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Stability analysis on the free surface phenomena of a

magnetic fluid for general use

Yo Mizutaa,∗

aDivision of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

Abstract

This paper presents an analysis for elucidating a variety of physical pro-
cesses on the interface (free surface) of magnetic fluid. The present analysis
is composed of the magnetic and the fluid analysis, both of which have no
limitations concerning the interface elevation or its profile. The magnetic
analysis provides rigorous interface magnetic field under arbitrary distri-
butions of applied magnetic field. For the fluid analysis, the equation for
interface motion includes all nonlinear effects. Physical quantities such as
the interface magnetic field or the interface stresses, obtained first as the
wavenumber components, facilitate confirming the relations with those by
the conventional theoretical analyses. The nonlinear effect is formulated as
the nonlinear mode coupling between the interface profile and the applied
magnetic field. The stability of the horizontal interface profile is investigated
by the dispersion relation, and summarized as the branch line. Further-
more, the balance among the spectral components of the interface stresses
are shown, within the sufficient range of the wavenumber space.
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1. Introduction

Free surface phenomena of magnetic fluid, especially the transition among
the patterns of flat, hexagonal and square on the horizontal interface profile,
have been of major interest in magnetic fluid science. Just after the magnetic
fluid was invented, many experiments were conducted together with basic
analyses [1, 2] preceding nonlinear analyses.

Though the onset of the transition can be found by these linear analysis,
the pattern formation phenomena is essentially nonlinear, as analyzed by
Gailitis [3], or Twombly-Thomas [4, 5]. However, the nonlinear analysis then
usually adopts the perturbation method, that is, quantities on the interface
are expanded into finite power series of the interface elevation; In addition,
the applied magnetic field is limited to vertical and homogeneous, which
usually differs from the conditions in experiments.

Afterward, high performance computers and the development in the nu-
merical techniques to treat continuous media enabled numerical simulation
[6]. The conventional approach has been the FEM by use of the irregular
fine lattices dividing the real space.

As the intensity of the magnetic field applied on the interface of mag-
netic fluid is increased, transitions are caused when the balance among the
interface stresses is changed. These phenomena are necessarily analyzed by
using rigorous interface magnetic fields even on arbitrarily deformed inter-
faces under arbitrarily applied magnetic fields. In [7], we showed a method to
determine the spectral components of the interface magnetic fields rigorously
from a set of “three-dimensional interface magnetic field equations” with the
help of the property of the “three-dimensional Hilbert transform” on periodic
functions. For some different interface profiles, distributions of the interface
magnetic fields and the interface stresses were calculated.

In the conventional numerical stability analysis, the bifurcation diagram
seems to be produced from the appearance of the interface profiles in the real
space [6]. Instead, the present research follows the approach adopted by the
existing theories, and tries to compare their results. That is, we obtain the
quantities on the interface as the spectral components first. Then, we draw
a branch line according to its definition, as shown in this paper. Actually,
the interface magnetic fields were found to be obtained more compactly than
as in [7], which is shown in Section 2. The magnetic fields thus obtained are
used for the interface magnetic stress difference. It determines the behaviour
of the interface through the balance with other interface stresses. This is in-
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vestigated by the “equation for interface motion”that includes all nonlinear
effects (Section 3.1). The interaction between the applied magnetic field and
the interface profile is formulated as the nonlinear mode coupling. The sta-
bility of the interface is discussed by the dispersion relation, and summarized
as the branch line (Section 3.4). Section 4 presents those results for the in-
terface profile of two-dimensional and a hexagonal lattice. Furthermore, the
balance among the spectral components of the interface stresses are shown
at the critical intensity of the applied magnetic field, within the sufficient
range of the wavenumber space.

2. Interface magnetic field analysis

The magnetic stress difference

T ≡− [1/ µj]{µ1µ2(h
2
X + h2

Y ) + b2
Z}/ 2 (1)

represents the action from the magnetic field to the fluid, where µj denotes
the permeability of the fluid (j=1) or the vacuum (j=2), [· · ·] the difference of
the value across the interface (2−1), and hX,Y , bZ are the tangential magnetic
field and the normal magnetic flux, respectively. These interface magnetic
fields should be obtained rigorously as well as efficiently under arbitrary
interface profiles and arbitrarily applied magnetic field distributions.

