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Two accuracy assurance schemes are combined into the Binary Interaction Approximation (BIA) to N-body
problems. The first one is a sort of variable time step (VTS) scheme for a given error tolerance. Since this
scheme sometimes does not converge, an error-tolerance-adjusting (ETA) scheme is also introduced. With these
two schemes combined into the original BIA, a significant improvement in terms of numerical error is obtained.
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1. Introduction
We have proposed the Binary Interaction Approxima-

tion (BIA) scheme [1–3] to N-body problem. The BIA
scheme views an N-body problem as the superposition of

NC2 two-body problems [1]. If we are interested in the
motion of only one test particle-i at a time Δt from initial
conditions at t = 0, it is possible with the BIA scheme to
calculate ri(Δt) and ui(Δt) completely in parallel.

When the time interval Δt is chosen to be the time
Δ�/gth for a particle with a mass m and its thermal speed
of gth =

√
2T/m to travel the average interparticle sep-

aration of Δ� = n−1/3 for plasmas with a temperature T
and a number density n, the BIA is proven to be a pow-
erful scheme for N-body problems [1]. Generally speak-
ing, the BIA scheme is best suitable for fusion plasmas
that are low-density and high-temperature gases. As will
be shown later, however, for much longer time interval the
BIA scheme may give erroneous results. In this study, we
will introduce an accuracy-improving scheme to the BIA.

Equation of motion for the entire system is given as

mi
dui
dt
=

Zie2

4πε0

N∑

j�i

Z j
ri − r j∣∣∣ri − r j

∣∣∣3
. (1)

It is practically impossible to deal with the large num-
ber of particles, i.e. N � 1, since the number of force
calculations on the right-hand side of Eq. (1) is in propor-
tion to N2. Moreover, the number of time-steps tends to
increase with increasing N, so the total CPU time should
scale as N2.3−3.

The efficient, fast algorithms to calculate interparti-
cle forces include the tree method [4, 5], the fast multipole
expansion method (FMM), and the particle-mesh Ewalt
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Fig. 1 A test calculation for a 1,332-body problem. A parti-
cle start at the point marked with a filled circle in green
moves in the velocity space (u, v, w) along a red line,
which is obtained by using a direct integration method
(DIM), specifically a Runge-Kutta-Fehlberg scheme with
an absolute error tolerance of 10−16. The BIA gives the
velocity at blue circle, which is close to the endpoint of
the red line.

(PPPM) method [6]. Efforts have been made to use paral-
lel computers and/or to develop special-purpose hardware
to calculate interparticle forces, e.g., the GRAvity PipE
(GRAPE) project [7].

2. BIA Scheme
Let us now give a brief review on the BIA scheme.

First choose a particle pair (i, j) from N particles as shown
in Fig. 1. There are NC2 = N(N + 1)/2 such combinations.
The equation of motion for this case, instead of Eq. (1), is:

μi j
dgi j

dt
=

ZiZ je2

4πε0

ri j

r3
i j

, (2)

where ri j = ri− r j is the relative position, gi j = ui−u j is the
relative velocity, and μi j = mimi/(mi + m j) is the reduced
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Fig. 2 Relative motion for a particle pair (i, j) in an orbital plane.
Scattering center is at the origin. The change in position
of the particle with a mass μi j is Δri j. If no interaction oc-
curs, the change in position is gi jΔt during a time interval
of Δt.

mass, Zie is the electric charge of particle-i.
Since the exact solutions to two-body problems are

known, for any time interval Δt the solution, ri j(Δt) and
gi j(Δt) are easily found from the initial conditions ri j(0)
and gi j(0). Once the solutions to all the two-body systems
are found, changes in position and in velocity of individual
particle during the time interval Δt is calculated as follows
(see Appendix):

miΔri = miuiΔt +
N∑

j�i

μi j

(
Δri j − gi jΔt

)
, (3)

miΔui =
N∑

j�i

μi jΔgi j. (4)

Equation (4) for the velocity, i.e. momentum changes en-
sures the momentum conservation of the entire system. It
should be noted that, unlike the changes in velocity Δui,
changes in position Δri due to particle j is not simple sum-
mation over Δri j. As shown in Fig. 2, the subtraction by
gi jΔt from total change in position Δri j gives change in po-
sition due solely to the interaction between the pair (i, j). In
the limit Δt → 0, Eq. (3) reduces to the definition of veloc-
ity, and Eq. (4) reduces to the original equation of motion,
as given in Eq. (1).

