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We have solved the two-dimensional time-dependent Schödinger equation for a magnetized proton in the
presence of a fixed field particle with an electric charge of 2×10−5e, where e is the elementary electric charge, and
of a uniform megnetic field of B = 10 T. In the relatively high-speed case of v0 = 100 m/s, behaviors are similar
to those of classical ones. However, in the low-speed case of v0 = 30 m/s, the magnitudes both in momentum
mv = |mu|, where m is the mass and u is the velocity of the particle, and position r = |r| are appreciably decreasing
with time. However, the kinetic energy K = m

〈
u2
〉
/2 and the potential energy U =

〈
qV
〉
, where q is the electric

charge of the particle and V is the scalar potential, do not show appreciable changes. This is because of the
increasing variances, i.e. uncertainty, both in momentum and position. The increment in variance of momentum
corresponds to the decrement in the magnitude of momentum: Part of energy is transfered from the directional
(the kinetic) energy to the uncertainty (the zero-point) energy.
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1. Introduction
We have shown in the previous paper [1] that the vari-

ance, or the uncertainty, in position would reach the square
of the interparticle separation n−2/3 with a number density
of n = 1020 m−3 in a time interval of the order of 10−4 sec.
After this time the wavefunctions of neighboring particles
would overlap, as a result the conventional classical anal-
ysis may lose its validity: Plasmas may behave more-or-
less like extremely-low-density liquids, not gases, since the
size of each particle is of the same order of the interparticle
separation.

We have also pointed out [2–4] that (i) for distant en-
counters in typical fusion plasmas of a temperature T =
10 keV and n = 1020 m−3, the average potential energy
〈U〉 ∼ 30 meV is as small as the uncertainty in energy
ΔE ∼ 40 meV, and (ii) for a magnetic field B ∼ 3 T, the
spatial size of the wavefunction in the plane perpendicu-
lar to the magnetic field is as large as the magnetic length
�B ∼ 10−8 m [5] which is much larger than the typical elec-
tron wavelength λe ∼ 10−11 m, and is around one-tenth of
the average interparticle separation Δ�.

In considering the diffusion of plasmas correctly, it
was pointed out more than half a century ago [6, 7] that
one must consider the wave character of charged particles
when the temperature T is high, i.e. the relative speeds of
interacting particles are fast. The criterion on the classical
theory to be valid in terms of relative speed g in a hydrogen
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plasma is given in Ref. [7], as

g� 2e2

4πε0�
= 4.4 × 106 m/s, (1)

where e = 1.60 × 10−19 C and � ≡ h/2π = 1.05 × 10−34 J·s
stand for the elementary electric charge and the reduced
Planck constant. In contemporary fusion plasmas with
T ∼ 10 keV or higher, ions as well as electrons should be
treated quantum mechanically. In current plasma physics,
however, the quantum mechanical effects enters as a minor
correction to the Coulomb logarithm in the case of close
encounters [8]. Nonetheless, the neoclassical theory [9]
is capable of predicting a lot of phenomena such as those
related to the current conduction. In this paper, as an ex-
tention of previous study of Ref. [2], quantum mechanical
effects of a field particle in the presence of a uniform mag-
netic field will be studied.

2. Schrödinger Equation
The unsteady Schrödinger equation for wavefunction

ψ (r, t), at a position r and a time t, is given by

i�
∂ψ

∂t
=

[
1

2 m

(
−i�∇ − qA

)2
+ qV

]

ψ, (2)

where V = V(r) and A = A (r) stand for the scalar and
vector potentials, m and q the mass and electric charge of
the particle under consideration, and i ≡ √−1 the imagi-
nary unit. When the corresponding classical particle has a
momentum p0 = mu0, where u0 is the initial velocity, at a
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position r = r0 at a time t = 0, the initial condition for the
wavefunction ψ (r, 0) can be given [10, 11] by

ψ(r, 0) =
1√
π�B

exp

⎡
⎢⎢⎢⎢⎣− (r − r0)2

2�2
B

+ ik0 · r
⎤
⎥⎥⎥⎥⎦ , (3)

where k0 = mu0/� is the initial wavenumber vector.
We will solve Eqs. (2) and (3) using the finite dif-

ference method (FDM) in space with the Crank-Nicolson
scheme [1, 11, 12].