Each of the interface magnetic fields is divided into the basic field
h0

X,Y , b0
Z and the induced field h1

X,Y , b1
Z . Basic fields are given directly

by a known applied magnetic field h0 as h0
X,Y =tX,Y ·h0 and b0

Z= tZ ·h0
/

P
where tX,Y are the tangential unit vectors, tZ is the normal unit vector, and
P≡ (1/ µ2+ 1/ µ1)/ 2. Induced fields are to be determined to satisfy, together
with the basic fields, both the harmonic property and the interface condi-
tions, as discussed in [7]. Instead of solving the set of three-dimensional
interface magnetic field equations, however, induced fields are obtained
equivalently but simply ash1

X = ĜX (1 + MĜZ)−1h̃Z ,
h1

Y = ĜY (1 + MĜZ)−1h̃Z ,
b1
Z = ĜZ (1 + MĜZ)−1h̃Z ,

(2)

where h̃Z=− Mn/ 2 is the source term for the induced fields, Mn=2Mb0
Z is

the normal magnetization, and M≡ (1/ µ2− 1/ µ1)/ 2.
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The three-dimensional Hilbert transform operators ĜI (I=X,Y ,Z)
are defined as follows:

ĜX,Y {g(R′)}= Ĥ {tX,Y · ∇′g(R′)} ,

ĜZ{g(R′)}=
1

P
Ĥ {tZ · ∇′g(R′)} ,

Ĥ {g(R′)}≡−2

∫∫
dS ′ψg(R′),

(3)

where g(R′) is an arbitrary function of the interface coordinate parameter
R′=(X ′, Y ′). The position vectors for the observation point and the source
point are denoted by r=r(R) and r′=r(R′). The functions and the deriva-
tives for the source point are shown by “′”. The operator Ĥ is composed of
the integral over the source point on the interface and the basic solution of
the three-dimensional Poisson equation as

ψ = − 1

4π|r′ − r|
, ∇′ψ =

r′ − r

4π|r′ − r|3
. (4)

The operation of ĜI is evaluated analytically instead of by the numerical
integration if its operand is expanded into a series of periodic functions.
These operations result in just the derivatives with respect to X ′ or Y ′, or
the nonlinear mode coupling between the interface profile and the applied
magnetic field (Appendix A).

3. Stability analysis

3.1. Equation for interface motion

When we analyze the free surface phenomena of irrotational and invscid
magnetic fluid without the temperature dependence of the magnetization,
we use the following equation for interface motion which is derived from
Bernoulli’s equation and the dynamic boundary condition on the interface:

ρ
∂φ

∂t
+ S + p0 = 0, S ≡ D + G + C + T, (5)

where ρ, φ, D, G, C, T , p0 are the fluid density, velocity potential, dynamic
pressure, gravity potential, surface tension, magnetic stress difference of (1),
and atmospheric pressure, respectively.

The velocity potential φ and the sum of stresses S depend on the interface
elevation z1. When they are linearized for infinitesimal z1 ∝ exp{i(ωt−k·r)},
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the following dispersion relation for linear wave motion is derived from (5)
[8]:

ω2 = gk + (γ/ ρ) k3 −
(
M2

n

/
2ρP

)
k2, (6)

where g, γ, ω, k are the gravity acceleration, capillary coefficient, angular
frequency, and amplitude of the wavenumber vector k, respectively. In the
linear harmonic analysis, we use b0

Z and Mn where tZ ·h0 is replaced with the
applied magnetic field intensity H0. Further, the induced field of the normal
magnetic flux is b1

Z= Mnkz1/ 2P , in proportion to z1 (Appendix B).
As H0 is increased, the transition from a stable state with a flat interface

to an unstable state occurs. The critical wavenumber kCL and the critical
magnetic field intensity HCL are:{

kCL ≡ (ρg/ γ)1/2 ,
HCL ≡ PMCL/ 2M, M2

CL ≡ 4P (ρgγ)1/2 (7)

from the condition that ω satisfying the dispersion relation (6) first has the
imaginary part, or ω2 = 0 and ∂ω2/∂k = 0 [8].

