then X is represented as

N
X = Zt,-X,-
=1

where N = 2n% +1,¢; > O,vazl t;=1and 2; € 8.
bl T ={ =t dw) oty > Dand Zf\;l t; = 1}. Then Z is the image of

T %85 x«v% 8

(S occurs NV times) under the continuous mapping

N
(t)Xla"' 1XN) = ZtiXi
g =1

Hence 1t is proven that Z is compact.

As previously remarked, || ® Z|

w+ = 1 for a vector Z such that ||Z]|| = 1. For (4.6),
we must show that if for k such that 0 < x <1

ez =kY +(1-k)Z

N = N — N N
where Y = ) 0o A&t ® ¢ and Z = 37,0 wimiZi ® 25, Ay > 0,500\ = SN =

L& = |m| =1, and ||5i]] = ||Zi]| = 1 then Z® &* = Y = Z. It suffices to treet the case
N = 2 1hat 18,
(4.7) 2@z =XMyy)+(1-A)n(zZe %)




for A such that 0 < A < land [{| = |5 = 1then 2@ 2" = Q7 = 7® z* and

¢ =n = 1. From the transformation of the base, we may assume z = “(1,0,--- ,0). Let
§ o= gy, s} and Z = t(zl,--- ,Zn ); then (4.7) implies
e L 2 T o nTn R begpprren by 2
0 == 0 29 |l o vl B e o g
=AE | . : +(1 =Xy
| T UgBL, e (1ol = TR P O

hence we have |y;]? = |21 =1 and € = 7 = 1 therefore (4.6) is proven.

From (4.5) it is known that

(X € M, : ||A]

w'Sl}:Za

hence we complete the proof of Lemma 4.3. K
Given ¢ € C*, denote by Dz the diagonal matrix with # on the diagonal.

LEMMA 4.4. ||S4llw <1 if and only if

ID: AD; |- < [IZ]|* (£ €C™)

where || - ||, denotes the dual norm of w(-) .

ProoF: The adjoint operator of S4 is given by S+ where Aisa complex conjugate as we

already showed. Since it is easy to see ||S4llw = ||S7llw = ||Sa]

w+ and from Lemma 4.3
the unit ball for the norm || - ||, is the absolute convex hull of matrices of the form z ® *

with [|Z]| = 1, the assertion follows from the relations ||Z ® #*||,,» = ||£]|? and

SiA(Z® &)= D;AD:. W

Denote by Jj, the k-by-k matrix with all entries equal to ones:
; S,
e b :
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LEMMA 4.5.

”SA“w e ”SA®JI|H1U'

PrOOF: We treat only the case k = 2. The general case (k > 2) can be proven by a similar

argument. It is clear that

ISallw < l|Sagsllw-

Therefore it remains to show that |[S4|l, < 1 implies ||[Ssg7,]lw < 1.

According to Lemma 4.4 this will follow if it is shown that if
(4.8) 1Dz ADZ |~ < [|I2]* (£ €C™)
then

D;AD; DjAD:

<|Igl* + 121> (4,Z€C™).
eyl g P+ 18P (5,7 cn)

(4.9) ’

w.

Assume (4.8). Given ¥,z € C*, take ¥ € C™ such that

(4.10) Gou=7goy+7oz.
Then obviously
(4.11) 12l = 1911* + [121°.

We can define, without ambiguity, two diagonal matrices U and V by
(4.12) U=Dy D' and V= D;- D1,

It follows from (4.10) and (4.12) that

U
a5 8 i S 5
V
U U
and hence 1s a contraction from C" to C?™, that is, < 1. Then for any
v S

X € M,,, we have

(4.13) w ([U* P*1 43 -




Now since

+DgADZ - [U* V),

D;AD; DgAD:
D;AD; D;AD:

we have by (4.13)
DyAD; DyAD:
D;AD; D;AD;