If we are interested in the motion of only one test
particle-i at a time t = Δt from the initial conditions at
a time t = 0, it is possible with the BIA scheme to cal-
culate ri(Δt) and ui(Δt) completely in parallel, since it is
based on the principle of superposition of Δri j and Δgi j

using Eq. (3), and Eq. (4).
As shown in Fig. 1, the complicated change in velocity

with time, or the acceleration, is typically reproduced well
with the BIA (blue triangle) for a time interval of 1 × Δt =
Δ�/gth. For much longer time-interval of 100 × Δt, the red
line in Fig. 3 represents the trajectory calculated by using a
Runge-Kutta-Fehlberg integrator [8] with an absolute error
tolerance of 10−16. Note that the BIA scheme gives only
the final solution at a given time interval, 100 × Δt in this

Fig. 3 A test calculation for a 1,332-body problem. Legends
are the same as Fig. 1, except the final time is 100 × Δt.
A particle start at the point marked with the filled cir-
cle in green moves in the velocity space (u, v, w) along a
red line, which is obtained by using a direct integration
method (DIM), specifically the Runge-Kutta-Fehlberg
scheme. The BIA gives the velocity at blue circle, which
is apparently not at the endpoint of the red line.

case, from the initial conditions. The final point due to
the BIA calculation apparently deviates from that of the
DIM. In the following section, we will introduce accuracy
assurance schemes to the BIA to reduce the errors, or the
deviation from the DIM.

3. Accuracy Assured BIA Scheme
Suppose a general ordinary differential equation, for a

time-dependent function y = y(t), of the form:

dy
dt
= f (y, t), (5)

with an initial condition at a time t = 0 of

y(0) = y0. (6)

Let us define an exact time-shift operatorD[y,Δt] on
any time-dependent quantity:

D [y(t),Δt
] ≡ y (t + Δt) . (7)

Similarly let us introduce an operator:

B[ri,Δt] = ri + uiΔt +
1
mi

N∑

j�i

μi j

(
Δri j − gi jΔt

)

B [ui,Δt] = ui +
1
mi

N∑

j�i

μi jΔgi j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(8)

which is an approximate operator to the exact operator
D[y, t] with the BIA scheme described in the foregoing
section, i.e. Eqs. (3)–(4).

3.1 Variable-time-step scheme
With these notations defined above, let y1(Δt) and

y2(Δt) denote the approximate solutions at a time t = Δt,
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Fig. 4 Estimated errors vs. the number of BIA trials Ntrial for
N = 1,332. Since the error tolerance in blue, ε = 10−13

is smaller than the estimated errors in red, the time step
size becomes Δ/2Ntrial , where Δt is the initial one. Thus
the time accepted by the BIA, plotted with green points,
does not proceed.

as

y1(Δt) = B[y(0),Δt], (9)

y2(Δt) = B[B[y(0),Δt/2],Δt/2]. (10)

Since the solution y2(Δt) is generally better than y1(Δt) in
terms of numerical errors, we will choose an error toler-
ance εT in such a way that, if the following condition is
satisfied,

|y1 − y2| < εT, (11)

we will accept the approximate solution y2(Δt). If not, the
time interval is reduced, such as

Δt → Δt/2, (12)

then we will seek for an approximate solution y(Δt/2) at
t = Δt/2. Fortunately, y1(Δt/2) in the current stage

y1(Δt/2) = B[y(0),Δt/2], (13)

has already been obtained in the first operation on y(0), as
shown in Eq. (10), in the previous stage. The procedure
will be repeated until the time reaches the prescribed final
time tend.

For an N-body problem, the approximate position ri

and the velocity ui at a time Δt, using the conventional BIA
scheme, are formally represented as

ri(Δt) = B[B[ri(0),Δt/2],Δt/2],

ui(Δt) = B[B[ui(0),Δt/2],Δt/2].
(14)

It is sometimes the case that, as shown in Fig. 4, the
estimated errors (in red) are never below the tolerance εT =

10−13 (in blue), so that the time (in green) does not proceed
at all.