3.2. Expansion into series of periodic functions

We expand here the interface elevation z1(R) and the sum of interface
stresses S(R) into series of periodic functions as:

z1(R) = Φ(zS)(R)z̃1, S(R) = Φ(zS)(R)S̃, (8)

where

Φ(zS)(R) =
1 · · ·µ · · ·NS 1 · · ·µ · · ·NA

( cos Θµ sin Θµ )

=
1 · · ·µ · · ·NS 1 · · ·µ · · ·NA(
fS

µ (R) fA
µ (R)

)
≡

1 · · ·µ · · ·N
( fµ(R) )

(9)

is the row vector of periodic functions with N=NS+NA components, z̃1≡
(
z̃1

µ

)
and S̃≡

(
S̃µ

)
are the column vectors of expansion coefficients, and Θµ≡kµ·R

is defined with the wavenumber vector kµ.
The velocity potential in (5) is obtained from the vertical component

of the fluid velocity vz as φ=
∫ z1

−∞ dzvz, where k-th component of vz is

(∂z1/∂t) ekz. Then, the equation for interface motion (5) reduces to the
equation for z̃1 as

∂2z̃1/∂t2 = − kS̃(z̃1)
/

ρ,

S̃(z̃1) = G̃(z̃1) + C̃(z̃1) + T̃ (h̃X(z̃1), h̃Y (z̃1), b̃Z(z̃1)),
(10)
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where G̃, C̃ and T̃ are column vectors of the expansion coefficients for G, C
and T , respectively.

3.3. Relation between expansion coefficients

The functional relation S̃(z̃1) must be established exactly for practical
analyses, though just symbolically shown in this paper. Since G and C
depend on the interface profile directly, the relations G̃(z̃1) and C̃(z̃1) are
rather straightforward. In contrast, T̃ depends on z̃1 in a complex manner
through the expansion coefficients of interface magnetic fields h̃X,Y and b̃Z ,
since T is a function of the interface magnetic fields practically.

Once the relation S̃(z̃1) is established, we can obtain the gradient matrix

H ≡
1 · · ·µ · · ·N(

∂S̃

∂z̃1
µ

)
. (11)

This matrix is used for several purposes: The accuracy of computing the
interface stresses is checked by comparing H obtained theoretically and nu-
merically; The inverse matrix of H is used when Newton’s method is applied
for determining the stationary interface profile; The critical magnetic field
intensity Hc is found for finite interface elevations instead of (7), as discussed
in the next subsection.

3.4. Determination of critical magnetic field intensity

Equation (10) shows that hµ ≡ kS̃µ

/
ρz̃1

µ corresponds to the right hand

side of the dispersion relation (6), where hµ represents the response of the sum
of interface stresses at the same wavenumber as given to the interface profile.
By the correspondence between the right hand side of (6) and kH/ ρ from
(10) and (11), this consideration is generalized for finite interface elevations
with multimode. The transition of stability arises when the smallest
eigenvalue h of H first crosses zero as the intensity of the applied
magnetic field H0 increases.

At each ζ0, the typical value of the amplitude of z1, we determine H0=Hc

to satisfy h = 0, and plot a point on the (H0, ζ0) plane. By connecting these
points, we can draw a branch line, in the right of which an unstable state
occurs.

Figure 1

Figure 2

Figure 3
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4. Comparison of theoretical and numerical results

In this section, we present some properties on the free surface phenomena
of magnetic fluid for the interface profile of two-dimensional and a hexagonal
lattice.

We consider here a magnetic fluid with the fluid density ρ=1.0×103 [kg m−3],
the capillary coefficient γ=2.6×10−2 [N m−1], and the magnetic permeability
µ1/ µ0=1.40 (µ2/ µ0=1.00, µ0=4π×10−7 [H/m]). Then, the critical wavenum-
ber is kCL=6.14×102 [m−1] (critical wavelength is λCL=1.02×10−2 [m]), and
the critical magnetic field intensity is HCL=1.98×104 [A/m] (magnetic pres-
sure is 9.77×10−3 [mH2O]), as obtained from (7) for the linearized case.