= sup
XEMJn

w* w(X)<1

< sup |tx((DzAD;)-Y)
YEM,
w(Y)<1

= (|Dz ADj|

tr(DgAD;{U*L”LX

w‘

<|[lall* (by (4.8))

= [lglI* + 211> (by (4.11)),

proving (4.9). R

Let us recall some notions from the theory of C*-algebras. See [25] for detail. Let A,
B be C*-algebras with unit. Let M be a subspace of A which contains the unit of 4 and is
closed under the *-operation. A linear map ® from M to B is said to be unital if it maps
the unit of A to the unit of B while it is said to be positive if it maps positive elements

in M to positive elements of /5. For each k > 1 the map ® induces a linear map &, from

M (B), the space of M-valued k-by-k matrices, to M (B) by
$i(laij]) = [®(ai)] fora; €M i,5=1,--- k.

Then @ is said be completely positive if ¥, is positive for k =1,2,--- .
Now let M denote the subspace of M3(M,) = M; ® M,,, defined by

o

Then M contains the unit of M,(M,, ) and is closed under the *-operation.

AL+ 2 X
Y Al - Z

: X, Y, Z e M, and/\EC}.

LEMMA 4.6. Suppose that |[S4llw, < 1. Then the linear map & from M to M, defined by

ALl +.2 X

(4.14) @( B

st
) :,\I+§{AOX+A*OY}
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is unital and completely positive.

Proor: By Lemma 4.5 we have

(4.15) [Saeanllw = |Sallw <1 (k=1,2,---).

Al + 7 X

Y Al - Z
This positivity implies that ¥ = X* and AT £ Z > 0, hence A > 0. We may assume
I+Z/A X/

Gy s Sl
w(X) < A. Then the assumption ||S4|l, < 1 implies w(A4 o X) < A, and hence

§

Next let us prove that the map @, from My (M) to My(M,) is positive for k > 1. Supposing
that a 2k-by-2k block matrix

Clearly @ is unital. First let us prove that ® is positive. Suppose =1k

A > 0. Then we have > 0, hence by lemma 4.1 w (%) < 1,)that'is,

AL+ 4 X
Y Al - Z

) = Al + Re(4d o X) > 0.

A,‘jI-{— Zij X,'j
(4.16) > 0,
},,'J' /\,'jI—— Zij 1581 Lk
we have to prove that
(417) [)\,‘jI e 1/2{A o X,'J' + A% o },ij}]1<i,j<k > 0.

A suitable permutation of indices {1,2,--- ,k} will show that (4.16) is equivalent to

I® [Aij] + [Zi;] [ Xis]
(4.18) >0
1Y I® [Ai;] - [Zi]

and (4.17) means
I®[Ai;]+1/2{(A® Ji) o [Xij] + (A" ® Ju) o [V;5]} > 0.
As in the first part of the proof, (4.18) implies that [V;;] = [Xi;]* and

(4.19) I®[X\;] > Re{e?[X;]} (0<6<2n).
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Since [A;;] > 0, there is a unitary matrix U € M, and p; > 0 (¢ = 1,2,--- , k) such that
[Ai;] = U™ - diag(p1, -+ ,p1) - U.
We may assume [A;;] is invertible. Then (4.19) implies
I® diag(pr, - o) > Re{e’(I@ V) - [X;]- (I @ U)}

hence we have a numerical radius inequality

(420) L ((I ® diag(pla i 1pk)_1/2 ’ U) 4 [Xij] p (I U™ - diag(pl) il >pk)-1/2)) <1
Since ||Sagr,|lw <1 by (4.15), it follows from (4.20) that
I® [/\,‘j] -t Re[A o} X,'J'] >0

which is equivalent to (4.17). N

We need the following two theorems for the proof of the next lemma. Denote by B(H)
the C"-algebra of all bounded linear operators on a separable Hilbert space H.

ARVESON THEOREM. Let M be a subspace of a C*-algebra A, which contains the unit of
A and is closed under the *-operation, and ® a unital completely positive map from M to

B(H). Then there exists a completely positive map & from A to B(H), extending ®:

®(a) = ®(a) (a € M).
See [25, p.81] for a proof.