We will adopt the successive over relaxation (SOR)
scheme for time integration.The size of spatial discretiza-
tion for the two-dimensional FDM in (x, y) plane should be
sufficiently small to satisfy

Δx ∼ Δy � 1
k0
=
λ0

2π
, (4)

where λ0 is the de Broglie wavelength. This restriction
Eq. (4) on Δx and Δy demands a lot of computer memory
for fast particles.

2.1 Electrostatic potential due to a field par-
ticle

Here we have assumed that the field particle is a
quantum-mechanical particle centered at the origin with
the wavefunction ψf similar to that given in Eq. (3), but
is fixed in space and time, as

ψf (r) =
exp
(
− x2+y2

2�2
B

)

√
π�2

B

×
exp
(
− z2

2σ2
z

)

√
π1/2σz

, (5)

where σ2
z is the variance in position in z-direction. In mag-

netically confined fusion plasmas,σz ∼ h/mv0 � �B holds,
so that the square of the second factor can be approxi-
mately the same as a Dirac delta function δ(z) centered at
z = 0. Thus the electrostatic potential ϕf in the x-y plane,
due to the distributed charge is given by

ϕf (R) � qf

4πε0�
2
B

4
π

∫ ∞

0

R′e−(R′/�B)2

R + R′
K (M) dR′, (6)

where R =
√

x2 + y2, qf is an electric charge of the field
particle, ε0 is the vacuum permittivity, and K (M) is the
complete elliptic integral of the first kind with the parame-
ter M being defined as M ≡ 4RR′/ (R + R′)2 [13].

3. Numerical Results
In what follows, velocity and time are normalized by

10 m/s and the cyclotron frequency for a proton in B = 10
T with a speed of 10 m/s, thus position is normalized by
the cyclotron radius of the proton. The magnetic length [5]
for a proton in B = 10 T, �B ≡

√
�/eB ∼ 10−8 m is a

measure for the spread of a wave function in the plane per-
pendicular to the magnetic field. With these normalization,
Planck constant � ∼ 0.60, initial uncertainty in position
�2

B = �/eB ∼ 0.782 and initial uncertainty in kinetic mo-
mentum 3

2�eB ∼ 0.91 are of order of unity. It should be

Fig. 1 Time evolution of probability density function (PDF) for
v0 = 30 m/s, B = 10 T, and qf = 2 × 10−5e. The PDFs
for the first cyclotron rotation are depicted on the top,
in which the initial PDF is the smallest circle in shape
centered at (x0, y0) = (−3, 0). PDF rotate clockwise with
time. The figure on the bottom is for the second rotation.

noted that the kinetic energy of a classical proton speed
∼ 27 m/s in B = 10 T corresponds to the uncertainty of the
momentum. In the numerical results to be presented in the
following subsections, the Schrödinger equation is solved
for a time duration of five cyclotron rotations by a proton.

Figure 1 shows the time evolution of probability de-
sity function (PDF) for v0 = 30 m/s, B = 10 T, and qf =

2 × 10−5e, where e is the elementary electric charge. The
PDFs at four different times, ωt = 0, π/2, π, 3π/2, where
ω is the cyclotron angular frequency, for the first cyclotron
rotation are depicted on the top, in which the initial PDF is
the smallest circle in shape centered at (x0, y0) = (−3, 0).
PDF rotates clockwise with time. The figure on the bottom
is for the second rotation. It is seen that the PDF changes
from a circular shape to elongated one along the direction
the particle moves.

3.1 Errors in energy and particle conserva-
tion

The numerical errors in energy and particle conserva-
tion for the field particle charge of qf = 2 × 10−5e is quite
small, as shown in Fig. 2 for initial speed of v0 = 100 m/s,
and Fig. 3 for v0 = 30 m/s. The time evolution of ener-
gies, the kinetic energy K = m

〈
u2
〉
/2 and the potential en-

ergy U =
〈
qV
〉
, for v0 = 30 m/s is shown in Fig. 4. Note
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Fig. 2 Time evolution of relative errors in energy and particle
conservation for B = 10 T and qf = 2 × 10−5e. Initial
speed is v0 = 100 m/s.

Fig. 3 Time evolution of relative errors in energy and particle
conservation for B = 10 T and qf = 2 × 10−5e. Initial
speed is v0 = 30 m/s.