4.1. Case of two-dimensional interface profile

We choose the horizontal length of the spatial region h0=5.0×10−2 [m] so
that h0 is some times of the critical wavelength λCL. We give the horizontal
interface profile by a unique mode with the wavenumber k=mk0 (k0= π/ h0:
basic wavenumber, m: even number, 0≤m≤M=36) and the amplitude ζ0

between 0.2×10−4 [m] and 5.0×10−4 [m]. For the calculation of the surface
tension, for example, the spatial region is divided into N=40 subsections.
Since their interval ∆x= h0/ N must be less than the half of the minimum
wavelength λmin= 2h0/ M , we choose M and N as M<N .

Figure 4

Figure 5
Under a vertical and homogeneous magnetic field with the intensity of

H0=HCL, we compare the response hµ and the interface magnetic flux b1
Z

with those by the linear harmonic analysis in Fig. 1 (a). For smaller ζ0 of
(1), dots of the numerical results lie well on lines of the linear harmonic
analysis. However, in (2), dots shift toward positive than lines.

Figure 1 (b) shows the spectral distribution of the interface magnetic field.
The components other than the component kµ (close to kCL) given originally
to the interface profile are generated more for (2) due to the nonlinear mode
coupling between the interface profile and the magnetic field. As a result,
both the interface magnetic field and the magnetic stress difference at kµ

decrease, and hµ shifts toward positive.
Figure 2 (a) shows the dependence of the smallest eigenvalue h of H on the

intensity of the applied magnetic field H0. Since h is larger for larger ζ0, the
critical magnetic field Hc is larger, too. Figure 2 (b) shows a supercritical
branch line, drawn as explained in Section 3.4.
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4.2. Case of hexagonal-lattice interface profile

An interface profile of a hexagonal lattice as shown in Fig. 3 (a) is gener-
ated by

z1(R) =
3∑

µ=0

z̃1
Sµ cos kµ·R (12)

of (8) with 
k0 = 0A + 0B, z̃1

S0 = 0,
k1 = 2A + 0B, z̃1

S1 = ζ0,
k2 = 0A + 2B, z̃1

S2 = ζ0,
k3 = 2A + 2B, z̃1

S3 = ζ0,

where A = (X̂−
√

3Ŷ )π
/

(2
√

3h0), B = (X̂+
√

3Ŷ )π
/

(2
√

3h0) are recip-

rocal lattice vectors, ζ0, h0 are vertical and horizontal scaling factors, and
X̂, Ŷ are unit vectors orthogonal to each other. Three modes with nonzero
spectral components of z1 are shown by circles in the wavenumber space of
Fig. 3 (b). The dispersion relation (6) was originally derived for the two-
dimensional interface profile. However, it is considered from (A.4) that we
are allowed to use (6) even for the three-dimensional case, when the ampli-
tudes of all the wavenumber vectors composing z1 are equal to k, as in the
present case. Shaded squares in Fig. 3 (b) show the value of ω2 of (6) at each
wavenumber when H0 = HCL, and the curve represents the position of the
critical wavenumber kCL.

Figure 3 (c) shows the branch line in the (H0, ζ0) plane under a vertical
and homogeneous magnetic field. Such a subcritical branch line predicts
to cause the hysteresis [3, 6].

During this analysis, it has been concerned whether the wavenumber
range kµ = m1A + m2B (m1, m2: even numbers, 0≤m1,m2≤M=18) is
wide enough, or not, to cover the spread of modes due to the nonlinear
mode coupling. Figure 4 shows the wavenumber spectra of the interface
stresses just when S reaches around zero at most wavenumbers after the
balance among T , C and G. Three typical modes in T and C are reduced
in S, which shows the balance among the stresses. However, we observe the
spread in the spectral distribution of S. Figure 5 shows the average and the
standard deviation σ of the spectra of the stresses at H0 = Hc for each ζ0,
which are weighted by the spectral intensity, and normalized to the total
wavenumber range. From these, the prepared wavenumber range seems to
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cover the spread in the spectral distribution, where T depends on ζ0 most
sensitively other than S.

5. Conclusions

Stability analyses for the transition of patterns on the interface of mag-
netic fluid are performed. Both of the magnetic and the fluid analysis used
do not employ the perturbation approach; Instead, the spectral components
of the quantities on the interface are obtained first, which facilitates the
comparison with the results by the conventional linear and weakly nonlinear
analyses. Interface magnetic fields can be obtained rigorously on arbitrary
interface profiles under arbitrarily applied magnetic field distributions. The
fluid is analyzed by the equation for interface motion with all nonlinear ef-
fects.