STINESPRING THEOREM. Let A be a C*-algebra with unit 1 and & a completely positive

map from A to B(H). Then there exists a Hilbert space K, a unital *-homomorphism =
of A into B(H), and a bounded linear map V from H to K such that ||®(1)|| = ||V||? and

3(a) = V'r(a)V (a€ A).

See (25, p.43] for a proof.
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LEMMA 4.7. If||S4llw < 1, there is a Hilbert space K and linear maps B,C from C" to
K such that

(4.21) A= BYC
and
(4.22) B*B=C"C and B*BoI<I.

ProOF: Since the linear map ® from M to M, ~ B(C"), defined by (4.14), is unital and
completely positive by Lemma 4.6, according to the Arveson Theorem and the Stinespring

Theorem there is a Hilbert space K, a *-homomorphism = of the C*-algebra M,(M,,) into
B(K), and a linear map V from C" to K such that

A+ 7 X Al + 7 . 4
(4.23) 3 ATz o
¥ A -7 b Al -7
Then it follow from (4.23) that
0 X 1
V*.x Y= ~A0 X,
0 0 2

Z 0
0 0

0 0
0 Z

v( ).V:V..W( >.V

and V*V = I. Let {e;} be the canonical orthonormal basis of C*. Define B and C by

: e E,; 0
(4.24) Bej:\/Z/nZ'n'( ;’ X )-Ve,- (j=1,2,-,n)
r=1
~ - 0 EPJ'
(4.25) Cej =+/2[n) = ¥ Ve; (7=1,2,--+,n)
p=1

where B;; =¢; ®ej. For 4,5 =1,2,--- ,n we have by (4.24) and (4.25)
O 2 s E,‘ 0
LR 9 YOI | WM B
n

p=14q=1
) -Vejle:) = aij;

R
0 O

0 Ey;
0 0
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hence B*C = A. Further for i, 21,2 .m

and

hence B*B = C*(. Finally

2(B*Bejle;) = (B" Bejle;) + (C* Cejle;)
E; 0
=2V r -Vesle;)
< 2AV™Vejle;) = 2,

hence B*BoI <. &

LEMMA 4.8. If ||S4|lw <1, there exist B,W € M, such that
A=B"WB

and

B*BoI<I, W'W<I

ProOF: By Lemma 4.7 there are linear maps B, C from C™ to a Hilbert space X satisfying
(4.21) and (4.22). Then B and C have the same modulus:
|B|

(3*3)1/2 :(C’wé)l/Z Iél

I
I

Let B = |B|. Then first B*BoI = B*BoI < I. Next there are linear maps U, V from C™
to K such that

B=UB,U'U=Iand C=VB, V'V =L
Let W = U*V. Then we have W*W < I and

A=B*C =B*U*VB=B*WB. 1
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R A
A* R

LemMmAa 4.9. If > 0 for some 0 < R € M,, with RolI <1, then |[|S4ll. < 1.

Proor: Take X € M, with w(X) < 1. Then by Lemma 4.1 there is Z € M, such that

42 X
X T T4

> 0.

Then according to the Schur product theorem (1.3), we have

Wil T AaX
BoXr  RolfleD

> 1,

(4.26)

Since Ro I < I, it follows from (4.26) that, with U = Ro Z,

F&dl | Bo X
A*o X* I-U

> 0.

(4.27)

Again using Lemma 4.1 we can conclude from (4.27) that w(A4 o X) < 1, and hence
HSA”w ! 1. W

Proof of Theorem 4.2. (i), implies (ii), by Lemma 4.8. Equivalence of (ii),, and
(iii), is immediate by writing B = [€1, %2, -+ ,Z,]. Implication (ii), = (iv), is seen by
taking R = B*B. In fact, RoI < I and
e 4

7l o

B* 0
B*wT B

J 0
0 I-W*W

B WB
0 B

L.