Fig. 5 Error-tolerance-adjusted BIA for the same case as in
Fig. 4. The error tolerance adjustments occur at the 5th
and 8th BIA trials. The vertical axis on the right is for the
time accepted in green.

3.2 Error-tolerance-adjusting scheme
This problem was solved by the following tolerance

adjusting scheme: It is usually the case that the estimated
error rapidly decreases with decreasing time step size Δt
for the first few BIA trials, irrespective of the errors be-
ing tolerable (accepted) or not. The dependence seems, by
numerical investigation, to be

ε ∝ Δt2−3. (15)

For the first few trials of the variable time step scheme
explained above, estimated errors decrease rapidly. After
such rapid decrement stage in estimated errors, the decre-
ments become insensitive to the smaller time step Δt in
some cases the estimated errors become larger for smaller
time step size. Such an estimated error may be the at-
tainable minimum error level by the BIA scheme. With
this knowledge, the error tolerance is set twice the current
one, when current estimated error is larger than one-fourth
of the previous one, where one-fourth comes from the as-
sumption that the estimated errors obey ε ∝ Δt2 for the
rapid decreasing phase of the errors.

A test calculation with the error-tolerance-adjusting
scheme is made for the same case presented in Fig. 3. Im-
provement against Fig. 4 is given in Fig. 5 and that for
Fig. 3 in Fig. 6. In Fig. 4, the tolerance adjustments occur
at the 5th and 8th BIA trials. In Fig. 6, the velocity at a time
100Δt given by the BIA with the error-tolerance-adjusting
scheme is close to the by the DIM (Runge-Kutta-Fehlberg
with an absolute error tolerance of 10−16), as compared
to that shown in Fig. 3. Thus the error-tolerance-adjusting
scheme implemented into the BIA introduced in this study
significantly improves the numerical accuracy of the BIA.

4. Summary
Two accuracy assurance schemes are introduced to

the Binary Interaction Approximation (BIA) to N-body
problems. The first one is a sort of variable time step
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Fig. 6 A test calculation with the accuracy assured scheme for
the same case as shown in Fig. 3. The filled circle in blue
represents v (100Δt) by using the BIA with the error cor-
rection scheme, while open circle in blue is that without
as was shown in Fig. 3.

(VTS) scheme for a given error tolerance. Since this
scheme sometimes does not converge, the error-tolerance-
adjusting (ETA) scheme is also introduced. With these two
schemes combined into the BIA, a significant improvement
in terms of numerical error is obtained.
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Appendix A. Derivation of BIA Scheme
Since the force terms in Eq. (1) are the summation of

those in Eq. (2), we have

fi =

N∑

j�i

fi j

(
ri, r j

)
. (A.1)

The exact change miΔui in momentum of the particle-i dur-
ing a time-interval Δt is formally given as

miΔui =

∫ t+Δt

t
fi

(
ri (t) , r j (t)

)
dt

=

N∑

j�i

∫ t+Δt

t
fi j

(
ri (t) , r j (t)

)
dt.

(A.2)

Since, in the framework of the BIA via Eq. (2), the relative
force fi j(t) changes the relative momentum μi jgi j(t),

miΔui �
N∑

j�i

μi j

[
gi j (t + Δt) − gi j(t)

]

=

N∑

j�i

μi jΔgi j,

(A.3)

which is Eq. (4).
Similarly, the exact change Δri in position of the

particle-i during Δt is formally given by

Δri =

∫ t+Δt

t
ui
(
t′
)

dt′

=

∫ t+Δt

t

[
ui (t) + Δui

(
t′
)]

dt′

= ui (t)Δt +
∫ t+Δt

t
dt′
∫ t′

t

dui(t′′)
dt′′

dt′′,

(A.4)

from which, with the BIA scheme, we have

miΔri � miui (t)Δt +
∫ t+Δt

t
dt′
∫ t′

t

N∑

j�i

μi j
dgi j (t′′)

dt′′
dt′′

= miui (t)Δt +
∫ t+Δt

t
dt′

N∑

j�i

μi j

[
gi j
(
t′
) − gi j (t)

]

= miui (t)Δt +
N∑

j�i

μi j

[
Δri j − gi j (t)Δt

]
,

which is Eq. (3).
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