The stability of the interface is discussed by the dispersion relation, which
is extended from the infinitesimal interface elevation to the finite interface
elevation by the gradient matrix. The critical intensity of the applied mag-
netic field is determined from the eigenvalue of the gradient matrix which
decreases with the increase of the intensity of the applied magnetic field.

The calculated results for the interface profile of two-dimensional and a
hexagonal lattice are presented. The branch line for the hexagonal-lattice
case is subcritical though that for the two-dimensional case is supercriti-
cal. Transitions are caused when the balance among the interface stresses
is changed as the intensity of the magnetic field applied on the interface of
magnetic fluid is increased. This is actually shown by the spectra of the
interface stresses within the sufficient range of the wavenumber space.

The range of ζ0, the typical value of the amplitude of z1, is still to be
enlarged. For exploring this range, the stability of the system is observed
carefully by changing the set (H0, ζ0). Instead, for more efficiency, the hor-
izontal scaling factor h0 is adjusted to tune up the critical wavenumber kc.
This process should be automated though done manually at present.
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Appendix A. Operation of three-dimensional Hilbert transform
operators

From the definition in (3), the three-dimensional Hilbert transform oper-
ators ĜI are written as

ĜX,Y {g(R′)}≡ 2

∫∫
dS ′(tX,Y ·∇′ψ)g(R′),

ĜZ{g(R′)}≡ 2

P

∫∫
dS ′(tZ ·∇′ψ)g(R′).

(A.1)

We compose an orthogonal curvilinear coordinate by tX,Y,Z at R, and express
r′ − r, by using the tangential coordinate vector ρ′, as

r′ − r = ρ′ + ζ(R′)tZ(R),
ρ′ = ξ(R′)tX(R) + η(R′)tY (R).

In the denominator of ∇′ψ, |r′ − r| is approximated by ρ′ = |ρ′|, and the
interface profile function ζ(R′) ≡ tZ · (r′ − r) is defined and used in its nu-
merator. Furthermore, the relation

1

(ρ′)3
= −

(
tX

∂

∂ξ′
+ tY

∂

∂η′

)
· ρ′

(ρ′)3

is used, and each equation in (A.1) is integrated by parts. Then, (A.1) is
rewritten as

ĜX,Y {g(R′)}=

∫∫
dS ′ tX,Y · ρ′

2π|r′ − r|3
g(R′)

≃ Ĥ∗
{

∂g(R′)

∂ξ′

}
, Ĥ∗

{
∂g(R′)

∂η′

}
,

ĜZ{g(R′)}=
1

P

∫∫
dS ′ 1

2π|r′ − r|3
ζ(R′)g(R′)

≃ Ĥ∗
{(

∂2

∂(ξ′)2
+

∂2

∂(η′)2

)
ζ(R′)g(R′)

}
,

Ĥ∗{g(R′)}≡
∫∫

dξ′dη′ 1

2πρ′ g(R′).

(A.2)

We expand here the interface profile function and the operand function
(magnetic field) into series of periodic functions like fν(R)= cos Θν , sin Θν (Θν≡kνXX+kνY Y ),
as follows:

ζ(R′) =
∞∑

µ=0

ζ̃µfµ (R′) , g(R′) =
∞∑

ν=0

g̃νfν (R′) .

Hereafter, the operation of ĜI concerns on the periodic function. In [7],

Ĥ∗{fν(R
′)}= fν/ kν (A.3)
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was shown, where xν ≡ kνX/ |rX |, yν ≡ kνY / |rY |, k2
ν ≡ x2

ν + y2
ν are the com-

ponents and the amplitude of the effective wavenumber, with |rX | ≡ |∂r/∂X|,
|rY | ≡ |∂r/∂Y | which appear at the transformation of variables ξ′ = |rX | (X ′−
X) and η′ = |rY | (Y ′ − Y ). When the periodic functions are trigonometric
functions, their product is written as f ′

νf
′
µ =

(
f ′

ν+µ + f ′
ν−µ

)/
2 with the sign

included in the definition. Then, the following result is derived:

ĜX{fν(R
′)}≃ xν

kν

∂fν

∂Θν

, ĜY {fν(R
′)} ≃ yν

kν

∂fν

∂Θν

,

ĜZ{fν(R
′)} ≃− 1

2P

∞∑
µ=0

ζ̃µ (kν+µfν+µ + kν−µfν−µ) .
(A.4)

The operation of ĜX,Y is the derivative with respect to X ′ or Y ′. On the

other hand, ĜZ generates the spectral components with the sum or difference
of wavenumbers of the interface profile (µ: profile mode) and the applied
magnetic field (ν: magnetic mode), due to the nonlinear mode coupling.