Finally implication (iv),, = (1), follows from Lemma 4.9. N

Turning to Haagerup’s Theorem, remark first that equivalence of (ii1),(iii) and (iv) as
well as implication (iv) = (i) is found in [25, p.110-119] and is shown just as in the proof

of Theorem 4.2.

For a proof of (i) = (iv), we need one more lemma of independent interest.

0 A
0 0

LEMMA 4.10. If A = , then

HSAHOO - HSA“w (A,O € Mn)
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B D

)

Proor: Remark first that by (4.1) for a 2n-by-2n block matnx

C FE
B D o 5 0 D
2w > e = || Dl]oo-
C FE C El|. 0 0]j_
On the other hand, it is known (see [10]) that
0 D 1
w = 1Dl
0 0 2
Therefore we have
(0 A B D B D
|SAllw = sup w 0 L w <1
00| (¢ B C E
[0 AoD
) 1Dl < 2
| 0 0
1
= sup { 2140 Dl D]l < 2

Proof of implication (i) = (iv) in Haagerup’s Theorem. Suppose that
0 A

IS4]lec = 1. Since by Lemma 4.10 if we put A = [ } then ||Sallo = ||SAllw, ac-
0 0

Rll R12
R21 R22

cording to Theorem 4.2 there are R;; € M, (i,j = 1,2) such that > 0,

Ri10I<1I, Ryp0lI<1Tand
"Rin Riz 0 A
Ryy Ray 0 0

0 0 Ry Ry
| A* 0 Ra1 Ra.
Then, with Ry = Ry; and R; = R,3, we have (iv):

R, A

B0 Ryod 0 By okl N
A B

34




4.3 Related results

COROLLARY 4.11.

[Salloc < ISallw < 21Salle (A € My).

ProOF: To see the first inequality, let ||Sallw = 1. Then (iv), implies (iv) with R, =

R, = R. The second inequality follows immediately from (4.1). ®

Johnson [17] showed the inequality
w(Ao B) <2w(A)-w(B) (A,B¢€ M,)

which is equivalent to

1Salle < 2w(4) (A€ M,).

In view of (4.1) the following result gives a refinement.
CoRrOLLARY 4.12. [|S4llw < ||4]le (A € M,).

ProoF: If |4l = 1, take R =1 in (iv),. N

COROLLARY 4.13. If A is Hermitian, then ||S4llco = ||Sallw-

ProoF: If ||S4lle = 1, by Haagerup’s theorem there are 0 < R;, R; € M, satisfying
(iv). Since A = A*, R = 1/2(Ry + R,) satisfies (iv), . Therefore ||S4l|lcc > ||S4llw- The

converse inequality follows from Corollary 4.11. H
COROLLARY 4.14. If A = [a;;] Is positive semidefinite,
154llw = max a;;.

Proor: Since
A A

A A

~—
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the inequality ||S4llw < max;a;; follows from our Theorem. The converse inequality is

immediate because

ai; :’w(SA(Ei,')) (i—_—1,2,"' ,n). |

Remark that since here ||S4|lw = ||Sallw by Corollary 4.13 and the map 5S4 is positive,
the assertion of Corollary 4.14 is an immediate consequence of a general result that a

positive linear map on a C*-algebra attains its norm on the unit element (see [25, p.16]):

154lle0 = I154(Dlleo = 14 0 Illoo = max ;.

0 A
ANTD

COROLLARY 4.15. If A = , then

[Sallo = ISallu (A € My).

0 A
A* 0

PROOF: Since A = is Hermitian, it suffices to prove

HSAHOO < HSAHOO (A € Mn)a

which is, however, immediate from the definition of norm by using the obvious relation
0 D
S

COROLLARY 4.16. If A is unitary, then ||Sallco = ||S4llw = 1.