Fig. 4 Time evolution of normalized energies; kinetic K, poten-
tial U, and total E = K + U for v0 = 30 m/s, B = 10 T,
and qf = 2 × 10−5e.

that the electric charge qf of the field particle is intention-
ally assumed small, since qf = e with v0 = 30 - 100 m/s
makes the potential energy much larger than that of ki-

netic energy. Such a situation seldom occur in low density
and high temperature plasmas. The initial speed v0 = 30 -
100 m/s, which is much slower than a thermal speed of fu-
sion plasmas, is assumed here due to a numerical reason:
required numerical grid sizes Δx and Δy in Eq. (4) need
to be much smaller than the de Broglie wavelength that is
inversely proportional to the particle speed. The combina-
tion v0 = 30 - 100 m/s and qf ∼ 10−10e leads to the similar
potential to kinetic energy ratio as found in fusion plasmas.

3.2 Expectation values and variaces
Depicted lines in blue on the left and in the center in

Fig. 5 are expectation values 〈mu〉 and 〈r〉 for v0 = 100 m/s,
respectively, in which the classical counterparts are also
plotted in red. On the right in Fig. 5 shows the time evolu-
tion of normalized variances of momentumσ2

p =
〈
(mu)2〉−

〈
mu
〉2 in blue, and position σ2

r =
〈
r2〉 − 〈r〉2 in red. The

trajectory in the phase space (r, p) is close to the classi-
cal one, and variances show simple oscillation with almost
constant amplitudes.

Similar plots for v0 = 30 m/s are shown in Fig. 6. Both
trajectories in the momentum space and the configuration
space are gradually decreasing in radii with time, which is
opposed to the classical trajectory as shown in these figures
with red lines. In addition, variances both in momentum
and configuration space grow with time.

The increment in variance of kinetic momentum,
Δσ2

p =
〈
(mu)2〉 − 〈mu〉2 − 3

2�qB, corresponds to the decre-
ment in the magnitude of momentum as was shown in
Fig. 4: Part of energy is transfered from the directional,
or the kinetic, energy to the uncertainty, or the zero-point,
energy. This is a result of energy conservation as shown in
Fig. 3.

Thus, in the relatively high-speed case of v0 =

100 m/s, behaviors are similar to those of classical ones.
In the low-speed case of v0 = 30 m/s, however, the mag-
nitudes both in momentum mv = |mu| and position r = |r|
are appreciably decreasing with time, as shown on the left
in Figs. 5 and 6. The kinetic energy K = m

〈
u2
〉
/2 and the

potential energy U =
〈
qV
〉
, however, do not show appre-

ciable changes except for a small amplitude oscillation as
shown in Fig. 4, because of the increasing variances, i.e.
uncertainty, both in momentum and position.

4. Summary
We have solved the two-dimensional time-dependent

Schödinger equation for a magnetized proton in the pres-
ence of a fixed field particle with an electric charge of
2 × 10−5e and of a uniform megnetic field of B = 10 T.
In the relatively high-speed case of v0 = 100 m/s, behav-
iors are similar to those of classical ones. In the low-speed
case of v0 = 30 m/s, however, the magnitudes both in mo-
mentum mv = |mu| and position r = |r| are appreciably
decreasing with time. The kinetic energy K = m

〈
u2
〉
/2

and the potential energy U =
〈
qV
〉
, however, do not show
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Fig. 5 Normalized expectation values of momentum p = 〈mu〉 in blue with classical one in red on the left, and of position 〈r〉 in
blue with classical one in red in the center. Depicted on the right are time evolution of normalized variances in mv-momentum
σ2

p =
〈
(mu)2〉 − 〈mu〉2 in blue and in position σ2

r =
〈
r2〉 − 〈r〉2 in red, both for B = 10 T and qf = 2 × 10−5e. Initial particle speed

is v0 = 100 m/s.

Fig. 6 Similar plots as Fig. 5 for initial particle speed v0 = 30 m/s.

appreciable changes except for a small amplitude oscilla-
tion, because of the increasing variances, i.e. uncertainty,
both in momentum and position.

The increment in variance of momentum corresponds
to the decrement in the magnitude of momentum: Part of
energy is transfered from the directional (the kinetic) en-
ergy to the uncertainty (the zero-point) energy.

In summary, quantum-mechanical analyses are neces-
sary for slow particles with mass m and charge q in the
presence of magnetic field B, whose kinetic energy K is of
the order of �qB/2 m.
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