Appendix B. Interface magnetic field in the linear harmonic anal-
ysis

We confirm here the interface magnetic field analysis in Section 2 by de-
riving the interface magnetic field in the linear harmonic analysis when a
homogeneous vertical magnetic field is applied on the two-dimensional hori-
zontal interface of magnetic fluid with infinite depth.

By the intensity of the applied magnetic field H0, basic fields are expressed
as

h0
X = tX · h0 = H0

∂z1

∂X
, b0

Z =
tZ · h0

P
=

H0

P
,

where h0
X is small in the linear analysis. In the two-dimensional analysis,

ĜY = 0 as well as h0
Y = 0. If the interface profile is composed of a unique

mode µ = m changing only in the X-direction, z1 = ζ̃mfm. Then from (A.4),

ĜX{fν(R
′)}≃ 1

kν

1

|rX |
∂fν

∂X
,

ĜZ{f0(R
′)} ≃− 1

P

ζ̃m

2
(k0+mf0+m + k0−mf0−m)

=− 1

P
kmζ̃mfm = − 1

P
kmz1f0,

(B.1)
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where ĜZ is supposed to operate on homogeneous fields, and the symmetry
k−m = km, f−m = fm are used. Accordingly, ĜX operates as the differen-
tiation with respect to X, and ĜZ multiplies − kmz1/ P , which causes the
variation to the homogeneous magnetic field by the nonlinear mode coupling.

In the linear analysis, kmz1 ≪ 1, and MĜZ in (2) is small together with
M/ P < 1. When h̃Z = −Mb0

Z = − Mn/ 2 is supposed to be homogeneous,
induced fields are derived from (2), as follows:

h1
X ≃ ĜX(1 − MĜZ)h̃Z = ĜX(−MĜZ h̃Z)

≃ 1

km |rX |
∂

∂X

(
Mkmz1

P
h̃Z

)
= −M

P

1

|rX |
∂z1

∂X

Mn

2
, (B.2)

b1
Z ≃ ĜZ(1 − MĜZ)h̃Z ≃ ĜZ h̃Z

≃−kmz1

P
h̃Z =

kmz1

P

Mn

2
. (B.3)

The tangential magnetic field h1
X is infinitesimal of higher order than h0

X

by M2. On the other hand, b1
Z is the variation of the normal magnetic

flux proportional to the interface elevation z1, which has been used for the
conventional analysis.
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Figure Caption

Figure 1: (a) Comparison of the interface stress response hµ and the induced part
of the normal magnetic flux b1

Z/ z̃1
µ in the wavenumber space between

the linear harmonic analysis (lines) and the numerical analysis (dots)
for two-dimensional interface profile under the critical magnetic field
intensity HCL. (b) Wavenumber distribution of the numerical interface
magnetic field hX , bZ .

Figure 2: (a) Dependence of the smallest eigenvalue h of H on the intensity of the
applied magnetic field H0 for (1) ζ0=0.2×10−4 [m] (open circle) and (2)
ζ0=5.0×10−4 [m] (closed circle). (b) Branch line in the (H0, ζ0) plane
for two-dimensional interface profile.

Figure 3: (a) Interface profile of hexagonal lattice. (b) Spectral components for
interface profile (circles), linear dispersion relation (shaded squares)
and critical wavenumber (curve). (c) Branch line in the (H0, ζ0) plane
for hexagonal-lattice interface profile.

Figure 4: Wavenumber spectra of interface stresses at h = 0 for hexagonal-lattice
interface profile.

Figure 5: Relative average and standard deviation of the spectra of the interface
stresses for hexagonal-lattice interface profile.
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