B D

2
C E

= max{||Clle, | D]l }. W

oo

(oo

ProoF: Inequality ||S4|lw < 1 follows from Corollary 4.12. On the other hand, since the
unitarity of A implies that the Schur product Ao A of A and its éomplex conjugate A
is doubly stochastic, we have ||4 0 Al|e > 1 (see [24]), and hence [|S4|lcc > 1 because
|A]lco = ||Alleo = 1. Now the assertion follows from Corollary 4.11. N

From the proof of Lemma 2.1 we have for A, B € M,

(4] o|B) +3(14%| o |B])

s(A o B) <, :
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Hence we have

140 Bl < {11141 0 B lloo + 11147 0 B 1o}

Therefore we obtain
154lloo = sup{l|4d o X||cc : X € My, || X||e <1}
= sup{||A o Ul|w : U is a unitary}

< {14l 0 Tl + 11147 o T}

o}

= %{HSIA[HOO + 115 4+

Moreover, if A is normal then ||S4llee < [|S|4|llco- The following result is an anology of

this inequality with respect to the norm induced by numerical radius.

COROLLARY 4.17. For any A € M,

(4.28) 1Sallw < 11541414+

w

If A is normal, that is, |A| = |A*|, then
1Sallw < [[S)4llw-

ProoF: Inequality (4.28) follows from Corollary 4.14 and

Al +[A47] A

> 0,
A* |A| + |A*|

which is a consequence of the inequality described in (2.8), that is,

|47 A
(4.29) > 0.
A* A
If A is normal, (4.29) becomes
|A] A
> 0.
AT |4

and we can take R = |A| instead of | 4| + |A*|. N
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Let us show by example that the inequality in Corollary 4.11 as well as inequality
(4.28) is best possible.

1 1 0 2

- U* with unitary
0 0

Example. Consider A = [

. Since A = U -
St Sakas |

TR - b
e , we have
v2 i 1 1

([ )
¥

Hence ||S4llw < ||Allee = 2 by Corollary 4.12. Since S4(4) =

P 2T
S

S4(X)=VX (X eM,),

and

HAHoo Fos = 2.

(e o)

we can conclude that ||S4|l,, = 2. Since, with V =

we have ||S4llcoc = 1. Further it is easy to see that |A| =

1
. and LAY =
1

Hence

1S ai+1a=]l, = 1S2zlly = 2 = ISall, = 2115l -

Therefore the inequality in Corollary 4.11 and inequality (4.28) are best possible.

In closing this section, we give a remark. It would be pleasant to be able to write
condition (ii), of Theorem 4.2 as

(i1)!,: A admits a factorization A = B*C such that B*B = C*C and B*Bo I < I,
because it would then be parallel to (i1) of Haagerup’s Theorem. This alternative for-
mulation would be correct if the contraction W in (i1), could be chosen to be a unitary.
Y. Nakamura has shown that it is not the case, so the alternative fomulation (i1)!, is not

correct.
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5. Operator Radius Norm

5.1 Known results of operator radius

For p > 0, a matrix A € M, is called a p-contraction if A has a unitary p-dilation, that
is, there is a Hilbert space K containing C™ as a subspace, and a unitary operator U on K

such that
(5.1) A = pPU™ (gn (= 1,000 5+])

where P is the projection from K to C™ (cf. [30, p.45]).
Holbrook [10] defined the operator radius w,(-) (0 < p < o) by

1
w,(A) =inf{r > 0: ;—A i8 p-contraction}.

The spectral norm || - || and the numerical radius are incorporated in w,(-), and the
operator radius has following properties (see [4], [10]):

(1) For 0 < p, w,(+) is quasi-convex in the sence that
(52) w4+ B) < max(l,p/2){w,(4) + w,(B)} (4B € M,).

In particular, w,(-) is a norm if 0 < p < 2.

(1) w,(-) (0 < p < o0) is unitary similarity invariant in the sense that
(5.3) w,(A) = w,(UAU") for all unitaries U.

(iii) For fixed A € M,,w,(A) is nonincreasing and convex, and pw,(A) is nondecreasing

in p on the interval [1,00).

(iv)

(5.4) wi(-) = || - |lo (the spectral norm)

(5.5) wy(-) = w(-) (the numerical radius)
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For fixed A € M,

(5.6) lim w,(A) = r(A) (the spectral radius of 4).
(v) Let 0 < p < 2. Then w,(A4) < 1if and only if

(5.7) (p = DI+ (2—p)e®Alle <1 for all § € [0, 27].

(vi) If 0 < p < 2, then

(5.8) pwo(-) = (2= p) - wa_ (")

5.2 Holder-type inequalities
For A € M, and o,p > 0, define ||S4||w,,» by

w, (Ao X)

o R O ) AeM,).
ISallop, = sup 22025 (4 ar,)
In particular we write ||S4llw, = [|S4llw, w,- The following theorem can be consider as a

multiplicative Holder-type inequality for operator radii.

THEOREM 5.1. For every o,p > 0 the following inequality holds:

o

(5.9) 1Salle, ., < max (1,22) w,(4) (4 € M,).

Proor: We have to prove that

o

wy,(A 0o B) < max (1, 7'0) w,(A)w,(B) (A,B € M,).

We may assume w,(A4) = 1 and w,(B) = 1 in view of positive homogeneity of operator
radius. Then by the definition of operator radius there are a Hilbert space XD H = C*
and unitary operators U and V on K such that

(5.10) A™ = aPU™, B™=pPV™y (m=1,2,--).
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Then the tensor product U ® V 1is unitary on the tensor-product Hilbert space X @ X,
containing H ® H, and P ® P is the orthogonal projection from K@K to H® H. It follows
from (5.10) that

(A® B)" =ap(P@PYU V)" uen (m=12,---),
which implies, again by the definition,
(5.11) w,,(A®B) <1

To prove (5.9), let us first consider the case op < 2. Apply (5.7) to A ® B, for which
w,,(A ® B) <1 by (5.11), to see that

(5.12) (op=DISI+(2—0p)e?A® Bl <1 (0<0<2m).

It is known (see [2]) that there is a positive linear map @ from M, @ M, =~ M,s to M,
such that
P(SRT)=SoT (S5T¢€M,);

hence in particular ®(I ® I) = I. Since such a map necessarily has norm <1 (see [28)]), it
follows from (5.12) that

l(op— DI+ (2= 0p)e® Ao Bl =[B((0p ~1)I @I+ (2~ 0p)e’ 4® B)llo < 1,

which implies, again by (5.7) w,,(A o B) < 1. Therefore we have proved (5.9) for op < 2.
Next let us consider the case op > 2. Since, for fixed S € M,,, the function wy(S) and
Awy(S) are nonincreasing and nondecreasing, respectively, in A on the interval [1,00) as

remarked in (iii), we have
wy,(A o B) < wy(Ao B)

< wy(A® B) (use the map ®)

= %ﬁwap(A ® B)
<8 (by (5.11))

op
1,—-}
ax{ 5
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This completes the proof. H

Remark. The constant max{l, %%} in Theorem 5.1 is best possible. In fact, it is

known (see [10]) that for n = 2

(5.13) RN I EE R CPPPIS
5.1 w = = < p < 0).
"\t o p
Put
0 0
A = B
1 0
Then for every o, p > 0 we have
1
wes(A0 B) = — = u,(4)u,(B).
3 1 1 1 0 0
Next put A =B = . Since 1s unitarily similar to , we have
-1 -1 -1 -1 2 0
from (5.13)
(4)= 2 and w,(B) = -
W, = and i, 5

On the other hand,

Ao B =

1o
ey

2 8
, so that for op > 2,

0 0

is unitarily similar to [

wo,(4 0 B) =2 = “Lw,(A)w,(B).

To provide the inequality (5.9) with more Holder-like expression, let us confine ourselves

to the interval 1 < p < 2 and make a change of parameter:

(5.14) Wi(A) = (2 —t)wa—¢(4) (0<t<1).
From (5.4), (5.5) and (5.14) we can see that Wi(-) = || - || = wi(-) and Wy(-) = 2w(:).
For 0 < s,t <1, define ||S4||w, w, by
Wi(A o X)
S = . ,
|| AHW.,Wc Xseulgn W,(X) (A € Mn)

Then we have the following:
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THEOREM 5.2. For 0 <s,t <1

[Sallw.w.. < W.(4) (A€ M,).

Proor: Let st = 0. If s = ¢ = 0 then Theorem 1s clear therefore we may assume s # 0

and ¢t = 0. Using Corollary 4.12 and p —— pw,(:) is nondecreasing function of p > 1 by

(ii1), we obtain

W‘t(AOB)—_—WO B)

(Ao
2w(A4 o B)

IA

B) - [|Alleo

2w

(
2w(B)(2 — s)w,—,(A4)

I

W,(A)W.(B).
Next let st # 0. Then by (5.8) and Theorem 5.1, we have
W,((AoB)=(2— st)wy_,;(Ao B)

= st - w,¢(A o B)
< st -w,(A)w(B)
= (2 —8)wz_,(4) - (2 — t)wy_((B)

= W,(A)Wt(B).
This completes the proof of Theorem. &

With ¢ =1 and p = 2 in Theorem 5.1 we obtain the result which is already shown in
Corollary 4.12.
CoROLLARY 5.3. For 0 < p < 2 the following inequality holds:
(5.15) 1Sallw, < llAllo (A € M,);
in particular

[Sall < [|Allc (4 € My).

We write the induced norm of S4 from (M, w,(-)) to (M, |- |[1) by ||S4llw,,1- Next,

we will give an operator radius version of the inequality which appeared in Corollary 2.3.
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THEOREM 5.4. If 0 < p < 2, then we have

(5.16) 1Sallw,,, < lI4]

wl (A € Mn)’
where || - ||+ is the dual norm of w,(-); in particular

[Sallw,r < [|Allw- (A € M)

where || - ||w- is the dual norm of the numerical radius w(-).

Proor: We have to prove that
|Ao Blli < ||Allws wo(B) (4, B € M,).

We may asssume w,(B) = 1. Then the inequality (5.15) means that the linear map
Sg : A — Ao B from the Banach space (M,,| - ||) to the Banach space (M,,,w,(-)) has
norm < 1; hence its dual map from (Ma, || - [lwz)) to (Mx,|[ - ||1) has norm < 1. As the

dual map is given by S,

|40 Blly < | Allwy = l|4llw; wy(B).

Now (5.16) follows by changing B by B and using w,(B) = w,(B).

5.3 Relations among ||S /e, [|S4llw, and [[S4llw
Next we will discuss the relations among |[S4||c, ||S4llw, and ||S4llw for 1 < p < 2.
In Corollary 4.11 we proved that ||S4llee < ||Sallw (A € M,). We will give a proof of the

following:

THEOREM 5.5. Forl < p <2

(5.17) 1Sallw, < |54llw-

We need the following lemma to show Theorem 5.5.
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LEMMA 5.6. For1 <p<?2

e
p-um00=:%v([ 2 pq

0 1-p

0 0

(5.18) 1%

) |

1> {(p— DI+ (2 p)e 41 {(p - DI+ (2 - p)e* 4}.

ProoF: Suppose w,(A4) < 1. Then (5.7) means

Hence
i) [ I | (p—1DI+(2—p)e?A =
(p— DI+ (2—p)e A ik
which 1s equivalent to
V§ (p—1)I 4y 0 2(p—2)A . 0 0

[ - 25{8’ [0 g - A1 [2( SV }

gy LT Tt I 2
= Re {eie [ i) } .
0 0

Since

[ I (p——l)I]:[ I 0 HI (p— I ]

(p—1I I (o= "/pR =p) 4 0/ pl2 = p)]

and

g T —(p=1)
[I (p— I ] i [I \/FG—T)I] ’
0 /p(2-p) 0 L7

vV P(2-p)

{ I 0 ]‘1 [ I 0 ]
e o i =lp=1} 3 !
Chse L N e g = i

(5.20) is equivalent to

I 0 0 e 0 0 2(2-p)4
0 I oot b 5

i |
- Ve(2-p)"  /p(2-p)

vl @l 584
= Re { e*? 5 .

0 L 1;" A
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Since 6 is arbitrary, as already remarked in section 4, the above is equivalent to

(2 P) ;%2~tﬁf] )
e <1
P10  (1—p) B

Therefore p - w,(A) < 1 if and only if

0 0
0 A

0 p(2 —p)I 0 0
2w <1
0 (1—-p)I 0 A
which is the same as the desired assertion. B
A A

ProoF OF THEOREM 5.5: Let A = . We have to show that

A A

w,(A o B) < ||Sallw - w,(B) (4,B € M,).

Assume w,(B) < 1. Then by Lemma 5.6

9 [0 /p(2=p)] 0 G ]
w,(Ao B) = —w )
Ak (= " 1 0 A B

9 0 /p(2=p)] [0 O A A
:;w(LO 1-p1 |0 B] |4 4 )
< 3nsAnw-w([° R 1 Il )

p 0 (1-pI ||o B
= ||SAllw - w,(B)
< [|Salw-

Hence we obtain ||S4llw, < ||[Sallw. Since it was shown in Lemma 4.5 that

[Salle = 154llw,

the last inequality implies our assertion. |

In Corollary 4.13 we showed that if A € M, is Hermitian, then |[S4l| = ||S4ljw- The

following is a generalization of this equality.
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ProproSITION 5.7. If A is Hermitian then
1Salleo = 18allw, (1 £p<2).

ProoF: Let 1 < p < 2. By definition,
1Sallw, = supfw,(A 0 B) : wy(B) < 1}
> sup{w(4 o B) : wy(B) < 1}
— sup{|{(4 0 B)#|#)| : wy(B) < 1, || < 1}
= sup{|tz((4 0 B) - (F®F))| : wy(B) < 1,]|2]| < 1}
= sup{|tr((4 o “(Z®2")) - "B)| : w,(B) < L,[|2]| < 1}
= sup{fl40 (F®&)lu; ¢ IE] <1}
Now since A4 and £ ® z* are Hermitian, A o (Z ® z*) is Hermitian. Hence there exist real

numbers A;, - -+ , A, and orthogonal unit vectors &1,---,2, € C™ such that Ao (Egg*)=

Y sy AiE; @ @F . Therefore,

|Ao(2®Z")||w- =

Y NEi®F;
t=1
n
< Z 1A 11|25 ® 25 || we
1=1

-_-Zl/\il

= [|A o (2 ® )]s

w‘

(5.21)

Here to show the second equality, we use the fact if 7 is a unit vector then ||y ® y*||,- = 1.

On the other hand, for any C € M, we have

(5.22) ICll. < [IC]

wy < [[C]lw-

by definition of dual norm and the nonincreasing property of operator radii. It follows

from (5.21) and (5.22) that if A is Hermitian then

|40 (2@ )|lw; = |40 (2®Z7)|w--
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Hence, we have

sup{[|[4 o (2® z")llws : [|I2]] <1} =sup{[[Ado(Z® Z")|lu- : [I2]| <1}

= [|Sallwe = 1Sallw-

Since we have ||S4llu, < [|Sallw by Theorem 5.5 and ||S4llcc = [[Sallw for Hermitian

matrix A by Corollary 4.13, our assertion has been proven. B

ProrosiTION 5.8. If A is unitary then

1S4l = |Sallw, =1 (1<p<2).

Proo¥: By Theorem 5.5 and Corollary 4.16 we have ||S4llw, < ||Sallw = 1. A proof of

the reverse inequality is almost same as Corollary 4.16. §
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